LoCuSS: Weak-lensing mass calibration of galaxy clusters and hydrostatic bias

Graham Smith
University of Birmingham

Okabe & Smith, 1507.04493

Ziparo, et al., 1507.04376

Smith, et al., 2015, subm.

Theoretical and Observational Progress on Large-scale Structure of the Universe, July 24, 2015
Motivation: counting clusters to measure cosmological parameters

• we **want** to count clusters as a function of mass and redshift
• we **can** count clusters as a function of a mass-like observable
• we **need** accurate scaling relations and **mass calibration**

\[\frac{M_{WL}}{10^{14} M_\odot} = a \left(\frac{L_K}{10^{12} L_\odot} \right)^b \]

\[
\begin{align*}
\text{Mulroy, et al., 2014,} & \quad \text{MNRAS, 443, 3309} \\
b &= 1.00 \pm 0.22 \pm 0.20 \\
\sigma_{\ln M/L} &= 0.11 \pm 0.08 \pm 0.06
\end{align*}
\]

Planck 2015 XXIV 1502.01597
Motivation: counting clusters to measure cosmological parameters

- we want to count clusters as a function of mass and redshift
- we can count clusters as a function of a mass-like observable
- we need accurate scaling relations and mass calibration

\[
\frac{M_{WL}}{10^{14} M_\odot} = a \left(\frac{L_K}{10^{12} L_\odot} \right)^b
\]

\[
b = 1.00 \pm 0.22 - 0.20
\]

\[
\sigma_{\ln M|L} = 0.11 \pm 0.08 - 0.06
\]

Planck 2015 XXIV 1502.01597
Goals relating to cluster cosmology include:

• To test the reliability of cluster mass measurement methods at low-z: M_{WL}, M_{HSE}, M_{Dyn}, ...

• To measure the shape, normalization, and intrinsic scatter of scaling relations: $P(M_{WL}|O)$

• To test theoretical “predictions”: NFW profile, mass-concentration relation, adiabatic contraction, …

• …
Local Cluster Substructure Survey
A low redshift baseline study of clusters as a cosmological probe

- L_X-limited sample of 50 “High-L_X” clusters:
 - L_X/E(z)>4.1x10^{44} erg/s, -25°<δ<+65°, 0.15<z<0.3
- Subaru (Gemini) [50]:
 - V/i-band, i(5σ)=26
 - FWHM_{median}=0.7arcsec
- Chandra [44], XMM [39]

... and lots of data from SZA, HST, UKIRT/WFCAM, MMT/Hectospec, Spitzer, GALEX, Herschel: Marrone et al., 2012; Mulroy, et al., 2014; Richard et al. 2010; Zhang et al. 2008, 2010; Haines et al., 2014, 2013, 2010, 2009b, 2009a; Smith et al. 2010a,b; Okabe et al., 2010a,b; ...
Local Cluster Substructure Survey
A low redshift baseline study of clusters as a cosmological probe

Goal = control systematic bias in ensemble cluster cluster mass calibration at sub-4% [30%/sqrt(50)]

• **Weak-lensing mass calibration of galaxy clusters**

• **Exploring the selection of faint background blue galaxies for cluster weak-lensing**

• **Testing hydrostatic equilibrium in galaxy clusters**

• Also relevant:
Sources of bias in cluster weak-lensing

• Contamination of background galaxy samples, i.e. dilution of shear signal by faint cluster members

• Uncertainty in the redshift distribution of the background galaxies

• Shear calibration, i.e. biases in measurement of galaxy shapes

• Extracting mass measurements from shear profiles, i.e. mass modelling biases
A new low bias method to select red background galaxies

Model of color-dependence of shear:
\[G_+(\Delta C) = A \times D(\Delta C) \times (1 - B f(\Delta C)) \]

Lensing kernel:
\[D(\Delta C) \equiv \left\langle D_{LS}/D_S \right\rangle \]

Contamination:
\[f(\Delta C > 0) = \left[1 - erf\left(\Delta C / \sqrt{2}\sigma\right) / 2 \right] \]

Color cut tuned to achieve 1% contamination... gives 5 arcmin^{-2}

Blue galaxies cannot be selected as safely as red galaxies

Faint blue galaxies dominate catastrophic failures of 5-band photo-z’s at \(z < \sim 0.3 \)

\[
P_{bgk} = \frac{\int_{0}^{z_{max}} P(z)dz}{\int_{0}^{z_{max}} P(z)dz}
\]

Ziparo et al. 1507.04376 + POSTER THIS WEEK
Number of red galaxies improved via radius-dependent colour cut

Color cut tuned to achieve 1% contamination… gives 13arcmin^{-2}

Okabe and Smith, 1507.04493
Image simulations matched to our cluster observations:

Model galaxies based on GALFIC (Oguri et al. 2012) and Shera (Mandelbaum et al. 2012)

\[g_{\text{out}} - g_{\text{in}} = m \, g_{\text{in}} + c \]

\(m \approx -0.03 \quad c \approx 10^{-4} \)

