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Large-scale Structure
Systematics: 

• Time evolution of matter distribution 
(nonlinearity) 

• Galaxy bias 

• Redshift-space distortions
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3-point Statistics
ζ (r12,r23,r31) = δ (!x1)δ (

!x2 )δ (
!x3)

δ̂ (
!
k1)δ̂ (

!
k2 )δ̂ (

!
k3) = (2π )3B(k1,k2,k3)δD (

!
k1 +
!
k2 +
!
k3)

• Galaxy bias 

• Primordial non-Gaussianity 

• Growth of structure / gravity

Galaxy 3-point correlation 
function/bispectrum contains 
information about:

3-point correlation function

Bispectrum

δ (!x2 )

δ (!x3)

δ (!x1)
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Modeling the 3-point correlation function

!x(τ ) = !q +
!
Ψ(!q,τ )

!
Ψ(!q,τ ) =

!
Ψ 1( )(!q,τ )+

!
Ψ 2( )(!q,τ )+…

Lagrangian Perturbation Theory

2LPT

δ (!x,τ ) = D(τ )δ 1( ) + D(τ )2δ 2( ) +…

ρ(!x,τ )d 3!x = ρd 3!q

1+δ (!x,τ ) = 1
J(!q)

= ∂xi
∂qj

−1

ζ (r12,r23,r31) = δ (!x1)δ (!x2 )δ (!x3)

= D(τ )4 δ 1( )(!x1)δ 1( )(!x2 )δ 2( )(!x3)

+ 2 cyclic terms+…



Modeling the 3-point correlation function
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Fig. 1.— Schematic for calculating the 3-point correlation func-
tion for a general triangular configuration in real space. Given r1,
r2, and r3 along the line-of-sight (ẑ), we can construct a triangle
by rotating each leg by some angle about the y axis to get a tri-
angle in the x-z plane, as shown. The 3 rotation angles can be
related through the rotation angle of r1 (� and the inner angles of
the triangle, ✓12, ✓23, and ✓31.

the line-of-sight quantities (unprimed) is:

d11(x)
0 = cos2(�)d11(x)� 2 cos(�) sin(�)d13(x)

+ sin2(�)d33(x) . (19)

The invariants I1 and I2 remain unchanged because these
quantities are invariant under rotations. The expectation
value hI1(x1)d011(x3)i in the new coordinate system be-
comes:

hI1(x1)d11(x3)
0i = cos2(�) hI1(x1)d11(x3)i

� 2 cos(�) sin(�) hI1(x1)d13(x3)i
+ sin2(�) hI1(x1)d33(x3)i

=
1

3
⇠00(r1) +

1

6
(3 cos(2�)� 1) ⇠02(r1) .

(20)

The r3 leg of the triangle is rotated by angle � + ✓31,
so this expectation value between x2 and x3 will be the
same as equation 20 with r1 replaced by r3 and � replaced
by � + ✓31.
If we add up all of the terms in the 3-point correlation

function for an arbitrary triangle in real space, we get:

⇣(r1, r2, r3) = D4

 
4

3
⇠00(r1)⇠

0
0(r3)

� cos ✓31
�
⇠11(r1)⇠

�1
1 (r3) + ⇠�1

1 (r1)⇠
1
1(r3)

�

+
1

6
(1 + 3 cos 2✓31) ⇠

0
2(r1)⇠

0
2(r3)

+ 2 cyclic

!
. (21)

We can see that this is equal to equation 18 for ✓31 = 0,
✓12 = ⇡, and ✓23 = 0.

2.2. Redshift Space

We now show how to compute the tree-level matter
3-point correlation function in redshift space from the
Zel’dovich approximation.
The transformation from real to redshift space is:

s = x+
u · n̂
aH

n̂ , (22)

where s is the redshift-space position, u is the peculiar
velocity, a is the scale factor, H is the Hubble expansion
factor, and n̂ is the line-of-sight direction.
In the Zel’dovich approximation, the peculiar velocity

is:

u(q) = �D1f1aHr�(1)(q), (23)

where f1 is the logarithmic derivative of the linear growth

factor, and f1 ⇡ ⌦5/9
m

for a flat universe with non-zero
cosmological constant. H is the Hubble parameter, and
a is the scale factor (??).
We now follow the same procedure as in Section 2.1

to compute the overdensity in redshift space using the
Jacobian of the transformation from q to s. The redshift-
space density to second order is:

�
s

(q) = D(I1(q) + f1dnn(q)) +D2

 
(I1(q) + f1dnn(q))

2

� I2(q)� f1 (I2(q)�M
nn

(q))

!
+ ... (24)

where d
nn

is the line-of-sight component of the deforma-
tion tensor, and M

nn

is the corresponding minor of the
matrix.
We write the density as a function of redshift-space

coordinate s as we did in the previous section through a
Taylor expansion:

�
s

(s) = D(I1(s) + f1dnn(s)) +D2
�
(I1(s) + f1dnn(s))

2

� I2(s)� f1 (I2(s)�M
nn

(s))

+
�r�(1)(s) + f1(rq

�(1)(s) · n̂)n̂�

·r(I1(s) + f1dnn(s))
�
+ ... (25)

We use the distant-observer approximation, which allows
us to assume that the line-of-sight does not vary over the
volume we are considering, and we take n̂ = ẑ.
For a general triangle in real (isotropic) space, the an-

gle � cancels out in the full 3-point function (Equation
21), as expected. This is because the real-space 3-point
correlation function is independent of the orientation of
the triangle.
In redshift space, where the ẑ direction is our line of

sight, in general we expect the 3-point correlation func-
tion to depend on the angle �. But, this is not enough to
fully describe the triangle in redshift space: we also need
to take into account the angle that the plane of the trian-
gle makes with the line of sight. In the previous section,
the triangle we considered in the x-z plane makes an an-
gle ↵ = ⇡/2 with the line of sight (see lower triangle in
Figure 2). To describe any triangle, after rotating each
side by its angle (�, �0, �00) about the y-axis, we then
rotate all of the sides by another angle � = ⇡/2�↵ about
the x-axis. This is shown in the upper triangle in Figure

