Predictions from multiple field inflation

David Seery
University of Sussex

Critical tests of inflation using non-gaussianity, 7 November 2012

Single-field inflation

On previous days we heard a lot about single-clock inflation.

This models are nice because the correlation functions have a simple structure.

Pimentel, Senatore \& Zaldarriaga (2012); Senatore \& Zaldarriaga (2012)
Assassi, Baumann \& Green (2012)

In multiple field inflation this is no longer true.

(For me, that means inflation with multiple active, light fields.)

$$
\begin{aligned}
& \left\langle\delta \phi_{\alpha}\left(\boldsymbol{k}_{1}\right) \delta \phi_{\beta}\left(\boldsymbol{k}_{2}\right)\right\rangle_{\tau}=(2 \pi)^{3} \delta\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right) \frac{H_{*}^{2}}{2 k^{3}} \\
& \quad \times\left\{\delta_{\alpha \beta}\left[1+2 \epsilon_{*}\left(1-\gamma_{\mathrm{E}}-\ln \frac{2 k}{k_{*}}\right)\right]-\frac{2}{3} \frac{m_{\alpha \beta}^{*}}{H_{*}^{2}}\left[2-\gamma_{\mathrm{E}}-\ln \left(-k_{*} \tau\right)-\ln \frac{2 k}{k_{*}}\right]\right\}
\end{aligned}
$$

Nakamura \& Stewart (1996)

In multiple field inflation this is no longer true.

(For me, that means inflation with multiple active, light fields.)

$$
\begin{aligned}
& \left\langle\delta \phi_{\alpha}\left(\boldsymbol{k}_{1}\right) \delta \phi_{\beta}\left(\boldsymbol{k}_{2}\right)\right\rangle_{\tau}=(2 \pi)^{3} \delta\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right) \frac{H_{*}^{2}}{2 k^{3}} \\
& \times\left\{\delta_{\alpha \beta}\left[1+2 \epsilon_{*}\left(1-\gamma_{\mathrm{E}}-\ln \frac{2 k}{k_{*}}\right)\right]-\frac{2}{3} \frac{m_{\alpha \beta}^{*}}{H_{*}^{2}}\left[2-\gamma_{\mathrm{E}}-\ln \left(-k_{*} \tau\right)-\ln \frac{2 k}{k_{*}}\right]\right\} \\
& -\ln \left(-k_{*} \tau\right) \approx-\ln \frac{k_{*}}{a H}
\end{aligned}
$$

In multiple field inflation this is no longer true.

(For me, that means inflation with multiple active, light fields.)

$$
\begin{aligned}
& \left\langle\delta \phi_{\alpha}\left(\boldsymbol{k}_{1}\right) \delta \phi_{\beta}\left(\boldsymbol{k}_{2}\right)\right\rangle_{\tau}=(2 \pi)^{3} \delta\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right) \frac{H_{*}^{2}}{2 k^{3}} \\
& \times\left\{\delta_{\alpha \beta}\left[1+2 \epsilon_{*}\left(1-\gamma_{\mathrm{E}}-\ln \frac{2 k}{k_{*}}\right)\right]-\frac{2}{3} \frac{m_{\alpha \beta}^{*}}{H_{*}^{2}}\left[2-\gamma_{\mathrm{E}}-\ln \left(-k_{*} \tau\right)-\ln \frac{2 k}{k_{*}}\right]\right\} \\
& \quad-\ln \left(-k_{*} \tau\right) \approx-\ln \frac{k_{*}}{a H}
\end{aligned}
$$

$\approx N \quad N$ measures the number of e-folds by which this k-mode is out of the horizon

We assumed these fields were light, so $\frac{m_{\alpha \beta}}{H^{2}} \ll 1$

By the end of inflation $N \approx 60$, so you might think we can get a good estimate from this linear approximation.

We assumed these fields were light, so $\frac{m_{\alpha \beta}}{H^{2}} \ll 1$

By the end of inflation $N \approx 60$, so you might think we can get a good estimate from this linear approximation.

We assumed these fields were light, so $\frac{m_{\alpha \beta}}{H^{2}} \ll 1$
By the end of inflation $N \approx 60$,
so you might think we can get a good estimate from this linear approximation.

If the linear term is important, you are just on the cusp of every other power becoming important.

