

Second Order CMB Perturbations

in collaboration with Guido Walter Pettinari, Robert Critenden, Kazuya Koyama and David Wands

Institute of Cosmology and Gravitation

Christian Fidler

November 2012

CMB anisotropies

Small anisotropies of order 10^{-5} induced from quantum fluctuations

- → Define cosmological perturbation theory as deviations from homogeneity
- Inflation constrained by power spectra of the CMB fluctuations

Christian Fidler

Institute of Cosmology and Gravitation

CMB anisotropies

- Inflation also generates primordial gravity waves
- Tensor to scalar ratio linked to slow roll parameter
 - → Polarisation can be used to measure the primordial tensor perturbations

Christian Fidler

Institute of Cosmology and Gravitation

Parity of E and B polarisation

B polarisation not induced by scalar sources

→ Can only be generated by gravity waves

Christian Fidler

E and B polarisation

[Zaldarriaga]

- E polarisation: pure gradient field in analogy to electric field
 - → Induced by scalar and tensor fluctuations
- B polarisation: pure rotation field in analogy to magnetic field
 - Only induced by tensor fluctuations

Christian Fidler

E and B polarisation

[Zaldarriaga]

- E polarisation: pure gradient field in analogy to electric field
 - → Induced by scalar and tensor fluctuations
- B polarisation: pure rotation field in analogy to magnetic field
 - → Only induced by tensor fluctuations

Christian Fidler

Second order non-Gaussianity

Non-Gaussianity is naturally induced at second order:

At first order Δ_{lm} can be written as:

$$\Delta_{lm}^{(1)} = \Phi(\boldsymbol{k}) T_l(k) Y_{lm}(\boldsymbol{k})$$

$$<\Phi({m k}_1)\Phi({m k}_2)\Phi({m k}_3)>=0 \ \ \Rightarrow \ \ <\Delta_{l_1m_1}\Delta_{l_2m_2}\Delta_{l_3m_3}>=0$$

Non vanishing bispectrum linked to primordial non-Gaussianity

Christian Fidler

Institute of Cosmology and Gravitation

Second order non-Gaussianity

Non-Gaussianity is naturally induced at second order:

At second order we obtain:

$$\Delta_{lm}^{(2)} = \mathcal{K} \left[\Phi(\boldsymbol{k}_1) \Phi(\boldsymbol{k}_2) T_{lm}(k, k_1, k_2) Y_{lm}(\boldsymbol{k}) \right]$$

$$<\Phi(\mathbf{k}_{1})\Phi(\mathbf{k}_{2})\Phi(\mathbf{k}_{3})>=0 \quad \Rightarrow \quad <\Delta_{l_{1}m_{1}}^{(2)}\Delta_{l_{2}m_{2}}\Delta_{l_{3}m_{3}}>=0$$

Primordial non-Gaussianity contaminated by second order background

→ Calculation of shape and magnitude of second order non-Gaussianity needed if primordial non-Gaussianity is small

Christian Fidler

$$\dot{\Delta}_{n}^{(2)} + A_{n}^{(2)} + \sigma_{n} + C_{nm}\Delta_{m}^{(2)} = -|\dot{\kappa}|(\Delta_{n}^{(2)} + \varsigma_{nm}\Delta_{m}^{(2)} + \rho_{n})$$

A_n⁽²⁾: Second order metric sources

 → Second order SW and ISW

σ_n: Weak lensing and time delay
C_{nm}Δ_m⁽²⁾: Free streaming term
-|k|Δ_n⁽²⁾: Suppression term
-|k|s_{nm}Δ_m⁽²⁾: Counter term
-|k|ρ_n: Scattering source term

Christian Fidler

Institute of Cosmology and Gravitation

$$\dot{\Delta}_{n}^{(2)} + A_{n}^{(2)} + \boldsymbol{\sigma}_{n} + C_{nm} \Delta_{m}^{(2)} = -|\dot{\kappa}| (\Delta_{n}^{(2)} + \varsigma_{nm} \Delta_{m}^{(2)} + \rho_{n})$$

- $A_n^{(2)}$: Second order metric sources
- σ_n : Weak lensing and time delay
 - → Convolutions over first order photon and metric perturbations
 - → Sources exist at any multipole moment
- $C_{nm}\Delta_m^{(2)}$: Free streaming term
- $-|\dot{\kappa}|\Delta_n^{(2)}$: Suppression term
- $-|\dot{\kappa}|\varsigma_{nm}\Delta_m^{(2)}$: Counter term
- $-|\dot{\kappa}|\rho_n$: Scattering source term

$$\dot{\Delta}_{n}^{(2)} + A_{n}^{(2)} + \sigma_{n} + C_{nm} \Delta_{m}^{(2)} = -|\dot{\kappa}| (\Delta_{n}^{(2)} + \varsigma_{nm} \Delta_{m}^{(2)} + \rho_{n})$$