3

β"

θ12" θ23"

θ31"

r1"

r2"

r3"

π)θ12+β"

β+θ31"
r1"

r2"

r3"

z"

x"

Fig. 1.— Schematic for calculating the 3-point correlation func-
tion for a general triangular configuration in real space. Given r1,
r2, and r3 along the line-of-sight (ẑ), we can construct a triangle
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an arbitrary triangle in real space:

⇣(r1, r2, r3) = D4
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⇠00(r1)⇠

0
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0
2(r3)

+ 2 cyclic

!
. (48)

We now compare this expression to that found from
Fourier transforming the Standard Perturbation Theory
(SPT) bispectrum. The tree-level bispectrum from SPT
is written as a function of the linear power spectrum as
follows:

B(k1, k2, k3) = 2
⇣
F

(s)
2 (k1, k2)PL

(k1)PL

(k2) + 2 cyclic
⌘
.

(49)

F
(s)
2 is the symmetric 2nd-order kernel from SPT (see ?

for a review).

F
(s)
2 (k1,k2) =

5

7
+

2(k1 · k2)2

7k21k
2
2

+
k1 · k2

2k1k2

✓
k1
k2

+
k2
k1

◆

(50)

The Fourier-transform of equation 49 gives the tree-
level 3-point correlation function (??):

⇣(r1, r2, r3) =
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+
4

7
r

a

r�1
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⇠(r1)ra
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b
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!
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where ⇠(r) here is the linear correlation function, or ⇠00(r)
in our notation.
We can rewrite the middle two terms in our notation

using the relations between derivatives of spherical Bessel
functions:

r⇠(r) = �r̂⇠11(r) (52)

r�1⇠(r) = �r̂⇠�1
1 (r) (53)

It can also be shown that the last term is equivalent to:
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6
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0
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◆

(54)

Combining these terms, we see that the expression in
Equation 51 is equivalent to our expression in Equation
48.
The fact that we recover this known result in real space

validates our approach. We now show how to compute
the redshift-space 3-point correlation function of matter
and galaxies from 2LPT.

3.2. Redshift Space

In 2LPT, the peculiar velocity is:

u(q) = �D1f1aHr�(1)(q) +D2f2aHr�(2)(q), (55)

where f1 is as before, and f2 = d lnD2/d ln a can be

approximated as f2 ⇡ 2⌦6/11
m

for a flat universe with
non-zero cosmological constant (??).
The redshift-space density in Lagrangian coordinates

to second order is:
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Comparing 56 and 24, we see that there is the 4/7 coef-
ficient on the I2 term of �(2), as in real space. However,

there is an additional term d
(2)
nn

= @2�(2)/@q2
n

, which is
the line-of-sight component of the deformation tensor of
�(2). This term proves to be more di�cult to compute as
it cannot be separated into products of initial quantities,
as all of the other terms can. To compute the 3-point
correlation function, we first focus on the terms that can

be separated, and then discuss the d
(2)
nn

term.

If we neglect the d(2)
nn

and follow the approach outlined
in Section 2.2, the expression for the redshift-space 3-
point correlation function from 2LPT will be very similar
to that in the Zel’dovich approximation, but with slightly
di↵erent coe�cients on the terms coming from I2.
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where x is the cosine of the corresponding inner-angle of
the triangle (here, x = cos ✓12). The A`,m

n1,n2
terms are

given in Appendix ??, grouped by multipole `, of the
angle ↵.
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We now use Equations 35 and ?? to relate the galaxy
overdensity in redshift space to that in real space. We
must also express Equation 35 in terms of redshift co-
ordinate s through a Taylor expansion, bringing in an
additional term at second order.
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an arbitrary triangle in real space:
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We now compare this expression to that found from
Fourier transforming the Standard Perturbation Theory
(SPT) bispectrum. The tree-level bispectrum from SPT
is written as a function of the linear power spectrum as
follows:
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F
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2 is the symmetric 2nd-order kernel from SPT (see ?

for a review).
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The Fourier-transform of equation 49 gives the tree-
level 3-point correlation function (??):
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where ⇠(r) here is the linear correlation function, or ⇠00(r)
in our notation.
We can rewrite the middle two terms in our notation

using the relations between derivatives of spherical Bessel
functions:

r⇠(r) = �r̂⇠11(r) (52)

r�1⇠(r) = �r̂⇠�1
1 (r) (53)

It can also be shown that the last term is equivalent to:
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Combining these terms, we see that the expression in
Equation 51 is equivalent to our expression in Equation
48.
The fact that we recover this known result in real space

validates our approach. We now show how to compute
the redshift-space 3-point correlation function of matter
and galaxies from 2LPT.

3.2. Redshift Space

In 2LPT, the peculiar velocity is:

u(q) = �D1f1aHr�(1)(q) +D2f2aHr�(2)(q), (55)

where f1 is as before, and f2 = d lnD2/d ln a can be

approximated as f2 ⇡ 2⌦6/11
m

for a flat universe with
non-zero cosmological constant (??).
The redshift-space density in Lagrangian coordinates

to second order is:
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Comparing 56 and 24, we see that there is the 4/7 coef-
ficient on the I2 term of �(2), as in real space. However,

there is an additional term d
(2)
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= @2�(2)/@q2
n

, which is
the line-of-sight component of the deformation tensor of
�(2). This term proves to be more di�cult to compute as
it cannot be separated into products of initial quantities,
as all of the other terms can. To compute the 3-point
correlation function, we first focus on the terms that can

be separated, and then discuss the d
(2)
nn

term.