So, for multiple fields, it is harder to compute correlation functions.

If the linear term is important, you are just on the cusp of every other power becoming important.

So, for multiple fields, it is harder to compute correlation functions.

Slice of fixed energy

Spatially flat slice

If the linear term is important, you are just on the cusp of every other power becoming important.

So, for multiple fields, it is harder to compute correlation functions.

Slice of fixed energy

More efolds to dilute to a fixed value
+ve energy
fluctuation
:---
dilute to a fixed
value

Spatially flat slice

The δN method tells us how to handle this time dependence

$$
\delta N=\delta[N(\phi, \rho, \cdots)]=\frac{\partial N}{\partial \phi_{\alpha}^{*}} \delta \phi_{\alpha}^{*}+\frac{1}{2} \frac{\partial^{2} N}{\partial \phi_{\alpha}^{*} \partial \phi_{\beta}^{*}} \delta \phi_{\alpha}^{*} \delta \phi_{\beta}^{*}+\cdots
$$

Lyth \& Rodríguez (2005)

I Although no-one doubts this formula, it has never been demonstrated to be correct. So, what do I do if I am dealing with a different model?

- ... maybe I want to include loop corrections?
- ... interesting models may have nontrivial kinetic sector, for which the δN formula may not apply. Maybe I'm interested in these?

Time dependence from external wavefunctions

$$
\psi(k, \tau)=(1+\mathrm{i} k \tau) \mathrm{e}^{-\mathrm{i} k \tau}
$$

Time dependence from external wavefunctions

$$
\psi(k, \tau)=(1+\mathrm{i} k \tau) \mathrm{e}^{-\mathrm{i} k \tau} \quad \int \mathrm{~d} t a(t)^{3} \psi\left(k_{1}, \tau\right) \psi\left(k_{2}, \tau\right) \psi\left(k_{3}, \tau\right)
$$

Two-step strategy, borrowed from QCD

1. Including masses perturbatively, argue that logarithmic divergences can only be produced in combination with certain functions of the external momenta

$$
\left(1+\epsilon_{*} \ln \left(-k_{*} \tau\right)+\cdots\right) \times f_{i}(\boldsymbol{k})
$$

Two-step strategy, borrowed from QCD

1. Including masses perturbatively, argue that logarithmic divergences can only be produced in combination with certain functions of the external momenta

$$
\begin{array}{ll}
\left(1+\epsilon_{*} \ln \left(-k_{*} \tau\right)+\cdots\right) \times f_{i}(\boldsymbol{k}) \\
\text { Unknown function } & \begin{array}{l}
\text { Only a finite number } \\
\text { of these }
\end{array}
\end{array}
$$

Two-step strategy, borrowed from QCD Dias, Ribeiro \& DS arXiv:1210.7800

1. Including masses perturbatively, argue that logarithmic divergences can only be produced in combination with certain functions of the external momenta

$$
\begin{array}{ll}
\left(1+\epsilon_{*} \ln \left(-k_{*} \tau\right)+\cdots\right) \times f_{i}(\boldsymbol{k}) \\
\text { Unknown function } & \begin{array}{l}
\text { Only a finite number } \\
\text { of these }
\end{array}
\end{array}
$$

2. Write renormalization-group equations for the unknown coefficients

We require a guarantee that we only need a finite number of unknown functions to do this - the analogue of renormalizability.
Here it is the statement that correlation functions factorize.

In conventional models you can show this reproduces the usual $\delta \mathrm{N}$ formula to leading-logarithm order.

In conventional models you can show this reproduces the usual $\delta \mathrm{N}$ formula to leading-logarithm order.

The RGE can be interpreted as an evolution equation for each Jacobi field of the flow.

Then we have to track the correlation functions along the flow, à la Callan-Symanzik equation, critical phenomena, ...