- $A_n^{(2)}$: Second order metric sources
- σ_n : Weak lensing and time delay
- $C_{nm}\Delta_m^{(2)}$: Free streaming term
 - → Couples neighbouring moments, generating higher moments over time
- $-|\dot{\kappa}|\Delta_n^{(2)}$: Suppression term
- $-|\dot{\kappa}|_{\varsigma_{nm}}\Delta_m^{(2)}$: Counter term
- $-|\dot{\kappa}|\rho_n$: Scattering source term

$$\dot{\Delta}_{n}^{(2)} + A_{n}^{(2)} + \sigma_{n} + C_{nm} \Delta_{m}^{(2)} = - |\dot{\kappa}| (\Delta_{n}^{(2)} + \varsigma_{nm} \Delta_{m}^{(2)} + \rho_{n})$$

- $A_n^{(2)}$: Second order metric sources
- σ_n : Weak lensing and time delay
- $C_{nm}\Delta_m^{(2)}$: Free streaming term
- $| |\dot{\kappa}| \Delta_n^{(2)}$: Suppression term
 - → Induces gradient suppressing every moment
 - → Only relevant before recombination when $|\dot{\kappa}|$ is large
- $-|\dot{\kappa}|\varsigma_{nm}\Delta_m^{(2)}$: Counter term
- \blacksquare $-|\dot{\kappa}|\rho_n$: Scattering source term

$$\dot{\Delta}_{n}^{(2)} + A_{n}^{(2)} + \sigma_{n} + C_{nm} \Delta_{m}^{(2)} = - |\dot{\kappa}| (\Delta_{n}^{(2)} + \varsigma_{nm} \Delta_{m}^{(2)} + \rho_{n})$$

- $A_n^{(2)}$: Second order metric sources
- σ_n : Weak lensing and time delay
- $C_{nm}\Delta_m^{(2)}$: Free streaming term
- $-|\dot{\kappa}|\Delta_n^{(2)}$: Suppression term
- $= -|\dot{\kappa}|_{\varsigma_{nm}}\Delta_m^{(2)}$: Counter term
 - → Counters suppression term for monopole
 - → Couples dipole and electron velocity

 $|-|\dot{\kappa}|\rho_n$: Scattering source term

$$\dot{\Delta}_{n}^{(2)} + A_{n}^{(2)} + \sigma_{n} + C_{nm} \Delta_{m}^{(2)} = - |\dot{\kappa}| (\Delta_{n}^{(2)} + \varsigma_{nm} \Delta_{m}^{(2)} + \rho_{n})$$

- $A_n^{(2)}$: Second order metric sources
- σ_n : Weak lensing and time delay
- $C_{nm}\Delta_m^{(2)}$: Free streaming term
- $-|\dot{\kappa}|\Delta_n^{(2)}$: Suppression term
- $| |\dot{\kappa}| \varsigma_{nm} \Delta_m^{(2)}$: Counter term
- $-|\dot{\kappa}|\rho_n$: Scattering source term
 - → Convolutions over first order photon and electron perturbations
 - → Sources exist at any multipole moment, but high multipoles are suppressed

Problem: First oder solutions needed, but only statistical properties can be calculated

Transfer functions

$$\begin{aligned} \Delta_{lm}^{(1)}(\boldsymbol{k}) &= \Phi(\boldsymbol{k}) T_{lm}^{(1)}(k) Y_{lm}(\boldsymbol{k}) \\ \Delta_{lm}^{(2)}(\boldsymbol{k}) &= \mathcal{K} \left[\Phi(\boldsymbol{k}_1) \Phi(\boldsymbol{k}_2) T_{lm}^{(2)}(k, k_1, k_2) Y_{lm}(\boldsymbol{k}) \right] \end{aligned}$$

We obtain a system of ordinary differential equations for $T_{lm}^{(2)}$

 Statistical properties can be related to properties of primordial perturbations

Introduces additional k_1 and k_2 dependance in the transfer function

Christian Fidler

Institute of Cosmology and Gravitation

Problem: First oder solutions needed, but only statistical properties can be calculated

Transfer functions

$$\begin{aligned} \Delta_{lm}^{(1)}(\boldsymbol{k}) &= \Phi(\boldsymbol{k}) \, T_{lm}^{(1)}(k) \, Y_{lm}(\boldsymbol{k}) \\ \Delta_{lm}^{(2)}(\boldsymbol{k}) &= \mathcal{K} \left[\Phi(\boldsymbol{k}_1) \Phi(\boldsymbol{k}_2) \, T_{lm}^{(2)}(k, k_1, k_2) \, Y_{lm}(\boldsymbol{k}) \right] \end{aligned}$$