If we neglect the d(2)
nn

and follow the approach outlined
in Section 2.2, the expression for the redshift-space 3-
point correlation function from 2LPT will be very similar
to that in the Zel’dovich approximation, but with slightly
di↵erent coe�cients on the terms coming from I2.
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where x is the cosine of the corresponding inner-angle of
the triangle (here, x = cos ✓12). The A`,m

n1,n2
terms are

given in Appendix ??, grouped by multipole `, of the
angle ↵.
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We now use Equations 35 and ?? to relate the galaxy
overdensity in redshift space to that in real space. We
must also express Equation 35 in terms of redshift co-
ordinate s through a Taylor expansion, bringing in an
additional term at second order.
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We now compare this expression to that found from
Fourier transforming the Standard Perturbation Theory
(SPT) bispectrum. The tree-level bispectrum from SPT
is written as a function of the linear power spectrum as
follows:
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The Fourier-transform of equation 49 gives the tree-
level 3-point correlation function (??):
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where ⇠(r) here is the linear correlation function, or ⇠00(r)
in our notation.
We can rewrite the middle two terms in our notation

using the relations between derivatives of spherical Bessel
functions:

r⇠(r) = �r̂⇠11(r) (52)
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Combining these terms, we see that the expression in
Equation 51 is equivalent to our expression in Equation
48.
The fact that we recover this known result in real space

validates our approach. We now show how to compute
the redshift-space 3-point correlation function of matter
and galaxies from 2LPT.

3.2. Redshift Space

In 2LPT, the peculiar velocity is:

u(q) = �D1f1aHr�(1)(q) +D2f2aHr�(2)(q), (55)

where f1 is as before, and f2 = d lnD2/d ln a can be

approximated as f2 ⇡ 2⌦6/11
m

for a flat universe with
non-zero cosmological constant (??).
The redshift-space density in Lagrangian coordinates

to second order is:
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Comparing 56 and 24, we see that there is the 4/7 coef-
ficient on the I2 term of �(2), as in real space. However,

there is an additional term d
(2)
nn

= @2�(2)/@q2
n

, which is
the line-of-sight component of the deformation tensor of
�(2). This term proves to be more di�cult to compute as
it cannot be separated into products of initial quantities,
as all of the other terms can. To compute the 3-point
correlation function, we first focus on the terms that can

be separated, and then discuss the d
(2)
nn

term.

If we neglect the d(2)
nn

and follow the approach outlined
in Section 2.2, the expression for the redshift-space 3-
point correlation function from 2LPT will be very similar
to that in the Zel’dovich approximation, but with slightly
di↵erent coe�cients on the terms coming from I2.
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where x is the cosine of the corresponding inner-angle of
the triangle (here, x = cos ✓12). The A`,m

n1,n2
terms are

given in Appendix ??, grouped by multipole `, of the
angle ↵.
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We now use Equations 35 and ?? to relate the galaxy
overdensity in redshift space to that in real space. We
must also express Equation 35 in terms of redshift co-
ordinate s through a Taylor expansion, bringing in an
additional term at second order.
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Fig. 1.— Schematic for calculating the 3-point correlation func-
tion for a general triangular configuration in real space. Given r1,
r2, and r3 along the line-of-sight (ẑ), we can construct a triangle
by rotating each leg by some angle about the y axis to get a tri-
angle in the x-z plane, as shown. The 3 rotation angles can be
related through the rotation angle of r1 (� and the inner angles of
the triangle, ✓12, ✓23, and ✓31.

the line-of-sight quantities (unprimed) is:

d11(x)
0 = cos2(�)d11(x)� 2 cos(�) sin(�)d13(x)

+ sin2(�)d33(x) . (19)

The invariants I1 and I2 remain unchanged because these
quantities are invariant under rotations. The expectation
value hI1(x1)d011(x3)i in the new coordinate system be-
comes:

hI1(x1)d11(x3)
0i = cos2(�) hI1(x1)d11(x3)i

� 2 cos(�) sin(�) hI1(x1)d13(x3)i
+ sin2(�) hI1(x1)d33(x3)i

=
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3
⇠00(r1) +

1

6
(3 cos(2�)� 1) ⇠02(r1) .

(20)

The r3 leg of the triangle is rotated by angle � + ✓31,
so this expectation value between x2 and x3 will be the
same as equation 20 with r1 replaced by r3 and � replaced
by � + ✓31.
If we add up all of the terms in the 3-point correlation

function for an arbitrary triangle in real space, we get:
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We can see that this is equal to equation 18 for ✓31 = 0,
✓12 = ⇡, and ✓23 = 0.

2.2. Redshift Space

We now show how to compute the tree-level matter
3-point correlation function in redshift space from the
Zel’dovich approximation.
The transformation from real to redshift space is:

s = x+
u · n̂
aH

n̂ , (22)

where s is the redshift-space position, u is the peculiar
velocity, a is the scale factor, H is the Hubble expansion
factor, and n̂ is the line-of-sight direction.
In the Zel’dovich approximation, the peculiar velocity

is:

u(q) = �D1f1aHr�(1)(q), (23)

where f1 is the logarithmic derivative of the linear growth

factor, and f1 ⇡ ⌦5/9
m

for a flat universe with non-zero
cosmological constant. H is the Hubble parameter, and
a is the scale factor (??).
We now follow the same procedure as in Section 2.1

to compute the overdensity in redshift space using the
Jacobian of the transformation from q to s. The redshift-
space density to second order is:

�
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(q) = D(I1(q) + f1dnn(q)) +D2
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where d
nn

is the line-of-sight component of the deforma-
tion tensor, and M

nn

is the corresponding minor of the
matrix.
We write the density as a function of redshift-space

coordinate s as we did in the previous section through a
Taylor expansion:

�
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We use the distant-observer approximation, which allows
us to assume that the line-of-sight does not vary over the
volume we are considering, and we take n̂ = ẑ.
For a general triangle in real (isotropic) space, the an-

gle � cancels out in the full 3-point function (Equation
21), as expected. This is because the real-space 3-point
correlation function is independent of the orientation of
the triangle.
In redshift space, where the ẑ direction is our line of

sight, in general we expect the 3-point correlation func-
tion to depend on the angle �. But, this is not enough to
fully describe the triangle in redshift space: we also need
to take into account the angle that the plane of the trian-
gle makes with the line of sight. In the previous section,
the triangle we considered in the x-z plane makes an an-
gle ↵ = ⇡/2 with the line of sight (see lower triangle in
Figure 2). To describe any triangle, after rotating each
side by its angle (�, �0, �00) about the y-axis, we then
rotate all of the sides by another angle � = ⇡/2�↵ about
the x-axis. This is shown in the upper triangle in Figure

Zel’dovich Approx:

2LPT:

2

It is useful to define the deformation tensor:

d
ij

(q) =
@2�(1)(q)

@q
i

@q
j

. (4)

and its invariants, I1, I2, and I3:

I1(q) = Trace[d
ij

(q)] (5)

I2(q) = Trace[Minors(d
ij

(q))] (6)

I3(q) = Det[d
ij

(q)] (7)

.
The final overdensity can be found through the Jaco-

bian, J(q), of the transformation from q to x:

⇢̄d3q = ⇢̄(1 + �)d3x (8)

1 + �(q) =

����
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i
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����
�1

=
1
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The overdensity can be expressed perturbatively
through a Taylor expansion of the Jacobian about �

L

=
0, and written in terms of the invariants. To second order
in the linear overdensity, the final overdensity is:

�(q) = D (I1(q)) +D2
�
I1(q)

2 � I2(q)
�
+ ...

This quantity is the final (nonlinear) overdensity ex-
pressed as a function of initial (Lagrangian) coordinate
q. As in ?, we now express this overdensity as a function
of Eulerian coordinate x using a Taylor expansion. This
coordinate transformation introduces an extra term at
second order that is related to the gradient of the linear
potential (see ? for more details):

�(x, t) = DI1(x) +D2
�
I1(x)

2 � I2(x)

+r�(1)(x) ·rI1(x)
�
+ ... (10)

We refer to the term proportional to D as �(1), which is
just the linear overdensity, and the term proportional to
D2 as �(2).
The 3-point correlation function is defined as the ex-

pectation value between the overdensity at three points:

⇣(x1,x2,x3) ⌘ h�(x1)�(x2)�(x3)i (11)

We compute the 3-point correlation function perturba-
tively by plugging the overdensity in equation 47 into
equation 11. The term proportional to D3 will vanish
because we assume that �

L

is a Gaussian random field.
Therefore the first nonzero term in the 3-point correla-
tion function is:

h�(x1)�(x2)�(x3)i = D4
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E
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⌘
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where the two cyclic terms are the permutations of x1,
x2, and x3.
The expectation value in equation 12 is made up of

three terms, corresponding to the three terms in �(2):

hI1(x1)I1(x2)I
2
1 (x3)i, (13)

hI1(x1)I1(x2)I2(x3)i, (14)

and

hI1(x1)I1(x2)r�(1)(x3) ·rI1(x3)i. (15)

Each of these terms contains products of four linear quan-
tities, and using Wick’s theorem these can be reduced to
products of expectation values between two linear quanti-
ties. Due to (homogeneity? isotropy?), each expectation
value becomes a function of the length of one side of the
triangle defined by x1, x2, x3: r1 = x1�x3, r2 = x2�x1,
and r3 = x3 � x2.
To calculate the expectation values, we begin by as-

suming that the 3 sides of the triangle are along the
line-of-sight direction (ẑ), so that the triangle is com-
pletely flattened. In this case, the expectation values
are particularly easy to calculate. We also write all of
our quantities in terms of the deformation tensor, d

ij

, its
derivatives, and derivatives of the linear potential, �

L

(q).
For example, the expectation value in equation ?? will
include a term such as hI1(x1)d11(x3)i, where d11 is the
second derivative in the x-direction of the linear poten-
tial. We compute the expectation value by writing each
term as its Fourier transform:
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where the linear correlation functions ⇠m
n

(r) are defined
as:
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Again, see ? for more details about computing these
expectation values.
All together, the line-of-sight 3-point correlation func-

tion is:
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Because all three legs of the triangle are along ẑ, the
triangle is completely flattened, so ✓12 = ⇡, and ✓23 = 0,
and ✓31 = 0 in this case.
For a general triangle not along the line of sight, such

as in Figure 1, we can imagine the vectors r1, r2, and
r3, initially along ẑ, are rotated by angles �, �0, and �00

about the y-axis. To form a triangle, the angles �0 and
�00 are determined by the angle � and the inner-angles of
the triangle (✓12, ✓23, and ✓31). These relations are given
in Figure 1.
To calculate the expectation values in the case of a

general triangle, we correspondingly rotate our coordi-
nate system for each leg. For example, we rotate r1 by
�, so the d011 component of the deformation tensor in the
new coordinate system (primed quantities) in terms of
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Fig. 2.— Schematic for calculating the 3-point correlation func-
tion for a general triangular configuration in redshift space. The
triangle, originally in the x-z plane, is rotated about the x axis by
angle �.

2. The � angle describes the orientation of r1 within the
plane of the triangle, with respect to the rotated ẑ axis.
To calculate the expectation values in redshift space,

we must include the additional rotation by � about the
x axis. In this new coordinate system (double primed
quantities), d11(x)00 is unchanged:

d11(x)
00 = cos2(�)d11(x)� 2 cos(�) sin(�)d13(x)

+ sin2(�)d33(x) , (26)

and d22(x)00 now depends on the angle �:

d22(x)
00 = cos2(�)d22(x) + cos2(�) sin2(�)d33(x) (27)

+ cos(�) sin(2�)d23(x) + sin(2�) sin(�)d12(x)

+ sin2(�) sin2(�)d11(x) + sin2(�) sin(2�)d13(x) .

