Edgeworth Streaming Model
for
redshift space distortions

Cora Uhlemann

Arnold Sommerfeld Center, LMU & Excellence Cluster Universe

in collaboration with
Michael Kopp, University of Cyprus
Ixandra Achitouv, Swinburne University

PhD advisor: Stefan Hofmann
Correlation function

- measures excess probability

\[1 + \xi_X(s) = \left\langle (1 + \delta_X(s_1))(1 + \delta_X(s_2)) \right\rangle \]

- halos as biased DM tracers
 - input for halo model
 - powerful probe for cosmology

Redshift space distortions

- redshift observations affected by peculiar velocities

\[1 + \xi_X(r = |r|) \]

- isotropic

\[s_{\parallel} = r_{\parallel} + v/H \quad s_{\perp} = r_{\perp} \]

- redshift space
 - anisotropic

Eisenstein et al.
Redshift space correlation function

Redshift space distortions

- observations in redshift space from galaxy surveys
- impact of peculiar velocities along line of sight

\[s_{||} = r_{||} + v/\mathcal{H} \quad s_{\perp} = r_{\perp} \]

\[r_{||} \quad r_{\perp} \]

real space

\[s_{||} \quad s_{\perp} \]

redshift space

underdensity

linear evolution

overdensity

nonlinear structure

streaming model

\[v \]

\[\mathcal{H} \]
Gaussian Streaming Model

\[1 + \xi_x(s_{||}, s_{\perp}, t) = \int_{-\infty}^{\infty} \frac{dr_{||}}{\sqrt{2\pi}\sigma_{12}} (1 + \xi_x(r, t)) \exp \left[-\frac{(s_{||} - r_{||} - v_{12}(r, t)r_{||}/r)^2}{2\sigma_{12}^2(r, r_{||}, t)} \right] \]

Streaming model

Edgeworth Streaming Model

\[1 + \xi_X(s_\parallel, s_\perp, t) = \int_{-\infty}^{\infty} \frac{dr_\parallel}{\sqrt{2\pi}\sigma_{12}} (1 + \xi_X(r, t)) \exp \left[-\frac{(s_\parallel - r_\parallel - v_{12}(r, t)r_\parallel/r)^2}{2\sigma_{12}^2(r, r_\parallel, t)} \right] \]

\[\times \left(1 + \frac{\Lambda_{12}}{6\sigma_{12}^3} \left(\frac{\Delta_{srv}}{\sigma_{12}} \right)^3 - 3 \frac{\Delta_{srv}}{\sigma_{12}} \right) \]

- 2% down to 10 Mpc/h (ESM) vs. 30 Mpc/h (GSM)
Streaming model ingredients

Gaussian Streaming Model

\[
1 + \xi_X(s_\parallel, s_\perp, t) = \int_{-\infty}^{\infty} \frac{dr_\parallel}{\sqrt{2\pi}\sigma_{12}(r, r_\parallel, t)} (1 + \xi_X(r, t)) \exp \left[-\frac{(s_\parallel - r_\parallel - v_{12}(r, t)r_\parallel/r)^2}{2\sigma_{12}^2(r, r_\parallel, t)} \right]
\]

Wang, Reid & White (2014, MNRAS 437)

Gaussian velocity distribution

mean pairwise velocity & dispersion

Lagrangian Perturbation Theory

+ local Lagrangian bias

- **Zel’dovich approximation**
 - 1st order Lagrangian PT
 - physically motivated resummation of SPT

- **Post Zel’dovich approximation**
 - higher order Lagrangian PT
 - partial resummation: Convolution LPT

Carlson et al. (2012, MNRAS 429)
Streaming model ingredients

Gaussian Streaming Model

\[
1 + \xi_X(s_{||}, s_\perp, t) = \int_{-\infty}^{\infty} \frac{dr_{||}}{\sqrt{2\pi} \sigma_{12}(r, r_{||}, t)} (1 + \xi_X(r, t)) \exp \left[-\frac{(s_{||} - r_{||} - v_{12}(r, t)r_{||}/r)^2}{2\sigma_{12}^2(r, r_{||}, t)} \right]
\]

- **real space correlation**
- **Gaussian velocity distribution**
 - mean pairwise velocity & dispersion

Wang, Reid & White (2014, MNRAS 437)

Lagrangian Perturbation Theory

+ local Lagrangian bias

- **Why smoothing?**
 - implement halo size in fluid description
 - improves Zel’dovich predictions in N-body

- **truncated Zel’dovich**
 - Zel’dovich with smoothed input power spectrum
 - improves agreement with N-body

- **coarse-grained dust model**
 - CU & Kopp (PRD 91, 084010)
 - CU, Kopp & Haugg (arXiv: 1503.08837)

- **truncated CLPT**
 - Kopp, CU & Achitouov (in preparation)
Streaming model ingredients

Truncated CLPT

Kopp, CU & Achitouv (in preparation)

Real space halo correlation $\xi(r)$
- best agreement for 1 Mpc/h
- smoothing in $R(M)$ worse
 need to include peak bias
 Baldauf, Desjacques & Seljak (arXiv: 1405.5885)

Pairwise velocity $v_{12}(r)$
- best agreement for 1 Mpc/h
- smoothing in $R(M)$ slightly worse

Pairwise velocity dispersion $\sigma_{12}(r)$
- best agreement for $R(M)$
- consider cumulant not moment
Streaming model predictions

Redshift space correlation function

Kopp, CU & Achitouv (in preparation)

- plug streaming model ingredients in to obtain redshift space multipoles
 - monopole $\xi_0(s)$
 - quadrupole $\xi_2(s)$
 - hexadecapole $\xi_4(s)$

- TCLPT outperforms CLPT
 - simultaneously improves all higher redshift-space multipoles

- optimal: two-filter TCLPT smoothing
 - $\xi(r)$ & $v_{12}(r)$: 1 Mpc/h
 - $\sigma_{12}(r)$: Lagrangian scale $R(M)$

PRELIMINARY
Summary

Edgeworth streaming model
- generalization of Gaussian streaming model
- pushed 2% accuracy from 30 down to 10 Mpc/h

\[
\begin{align*}
\sum_{i=0}^{n} \frac{(-1)^i}{i! (n-i)!} \left(\frac{x}{n} \right)^i \\
\end{align*}
\]

Truncated Zel’dovich approximation
- truncated Post-Zel’dovich approximation (TCLPT)
 - optimal with two filters: 1 Mpc/h & R(M)
 - consistent results for \(\xi_0, \xi_2, \xi_4(s) \)

Kopp, CU & Achitouv (in preparation)
- peak bias effects relevant