García-Bellido \& Wands (1996)
Bernardeau \& Uzan (2002)
Yokoyama, Suyama \& Tanaka (2007)
DS, Mulryne, Frazer \& Ribeiro (2012)

Example: nontrivial kinetic term

$$
S=-\frac{1}{2} \int \mathrm{~d}^{4} x \sqrt{-g}\left(M_{\mathrm{P}}^{2} R+\boldsymbol{G}_{\alpha \beta} \partial_{a} \phi^{\alpha} \partial_{b} \phi^{\beta}+2 V\right)
$$

Nakamura \& Stewart (1996)
Nibbelink \& van Tent (2002) Tegmark \& Peterson arXiv:1111.0927 Elliston, DS \& Tavakol arXiv:1208.6011

McAllister, Renaux-Petel \& Xu (2012)

Example: nontrivial kinetic term

$$
S=-\frac{1}{2} \int \mathrm{~d}^{4} x \sqrt{-g}\left(M_{\mathrm{P}}^{2} R+\boldsymbol{G}_{\alpha \beta} \partial_{a} \phi^{\alpha} \partial_{b} \phi^{\beta}+2 V\right)
$$

Example: nontrivial kinetic term

$$
S=-\frac{1}{2} \int \mathrm{~d}^{4} x \sqrt{-g}\left(M_{\mathrm{P}}^{2} R+\boldsymbol{G}_{\alpha \beta} \partial_{a} \phi^{\alpha} \partial_{b} \phi^{\beta}+2 V\right)
$$

Example: nontrivial kinetic term

$$
S=-\frac{1}{2} \int \mathrm{~d}^{4} x \sqrt{-g}\left(M_{\mathrm{P}}^{2} R+\boldsymbol{G}_{\alpha \beta} \partial_{a} \phi^{\alpha} \partial_{b} \phi^{\beta}+2 V\right)
$$

Each trajectory is a solution of

$$
\frac{1}{3} \frac{\mathrm{D}^{2} \phi^{\alpha}}{\mathrm{d} N^{2}}+\frac{\mathrm{D} \phi^{\alpha}}{\mathrm{d} N}+\frac{G^{\alpha \beta} V_{, \beta}}{3 H^{2}}=0
$$

Each infinitesimal connecting vector is a solution of

$$
\delta\left\{\frac{1}{3} \frac{\mathrm{D}^{2} \phi^{\alpha}}{\mathrm{d} N^{2}}+\frac{\mathrm{D} \phi^{\alpha}}{\mathrm{d} N}+\frac{G^{\alpha \beta} V_{, \beta}}{3 H^{2}}\right\}=0
$$

Example: nontrivial kinetic term

$$
S=-\frac{1}{2} \int \mathrm{~d}^{4} x \sqrt{-g}\left(M_{\mathrm{P}}^{2} R+\boldsymbol{G}_{\alpha \beta} \partial_{a} \phi^{\alpha} \partial_{b} \phi^{\beta}+2 V\right)
$$

We get relatively simple evolution equations which account for the geodesic deviation effect

$$
\frac{\mathrm{D} \Sigma^{\alpha \beta}}{\mathrm{d} N}=\boldsymbol{w}^{\alpha}{ }_{\gamma} \Sigma^{\gamma \beta}+\boldsymbol{w}^{\beta}{ }_{\gamma} \Sigma^{\gamma \alpha}
$$

$$
\frac{\mathrm{D} \alpha_{\alpha \mid \beta}}{\mathrm{d} N}=\boldsymbol{w}_{\alpha}^{\lambda} a_{\lambda \mid \beta \gamma}+\boldsymbol{w}_{\beta}^{\lambda} a_{\alpha \mid \lambda \gamma}+\boldsymbol{w}_{\gamma}^{\lambda} a_{\alpha \mid \beta \lambda}+\boldsymbol{w}_{\alpha}^{\lambda \mu} \Sigma_{\lambda \beta} \Sigma_{\mu \gamma}
$$