For the redshift-space correlation function, we use �(1)

and �(2) from Equation 25, and calculate the expecta-
tion values in the same way as described above. The
resulting expression, which is a function of s1, s2, s3,
� = ⇡/2�↵, and �, as well as the growth rate f , contains
many terms involving products of the linear correlation
functions ⇠m

n

(r).
We expect the dependence on ↵ to be more interesting

than the dependence on �, so to simplify slightly, we
marginalize over the � dependence and consider only the
behavior of the 3-point correlation function as a function
of ↵.
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The resulting expression for ⇣
↵

(r1, r2, r3,↵) can be writ-
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where x is the cosine of the corresponding inner-angle of
the triangle (here, x = cos ✓12). The A`,m

n1,n2
terms are

given in Appendix ??, grouped by multipole `, of the
angle ↵.

2.3. Bias

The above expression gives the 3-point correlation
function of dark matter in redshift space to first (non-
zero) order from the Zel’dovich approximation. Because
we infer the distribution of dark matter through the pres-
ence of galaxies, which are biased tracers of the dark
matter, we must include the e↵ect of galaxy bias in this
model. Here we consider only Eulerian bias models,
which can be written generically as:

�
g

(x, t) = F [�(x, t)] (31)

where �
g

is the overdensity of galaxies, and F is a func-
tion that relates the dark matter overdensity to that of
the galaxies.
Because this relation is specified in real space, not red-

shift space, we must relate the real-space overdensity to
that in redshift space in order to compute the redshift-
space statistics of the galaxy distribution. We use mass
conservation:

(1 + �
s

(x, t))d3s = (1 + �
x

(x, t))d3x (32)

This relates the redshift-space overdensity (�
s

), ex-
pressed in terms of Eulerian coordinate x, to the real-
space overdensity (�

x

). Mass conservation holds for both
the dark matter density and the galaxy density. In
both cases, the redshift-space over-density is related to
the real-space over-density through the Jacobian of the
transformation from x to s:

�
s

(x, t) = (1 + �
x

(x, t))
1

J
xs

(x, t)
� 1 (33)

where

J
xs

(x, t) =

����
@s

i

@x
j

���� , (34)

which can be computed in the Zel’dovich approximation
from Equation 22.
In order to recover the redshift-space overdensity to

second order in �, we must likewise know the Jacobian
to second order. We can rewrite the Jacobian in a more
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Fig. 2.— Schematic for calculating the 3-point correlation func-
tion for a general triangular configuration in redshift space. The
triangle, originally in the x-z plane, is rotated about the x axis by
angle �.

2. The � angle describes the orientation of r1 within the
plane of the triangle, with respect to the rotated ẑ axis.
To calculate the expectation values in redshift space,

we must include the additional rotation by � about the
x axis. In this new coordinate system (double primed
quantities), d11(x)00 is unchanged:

d11(x)
00 = cos2(�)d11(x)� 2 cos(�) sin(�)d13(x)

+ sin2(�)d33(x) , (26)

and d22(x)00 now depends on the angle �:

d22(x)
00 = cos2(�)d22(x) + cos2(�) sin2(�)d33(x) (27)

+ cos(�) sin(2�)d23(x) + sin(2�) sin(�)d12(x)

+ sin2(�) sin2(�)d11(x) + sin2(�) sin(2�)d13(x) .

For the redshift-space correlation function, we use �(1)

and �(2) from Equation 25, and calculate the expecta-
tion values in the same way as described above. The
resulting expression, which is a function of s1, s2, s3,
� = ⇡/2�↵, and �, as well as the growth rate f , contains
many terms involving products of the linear correlation
functions ⇠m

n

(r).
We expect the dependence on ↵ to be more interesting

than the dependence on �, so to simplify slightly, we
marginalize over the � dependence and consider only the
behavior of the 3-point correlation function as a function
of ↵.
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where x is the cosine of the corresponding inner-angle of
the triangle (here, x = cos ✓12). The A`,m

n1,n2
terms are

given in Appendix ??, grouped by multipole `, of the
angle ↵.

2.3. Bias

The above expression gives the 3-point correlation
function of dark matter in redshift space to first (non-
zero) order from the Zel’dovich approximation. Because
we infer the distribution of dark matter through the pres-
ence of galaxies, which are biased tracers of the dark
matter, we must include the e↵ect of galaxy bias in this
model. Here we consider only Eulerian bias models,
which can be written generically as:

�
g

(x, t) = F [�(x, t)] (31)

where �
g

is the overdensity of galaxies, and F is a func-
tion that relates the dark matter overdensity to that of
the galaxies.
Because this relation is specified in real space, not red-

shift space, we must relate the real-space overdensity to
that in redshift space in order to compute the redshift-
space statistics of the galaxy distribution. We use mass
conservation:

(1 + �
s

(x, t))d3s = (1 + �
x

(x, t))d3x (32)

This relates the redshift-space overdensity (�
s

), ex-
pressed in terms of Eulerian coordinate x, to the real-
space overdensity (�

x

). Mass conservation holds for both
the dark matter density and the galaxy density. In
both cases, the redshift-space over-density is related to
the real-space over-density through the Jacobian of the
transformation from x to s:
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1
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where
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which can be computed in the Zel’dovich approximation
from Equation 22.
In order to recover the redshift-space overdensity to

second order in �, we must likewise know the Jacobian
to second order. We can rewrite the Jacobian in a more
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Fig. 2.— Schematic for calculating the 3-point correlation func-
tion for a general triangular configuration in redshift space. The
triangle, originally in the x-z plane, is rotated about the x axis by
angle �.

