A modal approach to the numerical calculation of primordial non-Gaussianities

S. Renaux-Petel (Lagrange Institute, Paris) \& Hiro Funakoshi (DAMTP, Cambridge)

- Key-observation: the tree-level bispectrum calculation in the Keldysh-Schwinger formalism is intrinsically separable! Example:
$S_{\dot{\zeta}(\partial \zeta)^{2}}\left(k_{1}, k_{2}, k_{3}\right)=\mathbf{k}_{\mathbf{2}} \cdot \mathbf{k}_{\mathbf{3}} \int_{-\infty(1+i \epsilon)}^{0} \mathrm{~d} \tau g(\tau)\left(k_{1}^{2} \zeta_{k_{1}}(0) \zeta_{k_{1}}^{*^{\prime}}(\tau)\right)\left(k_{2}^{2} \zeta_{k_{2}}(0) \zeta_{k_{2}}^{*}(\tau)\right)\left(k_{3}^{2} \zeta_{k_{3}}(0) \zeta_{k_{3}}^{*}(\tau)\right)+$ c.c. +2 perms.
- Efficient numerical calculation of the bispectrum through a modal decomposition.
$S\left(k_{1}, k_{2}, k_{3}\right)=\sum_{n} \alpha_{n} \mathcal{Q}_{n} \quad$ where $\quad \mathcal{Q}_{n}: \begin{aligned} & \text { orthonormalized over the cube }\left[k_{\min }, k_{\max }\right]^{3} \\ & \text { built out of products of Legendre polynomials. }\end{aligned}$
- We calculate: $\quad \alpha_{n}=\int_{\text {cube }} \mathrm{d} V_{k} \mathcal{Q}_{n}\left(k_{1}, k_{2}, k_{3}\right) S\left(k_{1}, k_{2}, k_{3}\right) \quad$ - No $i \epsilon$ prescription is needed!
- More than 99% correlations between theoretical and numerically calculated bispectra on slowlyvarying backgrounds:

- Several non-trivial checks, including the test of the single field consistency relation.

