Subhalo abundance matching to model galaxy-halo connection in the Baryon Oscillation Spectroscopic Survey

Shun Saito

Kavli IPMU

(→ Max Planck Institut für Astrophysik from April 2016)

SS, Leauthaud, Hearin, Bundy, Zentner, Behroozi, Reid et al. & the BOSS collaboration, will appear on arXiv soon

Theoretical and Observational Progress on Large-scale Structure of the Universe @MPA/ESO, Garching, Germany July 21st 2015

Importance of Galaxy-Halo connection

- ♦ BOSS provides the tightest cosmological constraints to date.
- Need to be checked against *realistic mock* catalogs where a galaxy-halo model (e.g. HOD parameters) is assumed.
- ♦ A brief summary of Alexie's talk
 - -S82MGC shows **BOSS CMASS** is **NOT** a 'Constant Stellar Mass' sample
 - -Complicated selection effect in a **redshift-dependent** way color-cut at low z
 - luminosity-cut at high z
- ◆ Galaxy Formation: BOSS galaxies firmly above 10¹² M_{sun}
 -'Hot' halo mode: what determines color of massive galaxies?
 -not all dead and red: ~25% SF disk Masters et al. (2011)
 ~37% blue cloud Montero-Dorta et al. (2014)

Modeling CMASS via SHAM

Based on Subhalo Abundance Matching (SHAM) e.g., Kravstov et al. (2004)

- include the stellar mass incompleteness and reproduce dn/dz by design
- fit to total SMF and CMASS $w_p(r_p)$ at small scales [0.2-30 Mpc/h]
- ✦ First try "Stochastic Color" model
 - once M* is specified, no correlated b/w color & other halo properties
 - only need to account for stellar mass completeness of CMASS

Results of the Stochastic Color model

Results of the Stochastic Color model

- constant HOD
 White et al. (2011) & Reid et al. (2014)
 - needs to be randomly down-sampled
 - clustering does NOT evolve

◆ Our SHAM model

- reproduce dn/dz by construction as a consequence of CMASS incompleteness
- clustering DOES evolve (see next)

But ... fails for 3D Clustering Signal

✦ The measurements show NO redshift evolution

♦ Our "Stochastic Color" model

Failure of "Stochastic Color" model

- - CMASS SMFs show a higher \overline{M}_* at higher redshift
 - therefore, $\overline{M}_{\rm halo}$ also evolves with time
 - However, data shows NO redshift evolution
- ✦ Next step:
 - There must be an effect which can compensate the evolution
 - At fixed stellar mass, introduce correlation galaxy color with
 * halo formation epoch (or age)
 - * halo recent merger
 - * local density (or environment)

- Goal: explain DR12 $\,\hat{\xi}_\ell(s;color,z)$ & lensing (Alexie's talk)

- z_{form}: (sub)halo's concentration d.f., Miyatake et al. (2015)
- z_{char} : when a (sub)halo get mass of $10^{12} M_{sun}$
- zacc: when a subhalo accreted onto its host halo

Velocity effect

- Should be careful on "velocity" to model redshift-space clustering
- ✦ Difference b/w our SHAM model & HOD (Reid et al. 2014)
 - 1) velocity of central

Rockstar: core velocity defined within [0-0.1] r_{vir} SO halos: core velocity defined within [0.06-0.33] r_{vir} c.f.) Guo et al. (2014): defined within [0-0.25] r_{vir} + velocity bias

- 2) velocity of satellites
 SHAM: the same as central
 Reid et al. (2014): velocity of DM
- ♦ hydro simulation Wu et al. (2014)
 But I suggest to look at pairwise velocity $1 + \xi(r_p, \pi) = \int dy [1 + \xi(r)] \mathcal{P}(v_{12}, \mathbf{r})$ Scoccimarro (2004), Reid & White (2012)

Color and Redshift-dependent 3D clustering

redshift

Summary

♦ A realistic model of the CMASS-Halo connection is essential

- The CMASS SMFs in S82MGC varies as a function of z, therefore a simple SHAM ('Stochastic Color') model is ruled out
- Hope is a conditional SHAM such as age matching by introducing correlation b/w galaxy color & halo formation epoch
- ✦ However, there are caveats at massive end:
 - no unique definition of "halo age"
 - ambiguity to define "velocity" of subhalo (or galaxy)