2. The � angle describes the orientation of r1 within the
plane of the triangle, with respect to the rotated ẑ axis.
To calculate the expectation values in redshift space,

we must include the additional rotation by � about the
x axis. In this new coordinate system (double primed
quantities), d11(x)00 is unchanged:

d11(x)
00 = cos2(�)d11(x)� 2 cos(�) sin(�)d13(x)

+ sin2(�)d33(x) , (26)

and d22(x)00 now depends on the angle �:

d22(x)
00 = cos2(�)d22(x) + cos2(�) sin2(�)d33(x) (27)

+ cos(�) sin(2�)d23(x) + sin(2�) sin(�)d12(x)

+ sin2(�) sin2(�)d11(x) + sin2(�) sin(2�)d13(x) .

For the redshift-space correlation function, we use �(1)

and �(2) from Equation 25, and calculate the expecta-
tion values in the same way as described above. The
resulting expression, which is a function of s1, s2, s3,
� = ⇡/2�↵, and �, as well as the growth rate f , contains
many terms involving products of the linear correlation
functions ⇠m

n

(r).
We expect the dependence on ↵ to be more interesting

than the dependence on �, so to simplify slightly, we
marginalize over the � dependence and consider only the
behavior of the 3-point correlation function as a function
of ↵.
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The resulting expression for ⇣
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where x is the cosine of the corresponding inner-angle of
the triangle (here, x = cos ✓12). The A`,m

n1,n2
terms are

given in Appendix ??, grouped by multipole `, of the
angle ↵.

2.3. Bias

The above expression gives the 3-point correlation
function of dark matter in redshift space to first (non-
zero) order from the Zel’dovich approximation. Because
we infer the distribution of dark matter through the pres-
ence of galaxies, which are biased tracers of the dark
matter, we must include the e↵ect of galaxy bias in this
model. Here we consider only Eulerian bias models,
which can be written generically as:

�
g

(x, t) = F [�(x, t)] (31)

where �
g

is the overdensity of galaxies, and F is a func-
tion that relates the dark matter overdensity to that of
the galaxies.
Because this relation is specified in real space, not red-

shift space, we must relate the real-space overdensity to
that in redshift space in order to compute the redshift-
space statistics of the galaxy distribution. We use mass
conservation:

(1 + �
s

(x, t))d3s = (1 + �
x

(x, t))d3x (32)

This relates the redshift-space overdensity (�
s

), ex-
pressed in terms of Eulerian coordinate x, to the real-
space overdensity (�

x

). Mass conservation holds for both
the dark matter density and the galaxy density. In
both cases, the redshift-space over-density is related to
the real-space over-density through the Jacobian of the
transformation from x to s:
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1
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where

J
xs

(x, t) =

����
@s

i

@x
j

���� , (34)

which can be computed in the Zel’dovich approximation
from Equation 22.
In order to recover the redshift-space overdensity to

second order in �, we must likewise know the Jacobian
to second order. We can rewrite the Jacobian in a more
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Fig. 2.— Schematic for calculating the 3-point correlation func-
tion for a general triangular configuration in redshift space. The
triangle, originally in the x-z plane, is rotated about the x axis by
angle �.

2. The � angle describes the orientation of r1 within the
plane of the triangle, with respect to the rotated ẑ axis.
To calculate the expectation values in redshift space,

we must include the additional rotation by � about the
x axis. In this new coordinate system (double primed
quantities), d11(x)00 is unchanged:

d11(x)
00 = cos2(�)d11(x)� 2 cos(�) sin(�)d13(x)

+ sin2(�)d33(x) , (26)

and d22(x)00 now depends on the angle �:

d22(x)
00 = cos2(�)d22(x) + cos2(�) sin2(�)d33(x) (27)

+ cos(�) sin(2�)d23(x) + sin(2�) sin(�)d12(x)

+ sin2(�) sin2(�)d11(x) + sin2(�) sin(2�)d13(x) .

For the redshift-space correlation function, we use �(1)

and �(2) from Equation 25, and calculate the expecta-
tion values in the same way as described above. The
resulting expression, which is a function of s1, s2, s3,
� = ⇡/2�↵, and �, as well as the growth rate f , contains
many terms involving products of the linear correlation
functions ⇠m

n

(r).
We expect the dependence on ↵ to be more interesting

than the dependence on �, so to simplify slightly, we
marginalize over the � dependence and consider only the
behavior of the 3-point correlation function as a function
of ↵.
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The resulting expression for ⇣
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where x is the cosine of the corresponding inner-angle of
the triangle (here, x = cos ✓12). The A`,m

n1,n2
terms are

given in Appendix ??, grouped by multipole `, of the
angle ↵.

2.3. Bias

The above expression gives the 3-point correlation
function of dark matter in redshift space to first (non-
zero) order from the Zel’dovich approximation. Because
we infer the distribution of dark matter through the pres-
ence of galaxies, which are biased tracers of the dark
matter, we must include the e↵ect of galaxy bias in this
model. Here we consider only Eulerian bias models,
which can be written generically as:

�
g

(x, t) = F [�(x, t)] (31)

where �
g

is the overdensity of galaxies, and F is a func-
tion that relates the dark matter overdensity to that of
the galaxies.
Because this relation is specified in real space, not red-

shift space, we must relate the real-space overdensity to
that in redshift space in order to compute the redshift-
space statistics of the galaxy distribution. We use mass
conservation:

(1 + �
s

(x, t))d3s = (1 + �
x

(x, t))d3x (32)

This relates the redshift-space overdensity (�
s

), ex-
pressed in terms of Eulerian coordinate x, to the real-
space overdensity (�

x

). Mass conservation holds for both
the dark matter density and the galaxy density. In
both cases, the redshift-space over-density is related to
the real-space over-density through the Jacobian of the
transformation from x to s:
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where

J
xs

(x, t) =

����
@s

i

@x
j

���� , (34)

which can be computed in the Zel’dovich approximation
from Equation 22.
In order to recover the redshift-space overdensity to

second order in �, we must likewise know the Jacobian
to second order. We can rewrite the Jacobian in a more
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Fig. 2.— Schematic for calculating the 3-point correlation func-
tion for a general triangular configuration in redshift space. The
triangle, originally in the x-z plane, is rotated about the x axis by
angle �.