- We obtain a system of ordinary differential equations for $T_{lm}^{(2)}$
- Statistical properties can be related to properties of primordial perturbations
- Introduces additional k_1 and k_2 dependence in the transfer function

Problem: We have to deal with a infinite system of coupled equations

The line-of-sight integration is an analytical solution of the differential equation

$$\dot{\Delta}_{n}^{(2)} + C_{nm} \Delta_{m}^{(2)} = -|\dot{\kappa}| \Delta_{n}^{(2)} + \xi_{n}$$

We identify

$$\xi_n = -A_n^{(2)} - \sigma_n - |\dot{\kappa}|(\varsigma_{nm}\Delta_m^{(2)} + \rho_n)$$

Which leads to the integral equation

$$\begin{aligned} \Delta_n^{(2)}(\eta_0) &= \int_0^{\eta_0} d\eta \, |\dot{\kappa}| e^{-\kappa(\eta)} j_{nm}(k(\eta_0 - \eta))(\varsigma_{mp} \Delta_p^{(2)}(\eta) + \rho_m(\eta)) \\ &+ \int_0^{\eta_0} d\eta \, e^{-\kappa(\eta)} j_{nm}(k(\eta_0 - \eta))(A_m^{(2)}(\eta) + \sigma_m(\eta)) \end{aligned}$$

Christian Fidler

Institute of Cosmology and Gravitation

$$\int_{0}^{\eta_0} d\eta \, |\dot{\kappa}| e^{-\kappa(\eta)} j_{nm}(k(\eta_0 - \eta))(\varsigma_{mp} \Delta_p^{(2)}(\eta) + \rho_m(\eta))$$

Scattering contributions

- → Visibility function $|\dot{\kappa}|e^{-\kappa(\eta)}$ is non-vanishing only around recombination
- → ς_{mp} vanishes for $l_p > 2$
- → ρ_m vanishes for large l_m at early times
- Second order metric contributions
- Lensing and time-delay

$$\int_{0}^{\eta_{0}} d\eta \; e^{-\kappa(\eta)} j_{nm}(k(\eta_{0}-\eta)) A_{m}^{(2)}(\eta)$$

- Scattering contributions
- Second order metric contributions
 - → Important also at late times
 - → During matter domination and later A⁽²⁾_m evolves almost independent of photon perturbations

Lensing and time-delay

$$\int_{0}^{\eta_0} d\eta \ e^{-\kappa(\eta)} j_{nm}(k(\eta_0 - \eta)) \sigma_m(\eta)$$

- Scattering contributions
- Second order metric contributions
- Lensing and time-delay
 - → Only depends on first order perturbations
 - → Sources at any l_m

Institute of Cosmology and Gravitation

The code

Structure of the code

- 1) Solves the Boltzmann-Einstein equations, calculating the second order transfer functions
- Computes line-of-sight integration generating the temperature transfer functions today
- Computes full-sky bispectrum by integration over transfer functions (highly oscillatory 4d integration)

Implementation

- Based on CLASS
 - → Accessible and modular
- Parallelised code using methods fit to the problem
 - Computes in order of hours on normal machines
- Developing two independent codes, employing different methods

Christian Fidler

The code

Structure of the code

- 1) Solves the Boltzmann-Einstein equations, calculating the second order transfer functions
- Computes line-of-sight integration generating the temperature transfer functions today
- Computes full-sky bispectrum by integration over transfer functions (highly oscillatory 4d integration)

Implementation

- Based on CLASS
 - → Accessible and modular
- Parallelised code using methods fit to the problem
 - → Computes in order of hours on normal machines
- Developing two independent codes, employing different methods

Christian Fidler

Numerical checks

Large f_{NL} run

Christian Fidler

Institute of Cosmology and Gravitation

Numerical checks

Analytic squeezed limit

Check 2: Normalised bispectrum in squeezed configuration l1 = 20, l2 = l3Christian Fidler Institute of Cosmology and Gravitation Second Order CMB Perturbations

Outlook

- We have written a second order CMB code which computes
 - → Second order non-Gaussianity
 - → Second order B-polarisation
- Induced from
 - → Scattering sources
 - → Metric sources
- Work in progress
 - Check numerical stability and convergence
 - → Lensing and time delay

Outlook

- We have written a second order CMB code which computes
 - → Second order non-Gaussianity
 - → Second order B-polarisation
- Induced from
 - → Scattering sources
 - → Metric sources
- Work in progress
 - → Check numerical stability and convergence
 - → Lensing and time delay

Outlook

- We have written a second order CMB code which computes
 - → Second order non-Gaussianity
 - → Second order B-polarisation
- Induced from
 - → Scattering sources
 - → Metric sources
- Work in progress
 - → Check numerical stability and convergence
 - → Lensing and time delay

Thank you for your attention!