where

$$
\begin{gathered}
\left\langle\delta \phi_{\alpha}\left(\boldsymbol{k}_{1}\right) \delta \phi_{\beta}\left(\boldsymbol{k}_{2}\right) \delta \phi_{\gamma}\left(\boldsymbol{k}_{3}\right)\right\rangle \sim \frac{a_{\alpha \mid \beta \gamma}}{k_{2}^{3} k_{3}^{3}}+\frac{a_{\beta \mid \alpha \gamma}}{k_{1}^{3} k_{3}^{3}}+\frac{a_{\gamma \mid \alpha \beta}}{k_{1}^{3} k_{2}^{3}} \\
\boldsymbol{w}_{\alpha \beta}=-\frac{V_{\alpha \beta}}{3 H^{2}}+\frac{1}{3 H^{2}} \frac{1}{a^{3}} \frac{\mathrm{D}}{\mathrm{~d} t}\left(\frac{a^{3}}{H} \dot{\phi}_{\alpha} \dot{\phi}_{\beta}\right)+\frac{1}{3} \mathbf{R}_{\alpha \lambda \mu \beta} \frac{\dot{\phi}^{\lambda}}{H} \frac{\dot{\phi}^{\mu}}{H} \\
\boldsymbol{w}_{\alpha \beta \gamma}=\nabla_{(\alpha} \boldsymbol{w}_{\beta \gamma)}+\frac{1}{3}\left(\nabla_{(\alpha} \mathbf{R}_{\beta|\lambda \mu| \gamma)} \frac{\dot{\phi}^{\lambda}}{H} \frac{\dot{\phi}^{\mu}}{H}-4 \mathbf{R}_{\alpha(\beta \gamma) \lambda} \frac{\dot{\phi}^{\lambda}}{H}\right)
\end{gathered}
$$

Ridge

Initially the trajectories keep close to each other
Ridge

Eventually they disperse nonlinearly away from the ridge

Initially the trajectories keep close to each other
Ridge

Start with a gaussian distribution

Ridge

The gaussian is preserved in the early phases
Start with a gaussian distribution

Ridge

Eventually a few trajectories slide away down the hillside, generating a heavy tail

Ridge

Eventually a few trajectories slide away down the hillside, generating a heavy tail

These are all excursions to larger kinetic energy, smaller potential energy. Hence, there is less expansion, so negative $\delta \mathrm{N}$

This skews the distribution to negative δN, so gives negative $f_{N L}$

$$
\begin{gathered}
W=W_{0}+g_{0}\left(\phi-\phi_{0}\right)-\frac{1}{2} m_{\chi}^{2} \chi^{2} \\
\text { Define } \delta=\frac{\dot{\chi}}{\dot{\phi}}=m_{\chi}^{2}\left|\frac{\chi}{g_{0}}\right|
\end{gathered}
$$

$W=W_{0}+g_{0}\left(\phi-\phi_{0}\right)-\frac{1}{2} m_{\chi}^{2} \chi^{2}$
Define $\delta=\frac{\dot{\chi}}{\dot{\phi}}=m_{\chi}^{2}\left|\frac{\chi}{g_{0}}\right|$

The peak fNL occurs before the turn. By the turn f_{NL} has decayed back to a small value

Something similar happens when converging into a valley

$$
W=\frac{1}{2} m_{\phi}^{2} \phi^{2}+g_{0} \chi+\frac{1}{2} m_{\chi}^{2} \chi^{2}
$$

Direction of valley floor

Something similar happens when converging into a valley

$$
W=\frac{1}{2} m_{\phi}^{2} \phi^{2}+g_{0} \chi+\frac{1}{2} m_{\chi}^{2} \chi^{2}
$$

Define $\delta=\frac{\dot{\phi}}{\dot{\chi}}$

χ
$\uparrow \rightarrow \phi$
Direction of valley floor

Something similar happens when converging into a valley

$$
W=\frac{1}{2} m_{\phi}^{2} \phi^{2}+g_{0} \chi+\frac{1}{2} m_{\chi}^{2} \chi^{2}
$$

Define $\delta=\frac{\dot{\phi}}{\dot{\chi}}$

At the peak
$f_{\mathrm{NL}} \sim \eta_{*} \delta_{*}$

The peak $f_{N L}$ is achieved before the turn, as for the ridge.
What happens afterwards is model dependent. Either fNL can decay, making a spike as before, or it can plateau.

χ
 $\rightarrow \phi$

Direction of valley floor

Something similar happens when converging into a valley

$$
W=\frac{1}{2} m_{\phi}^{2} \phi^{2}+g_{0} \chi+\frac{1}{2} m_{\chi}^{2} \chi^{2}
$$

This time, the "uphill" edge of the bundle is compressed towards the centre, which again generates a heavy tail on the "downhill" side.
This enhances excursions to positive δN, giving positive f_{NL}.
χ
$\rightarrow \phi$
Direction of valley floor

Something similar happens when converging into a valley

$$
W=\frac{1}{2} m_{\phi}^{2} \phi^{2}+g_{0} \chi+\frac{1}{2} m_{\chi}^{2} \chi^{2}
$$