2. The � angle describes the orientation of r1 within the
plane of the triangle, with respect to the rotated ẑ axis.
To calculate the expectation values in redshift space,

we must include the additional rotation by � about the
x axis. In this new coordinate system (double primed
quantities), d11(x)00 is unchanged:

d11(x)
00 = cos2(�)d11(x)� 2 cos(�) sin(�)d13(x)

+ sin2(�)d33(x) , (26)

and d22(x)00 now depends on the angle �:

d22(x)
00 = cos2(�)d22(x) + cos2(�) sin2(�)d33(x) (27)

+ cos(�) sin(2�)d23(x) + sin(2�) sin(�)d12(x)

+ sin2(�) sin2(�)d11(x) + sin2(�) sin(2�)d13(x) .

For the redshift-space correlation function, we use �(1)

and �(2) from Equation 25, and calculate the expecta-
tion values in the same way as described above. The
resulting expression, which is a function of s1, s2, s3,
� = ⇡/2�↵, and �, as well as the growth rate f , contains
many terms involving products of the linear correlation
functions ⇠m

n

(r).
We expect the dependence on ↵ to be more interesting

than the dependence on �, so to simplify slightly, we
marginalize over the � dependence and consider only the
behavior of the 3-point correlation function as a function
of ↵.
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where x is the cosine of the corresponding inner-angle of
the triangle (here, x = cos ✓12). The A`,m

n1,n2
terms are

given in Appendix ??, grouped by multipole `, of the
angle ↵.

2.3. Bias

The above expression gives the 3-point correlation
function of dark matter in redshift space to first (non-
zero) order from the Zel’dovich approximation. Because
we infer the distribution of dark matter through the pres-
ence of galaxies, which are biased tracers of the dark
matter, we must include the e↵ect of galaxy bias in this
model. Here we consider only Eulerian bias models,
which can be written generically as:

�
g

(x, t) = F [�(x, t)] (31)

where �
g

is the overdensity of galaxies, and F is a func-
tion that relates the dark matter overdensity to that of
the galaxies.
Because this relation is specified in real space, not red-

shift space, we must relate the real-space overdensity to
that in redshift space in order to compute the redshift-
space statistics of the galaxy distribution. We use mass
conservation:

(1 + �
s

(x, t))d3s = (1 + �
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(x, t))d3x (32)

This relates the redshift-space overdensity (�
s

), ex-
pressed in terms of Eulerian coordinate x, to the real-
space overdensity (�

x

). Mass conservation holds for both
the dark matter density and the galaxy density. In
both cases, the redshift-space over-density is related to
the real-space over-density through the Jacobian of the
transformation from x to s:
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1
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where
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which can be computed in the Zel’dovich approximation
from Equation 22.
In order to recover the redshift-space overdensity to

second order in �, we must likewise know the Jacobian
to second order. We can rewrite the Jacobian in a more
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Fig. 2.— Schematic for calculating the 3-point correlation func-
tion for a general triangular configuration in redshift space. The
triangle, originally in the x-z plane, is rotated about the x axis by
angle �.

2. The � angle describes the orientation of r1 within the
plane of the triangle, with respect to the rotated ẑ axis.
To calculate the expectation values in redshift space,

we must include the additional rotation by � about the
x axis. In this new coordinate system (double primed
quantities), d11(x)00 is unchanged:

d11(x)
00 = cos2(�)d11(x)� 2 cos(�) sin(�)d13(x)

+ sin2(�)d33(x) , (26)

and d22(x)00 now depends on the angle �:

d22(x)
00 = cos2(�)d22(x) + cos2(�) sin2(�)d33(x) (27)

+ cos(�) sin(2�)d23(x) + sin(2�) sin(�)d12(x)

+ sin2(�) sin2(�)d11(x) + sin2(�) sin(2�)d13(x) .

For the redshift-space correlation function, we use �(1)

and �(2) from Equation 25, and calculate the expecta-
tion values in the same way as described above. The
resulting expression, which is a function of s1, s2, s3,
� = ⇡/2�↵, and �, as well as the growth rate f , contains
many terms involving products of the linear correlation
functions ⇠m

n

(r).
We expect the dependence on ↵ to be more interesting

than the dependence on �, so to simplify slightly, we
marginalize over the � dependence and consider only the
behavior of the 3-point correlation function as a function
of ↵.
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The resulting expression for ⇣
↵

(r1, r2, r3,↵) can be writ-

ten as a sum of multipoles in ↵ in the following way:
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where x is the cosine of the corresponding inner-angle of
the triangle (here, x = cos ✓12). The A`,m

n1,n2
terms are

given in Appendix ??, grouped by multipole `, of the
angle ↵.

