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CMB anisotropies

[WMAP]

Small anisotropies of order 10−5 induced from quantum fluctuations
Ô Define cosmological perturbation theory as deviations from homogeneity

Inflation constrained by power spectra of the CMB fluctuations
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CMB anisotropies

[WMAP]

Inflation also generates primordial gravity waves
Tensor to scalar ratio linked to slow roll parameter

Ô Polarisation can be used to measure the primordial tensor perturbations
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Parity of E and B polarisation

[Hu]

B polarisation not induced by scalar sources
Ô Can only be generated by gravity waves
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E and B polarisation

[Zaldarriaga]

E polarisation: pure gradient field in analogy to electric field
Ô Induced by scalar and tensor fluctuations

B polarisation: pure rotation field in analogy to magnetic field
Ô Only induced by tensor fluctuations
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Higher order effects

Second order non-Gaussianity

Non-Gaussianity is naturally induced at second order:

At first order ∆lm can be written as:

∆
(1)
lm = Φ(k)Tl(k)Ylm(k)

< Φ(k1)Φ(k2)Φ(k3) >= 0 ⇒ < ∆l1m1∆l2m2∆l3m3 >= 0

Non vanishing bispectrum linked to primordial non-Gaussianity
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Higher order effects

Second order non-Gaussianity

Non-Gaussianity is naturally induced at second order:

At second order we obtain:

∆
(2)
lm = K [Φ(k1)Φ(k2)Tlm(k , k1, k2)Ylm(k)]

< Φ(k1)Φ(k2)Φ(k3) >= 0 ; < ∆
(2)
l1m1

∆l2m2∆l3m3 >= 0

Primordial non-Gaussianity contaminated by second order background

Ô Calculation of shape and magnitude of second order non-Gaussianity
needed if primordial non-Gaussianity is small
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Second order toy equations

∆̇(2)
n + A(2)

n + σn + Cnm∆(2)
m = − |κ̇|(∆(2)

n + ςnm∆(2)
m + ρn)

A(2)
n : Second order metric sources
Ô Second order SW and ISW

σn : Weak lensing and time delay

Cnm∆
(2)
m : Free streaming term

−|κ̇|∆(2)
n : Suppression term

−|κ̇|ςnm∆
(2)
m : Counter term

−|κ̇|ρn : Scattering source term
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n : Second order metric sources
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C nm∆
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m : Free streaming term

Ô Couples neighbouring moments, generating higher moments over time
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A(2)
n : Second order metric sources

σn : Weak lensing and time delay

Cnm∆
(2)
m : Free streaming term

−|κ̇|∆(2)
n : Suppression term

Ô Induces gradient suppressing every moment
Ô Only relevant before recombination when |κ̇| is large
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m = − |κ̇|(∆(2)
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m + ρn)

A(2)
n : Second order metric sources

σn : Weak lensing and time delay

Cnm∆
(2)
m : Free streaming term

−|κ̇|∆(2)
n : Suppression term

−|κ̇|ςnm∆
(2)
m : Counter term

Ô Counters suppression term for monopole
Ô Couples dipole and electron velocity

−|κ̇|ρn : Scattering source term
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Second order toy equations

∆̇(2)
n + A(2)

n + σn + Cnm∆(2)
m = − |κ̇|(∆(2)

n + ςnm∆(2)
m + ρn)

A(2)
n : Second order metric sources

σn : Weak lensing and time delay

Cnm∆
(2)
m : Free streaming term

−|κ̇|∆(2)
n : Suppression term

−|κ̇|ςnm∆
(2)
m : Counter term

−|κ̇|ρn : Scattering source term
Ô Convolutions over first order photon and electron perturbations
Ô Sources exist at any multipole moment, but high multipoles are

suppressed
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Transfer functions

Problem: First oder solutions needed, but only statistical properties can be
calculated

Transfer functions

∆
(1)
lm (k) = Φ(k)T

(1)
lm (k)Ylm(k)

∆
(2)
lm (k) = K

[
Φ(k1)Φ(k2)T

(2)
lm (k , k1, k2)Ylm(k)

]

We obtain a system of ordinary differential equations for T (2)
lm

Statistical properties can be related to properties of primordial
perturbations
Introduces additional k1 and k2 dependance in the transfer function
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Line-of-sight integration

Problem: We have to deal with a infinite system of coupled equations

The line-of-sight integration is an analytical solution of the differential
equation

∆̇(2)
n + Cnm∆(2)

m = −|κ̇|∆(2)
n + ξn

We identify
ξn = −A(2)

n − σn − |κ̇|(ςnm∆(2)
m + ρn)

Which leads to the integral equation

∆(2)
n (η0) =

η0∫
0

dη |κ̇|e−κ(η)jnm(k(η0 − η))(ςmp∆(2)
p (η) + ρm(η))

+

η0∫
0

dη e−κ(η)jnm(k(η0 − η))(A(2)
m (η) + σm(η))
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Line-of-sight integration

η0∫
0

dη |κ̇|e−κ(η)jnm(k(η0 − η))(ςmp∆(2)
p (η) + ρm(η))

Scattering contributions
Ô Visibility function |κ̇|e−κ(η) is non-vanishing only around recombination
Ô ςmp vanishes for lp > 2
Ô ρm vanishes for large lm at early times

Second order metric contributions
Lensing and time-delay
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Line-of-sight integration

η0∫
0

dη e−κ(η)jnm(k(η0 − η))A(2)
m (η)

Scattering contributions X
Second order metric contributions

Ô Important also at late times
Ô During matter domination and later A(2)

m evolves almost independent of
photon perturbations

Lensing and time-delay
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Line-of-sight integration

η0∫
0

dη e−κ(η)jnm(k(η0 − η))σm(η)

Scattering contributions X
Second order metric contributions X
Lensing and time-delay

Ô Only depends on first order perturbations
Ô Sources at any lm
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The code

Structure of the code

1) Solves the Boltzmann-Einstein equations, calculating the second order
transfer functions

2) Computes line-of-sight integration generating the temperature transfer
functions today

3) Computes full-sky bispectrum by integration over transfer functions
(highly oscillatory 4d integration)

Implementation

Based on CLASS
Ô Accessible and modular

Parallelised code using methods fit to the problem
Ô Computes in order of hours on normal machines

Developing two independent codes, employing different methods
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Numerical checks

Large fNL run
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Check 1: Bispectrum in equilateral configuration
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Numerical checks

Analytic squeezed limit
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Check 2: Normalised bispectrum in squeezed configuration l1 = 20, l2 = l3
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Outlook

We have written a second order CMB code which computes
Ô Second order non-Gaussianity

Ô Second order B-polarisation

Induced from
Ô Scattering sources

Ô Metric sources

Work in progress
Ô Check numerical stability and convergence
Ô Lensing and time delay
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Thank you for your attention!
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