In both cases, $f_{N L}$ inherits its sign from a local η parameter, enhanced by a large dimensionless factor

At the peak
$f_{\mathrm{NL}} \sim \eta_{*} \delta_{*}$

This time, the "uphill" edge of the bundle is compressed towards the centre, which again generates a heavy tail on the "downhill" side.
This enhances excursions to positive $\delta \mathrm{N}$, giving positive f_{NL}.
χ
$\rightarrow \phi$
Direction of valley floor

$$
V=\frac{1}{2} m^{2} \phi^{2}+\Lambda^{4}\left(1-\cos \frac{2 \pi \chi}{f}\right)
$$

$$
V=\frac{1}{2} m^{2} \phi^{2}+\Lambda^{4}\left(1-\cos \frac{2 \pi \chi}{f}\right)
$$

Initially $f_{N L}$ is very small, $\approx \varepsilon$
(20

Begin with an axion potential $V=\Lambda^{4}\left(1-\cos \frac{2 \pi \phi}{f}\right)$

Begin with an axion potential $V=\Lambda^{4}\left(1-\cos \frac{2 \pi \phi}{f}\right)$
${\frac{V}{\Lambda^{4}}}^{2.0}$
If the initial conditions populate 1.5 Only the quadratic part of the cosine, then the answer was worked out by
1.0 Battefeld \& Easther/ Easther \& McAllister
$f_{N L}$ is small because of a central-limit-like effect

0.5	1.0	1.5	2.0	2.5	3.0
Alabidi \& Lyth (2006), Kim \& Liddle (2006),	$\frac{2 \pi \phi}{f}$				

Begin with an axion potential $V=\Lambda^{4}\left(1-\cos \frac{2 \pi \phi}{f}\right)$
${\frac{V}{\Lambda^{4}}}^{2.0}$
If we also populate the hilltop region, then its fluctuations
1.5 tend to dominate ζ. Therefore, arguments based on the central limit theorem no

In this case, the value to which $f_{\text {NL }}$ converges can be

Kim, Liddle \& DS (2010)

This field sticks at the top until H decays sufficiently
1.0 longer apply appreciable.

Now,

$$
\frac{6}{5} f_{\mathrm{NL}} \rightarrow \frac{3}{2} \epsilon_{*}-\eta_{*}+\epsilon_{*} f\left(k_{i}\right)
$$

Now,

$$
\frac{6}{5} f_{\mathrm{NL}} \rightarrow \frac{3}{2} \epsilon_{*}-\eta_{*}+\epsilon_{*} f\left(k_{i}\right)
$$

$f\left(k_{i}\right)$ is a complicated function of the k_{i} with well-defined limits,
near the hilltop
 finite everywhere

It turns out that

$$
\begin{aligned}
& \epsilon_{*} \approx 0 \\
& \eta * \approx-2 \pi^{2} \frac{M_{\mathrm{P}}^{2}}{f^{2}}
\end{aligned}
$$

Now,

$$
\frac{6}{5} f_{\mathrm{NL}} \rightarrow \frac{3}{2} \epsilon_{*}-\eta_{*}+\epsilon_{*} f\left(k_{i}\right)
$$

$f\left(k_{i}\right)$ is a complicated function of the
near the hilltop

$$
V \approx 2 \Lambda^{4}\left(1+\frac{\eta \delta}{2 M_{\mathrm{P}}^{2}}\right)
$$

 k_{i} with well-defined limits, finite everywhere

It turns out that

$$
\begin{aligned}
\epsilon_{*} & \approx 0 \\
\eta * & \approx-2 \pi^{2} \frac{M_{\mathrm{P}}^{2}}{f^{2}} \\
& \approx 20
\end{aligned}
$$

So, when the attractor is reached and any $f_{N L}$ generated by shear, divergence, focusing, etc., has decayed, f_{NL} asymptotes to a rather large number

Conclusions

- Can recover $\delta \mathrm{N}$ formula directly from the underlying quantum field theory.
[Caveats: leading logarithm approximation; perturbative in mass]
- Naturally leads to an interpretation in terms of flows à la Callan-Symanzik equation
- Typical multiple field models generate nongaussianity through dispersion from a ridge focusing into a valley inheritance from a subdominant field [similar to curvaton]
- For inflation, these all seem to require some form of hierarchy in their initial conditions.