No obvious trend with size and magnitude (i.e. negligible noise bias)

Simulations match LoCuSS data:

- FWHM = 0.7 arcsec
- \(22 < i_{\text{AB}} < 26 \)
- \(0 < |g| < 0.3 \)
- \(2 < r_g < 5 \) pix
- S/N > 10
- FoV = 30x42 arcmin

Okabe and Smith, 1507.04493
Tests of NFW model fitting on hydro simulations: sub-1% bias on M_{500}

Suite of NFW model fits:
- $50\text{kpc}/h < r_{\text{inner}} < 300\text{kpc}/h$
- $2\text{Mpc}/h < r_{\text{outer}} < 3\text{Mpc}/h$
- $4 < N_{\text{bin}} < 8$
- M_{200} and c_{200} are free params

M_Δ, c_Δ for each cluster is based on the fit that is closest to geometrical mean of the suite of fits

- Simulations are Cosmo–OWLS (McCarthy et al. 2014, Le Brun et al. 2014; see also Joop Schaye’s talk)

Okabe and Smith, 1507.04493
Sources of bias in cluster weak-lensing

- Contamination of background galaxy samples, i.e. dilution of shear signal by faint cluster members

 Contamination of red background galaxies = 1%

- Uncertainty in the redshift distribution of the background galaxies

 Folded into our shear measurement errors

- Shear calibration, i.e. biases in measurement of galaxy shapes

 Multiplicative bias of 3%

- Extracting mass measurements from shear profiles, i.e. mass modeling biases

 Sub-1% bias

Okabe and Smith, 1507.04493
Mass-concentration relation in excellent agreement with predictions

Okabe and Smith, 1507.04493
LoCuSS, CCCP, CLASH masses are agree at \(<\sim 1\sigma\); WtG are \(\sim 2\sigma\) higher

\[
\begin{align*}
\frac{M_{\text{CCCP}}}{M_{\text{LoCuSS}}} : 1.04 \pm 0.07 \\
\frac{M_{\text{WtG}}}{M_{\text{LoCuSS}}} : 1.18 \pm 0.08 \\
\frac{M_{\text{WtG}}}{M_{\text{CCCP}}} : 1.13 \pm 0.08
\end{align*}
\]

“Like for like” comparison

- 12 cluster overlap between:
 - LoCuSS (Okabe & Smith 2015)
 - CCCP (Hoekstra et al. 2015)
 - WtG (Applegate et al. 2014)
- Match the modeling method to WtG: \(c200=4, 0.75<R<3\text{Mpc/h}\)
- Measure \(M(<1.5\text{Mpc}/h_{70})\)

The pairwise comparison of surveys in our paper and in the literature is consistent with this result, i.e. it is more general than for clusters within LoCuSS

Okabe and Smith, 1507.04493
Observed number density profile of background galaxies is **not** flat...

Stacked number density of blue galaxies

Curves: number density profile expected from 0% contamination + magnification bias based on best-fit NFW model to shear.

Data: measured stacked number density profile based on colour-magnitude selections

Ziparo, et al., 1507,04376 +

POSTER THIS WEEK
Testing hydrostatic equilibrium with Subaru, XMM/Chandra, and Planck

11 cluster overlap between LoCuSS, CCCP, WtG, and Planck:

LoCuSS: $\beta_X = 1.00 \pm 0.12 \quad \beta_P = 0.86 \pm 0.07$

WtG: $\beta_P = 0.72 \pm 0.08$

CCCP: $\beta_P = 0.93 \pm 0.12$

Smith et al., 2015, submitted; Okabe & Smith 1507.04493;
Martino et al., 2014, MNRAS, 443, 2342: Chandra/XMM = 1.02+/−0.05
New constraints on hydrostatic bias disagree with “best-fit” $(1-b)$ at $\sim 5\sigma$

Vertical lines show β_p from like-for-like comparison: WtG, LoCuSS, CCCP

$(1-b)\sim 0.9$ is consistent with all simulation studies — see Nick Battaglia’s talk

Figures from Planck 2015 XXIV 1502.01597

Smith et al., 2015, submitted
Hydrostatic bias, lensing biases, (or SZ biases?) change with redshift?

LoCuSS: Weak-lensing mass calibration of galaxy clusters and hydrostatic bias

- LoCuSS weak-lensing systematic biases calibrated to sub-4%
- LoCuSS, CCCP, CLASH mass calibrations are consistent at ~1σ
- WtG mass calibration is ~8-15% higher at ~1-2σ
- LoCuSS hydrostatic bias: \(\beta_X = 0.95 \pm 0.05 \), \(\beta_P = 0.92 \pm 0.04 \)
- LoCuSS/X-ray, LoCuSS/Planck and CCCP/Planck hydrostatic bias measurement consistent at z<0.3
- We need: larger overlap between lensing surveys, especially at z>0.3 and lower mass (see Marguerite Pierre’s talk)
- Stay tuned: LoCuSS scaling relations and selection function

The end