Insights from cosmological hydrodynamical simulations

Joop Schaye (Yope Shea) Leiden University

Outline

- 1. Cosmological hydro
 - a) General considerations
 - b) EAGLE
 - c) OWLS, Cosmo-OWLS and BAHAMAS
- 2. Results
 - a) Matter power spectrum
 - b) Cosmic shear
 - c) Halo mass function
 - d) Subhalo clustering
 - e) SHAM
 - f) Alignments
 - g) Matter outside haloes

Starting points

- Strong outflows at high redshift are necessary to obtain agreement with a diverse set of observations
- Cosmological hydro simulations cannot predict radiative losses and momentum cancellation in the ISM
- Cannot predict stellar masses, black hole masses and gas fractions from first principles
- Calibration necessary → need to compare to relevant observations

Starting points

- For testing observational cosmology, it is not necessarily better to use simulations that
 - Include more physics
 - Have higher resolution
 - Agree better with *some* observations
- Don't ask what solver/resolution/physics was used, ask to see a comparison with the *relevant* observations!

Galaxy stellar mass function

JS, Crain, Bower, et al. (2015)

Galaxy sizes

JS, Crain, Bower, et al. (2015)

The effect of baryons on the distribution of matter

McCarthy, JS+ (2011)

The effect of baryons on the distribution of matter

McCarthy, JS+ (2011)

Cosmo-OWLS: Stellar mass function

Le Brun, McCarthy, JS, Ponman (2014)

Cosmo-OWLS: Stellar mass function

Le Brun, McCarthy, JS, Ponman (2014)

BAHAMAS: Stellar mass function

McCarthy, JS+ (in prep)

Cosmo-OWLS: gas fractions

Le Brun, McCarthy, JS, Ponman (2014)

McCarthy, JS+ (in prep)

Cosmo-OWLS: Density profiles

Le Brun, McCarthy, JS, Ponman (2014)

Baryons and the matter power spectrum

Van Daalen, JS+ '11

Baryons and the matter power spectrum

Van Daalen, JS+ '11

Biases due to galaxy formation for a Euclid-like weak lensing survey

Semboloni, Hoekstra, JS, et al. (2011)

Two and three point statistics

Euclid w_o marginalised

Halo mass function

Velliscig, van Daalen, JS, et al. (2014)

Subhalo autocorrelation: AGN vs DMONLY

Van Daalen, JS+ (2014)

Subhalo autocorrelation: AGN vs DMONLY

Linked subhaloes only

Van Daalen, JS+ (2014)

Real space clustering: relative error

Chavez-Montero, Angulo, JS, et al. (2015)

Redshift space clustering: rel. error

----- Vpeak ---- Vrelax

Chavez-Montero, Angulo, JS, et al. (2015)

Assembly bias: Effect of reshuffling haloes

Chavez-Montero, Angulo, JS, et al. (2015)

Stellar(<r)-halo alignment

Velliscig, Cacciato, JS, et al. (2015)

Stellar(<r)-halo alignment

Velliscig, Cacciato, JS, et al. (2015)

Halo contribution to the power spectrum

Van Daalen & JS (2015)

Halo contribution to the power spectrum

L200N1024

Van Daalen & JS (2015)

Conclusions

- Subgrid models for stellar feedback and BHs need calibration
- To estimate the effects of baryons, we should use simulations that fit observations (rather than the "most physics" or "highest resolution")
- Baryons, particularly their ejection, are important for:
 - Power spectrum (k > 0.3 h/Mpc)
 - Cosmic shear (θ < 60 arcmin)
 - Halo mass function (M < 10^{15} M_{\odot} for perfect estimator)
 - Clustering at fixed mass (all scales)
 - Clustering at fixed number density (< 1 Mpc)
 - Galaxy-halo misalignment
- SHAM works relatively well, but not high precision (Vrelax)
- Matter outside haloes matters