2.3. Bias

The above expression gives the 3-point correlation
function of dark matter in redshift space to first (non-
zero) order from the Zel’dovich approximation. Because
we infer the distribution of dark matter through the pres-
ence of galaxies, which are biased tracers of the dark
matter, we must include the e↵ect of galaxy bias in this
model. Here we consider only Eulerian bias models,
which can be written generically as:

�
g

(x, t) = F [�(x, t)] (31)

where �
g

is the overdensity of galaxies, and F is a func-
tion that relates the dark matter overdensity to that of
the galaxies.
Because this relation is specified in real space, not red-

shift space, we must relate the real-space overdensity to
that in redshift space in order to compute the redshift-
space statistics of the galaxy distribution. We use mass
conservation:

(1 + �
s

(x, t))d3s = (1 + �
x

(x, t))d3x (32)

This relates the redshift-space overdensity (�
s

), ex-
pressed in terms of Eulerian coordinate x, to the real-
space overdensity (�

x

). Mass conservation holds for both
the dark matter density and the galaxy density. In
both cases, the redshift-space over-density is related to
the real-space over-density through the Jacobian of the
transformation from x to s:

�
s

(x, t) = (1 + �
x

(x, t))
1

J
xs

(x, t)
� 1 (33)

where

J
xs

(x, t) =

����
@s

i

@x
j

���� , (34)

which can be computed in the Zel’dovich approximation
from Equation 22.
In order to recover the redshift-space overdensity to

second order in �, we must likewise know the Jacobian
to second order. We can rewrite the Jacobian in a more

[+integral term]
α
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r1"

r2"

r3"

z"

y"

x"

φ"
α"

Fig. 2.— Schematic for calculating the 3-point correlation func-
tion for a general triangular configuration in redshift space. The
triangle, originally in the x-z plane, is rotated about the x axis by
angle �.

2. The � angle describes the orientation of r1 within the
plane of the triangle, with respect to the rotated ẑ axis.
To calculate the expectation values in redshift space,

we must include the additional rotation by � about the
x axis. In this new coordinate system (double primed
quantities), d11(x)00 is unchanged:

d11(x)
00 = cos2(�)d11(x)� 2 cos(�) sin(�)d13(x)

+ sin2(�)d33(x) , (26)

and d22(x)00 now depends on the angle �:

d22(x)
00 = cos2(�)d22(x) + cos2(�) sin2(�)d33(x) (27)

+ cos(�) sin(2�)d23(x) + sin(2�) sin(�)d12(x)

+ sin2(�) sin2(�)d11(x) + sin2(�) sin(2�)d13(x) .

For the redshift-space correlation function, we use �(1)

and �(2) from Equation 25, and calculate the expecta-
tion values in the same way as described above. The
resulting expression, which is a function of s1, s2, s3,
� = ⇡/2�↵, and �, as well as the growth rate f , contains
many terms involving products of the linear correlation
functions ⇠m

n

(r).
We expect the dependence on ↵ to be more interesting

than the dependence on �, so to simplify slightly, we
marginalize over the � dependence and consider only the
behavior of the 3-point correlation function as a function
of ↵.

⇣
↵

(s1, s2, s3,↵) =
1

2⇡

Z 2⇡

0

⇣(s1, s2, s3,↵,�) d� . (28)

The resulting expression for ⇣
↵

(r1, r2, r3,↵) can be writ-

ten as a sum of multipoles in ↵ in the following way:
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where x is the cosine of the corresponding inner-angle of
the triangle (here, x = cos ✓12). The A`,m

n1,n2
terms are

given in Appendix ??, grouped by multipole `, of the
angle ↵.
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2.3. Bias

The above expression gives the 3-point correlation
function of dark matter in redshift space to first (non-
zero) order from the Zel’dovich approximation. Because
we infer the distribution of dark matter through the pres-
ence of galaxies, which are biased tracers of the dark
matter, we must include the e↵ect of galaxy bias in this
model. Here we consider only Eulerian bias models,
which can be written generically as:

�
g

(x, t) = F [�(x, t)] (31)

where �
g

is the overdensity of galaxies, and F is a func-
tion that relates the dark matter overdensity to that of
the galaxies.
Because this relation is specified in real space, not red-

shift space, we must relate the real-space overdensity to
that in redshift space in order to compute the redshift-
space statistics of the galaxy distribution. We use mass
conservation:

(1 + �
s

(x, t))d3s = (1 + �
x

(x, t))d3x (32)

This relates the redshift-space overdensity (�
s

), ex-
pressed in terms of Eulerian coordinate x, to the real-
space overdensity (�

x

). Mass conservation holds for both
the dark matter density and the galaxy density. In
both cases, the redshift-space over-density is related to
the real-space over-density through the Jacobian of the
transformation from x to s:

�
s

(x, t) = (1 + �
x

(x, t))
1

J
xs

(x, t)
� 1 (33)
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lines respectively). The non-local model seems to approxim-
ate Q measurements from halo samples better but there are
still some discrepancies that we will explore in a separate
analysis. Besides non-local contributions to the bias model,
further reasons for the difference between bQ and bτ might
be that non-linear terms in the bias function and the mat-
ter field have different impacts on Q and τ . In addition we
found that estimations of the quadratic bias parameter c2
from Q and τ can also differ significantly from each other.

Understanding the differences between bξ, bQ and bτ is
crucial for constraining cosmological models with observed
third-order halo statistics. We will therefore deepen our ana-
lysis in a second paper by studying bias from halo-matter-
matter statistics, direct analysis of the halo versus matter
fluctuations and predictions from the peak-background split
model to disentangle between non-linear and non-local ef-
fects on the different estimators.

For measuring the growth factor D we have intro-
duced a new method. This new method uses the bias ratio
b̂(z) = b(z)/b(z0), derived directly from halo density fluc-
tuations with reduced third-order statistics. Its main ad-
vantage with respect to the approach of measuring b(z) and
b(z0) separately is that it does not require the modelling of
(third-order) dark matter statistics. Instead, it works with
the hypothesis that

(i) the reduced dark matter three-point statistics is inde-
pendent of redshift z

(ii) the bias ratio b̂(z) = b(z)/b(z0) from two- and three-
point statistics is equal.

The first assumption was tested in this study numerically,
while the validity of the second follows directly from our bias
comparison.

In general the comparison between D from perturba-
tion theory with measurements from our new method and
the standard approach reveals a good agreement. In the case
of Q we explain this result by a cancellation of the multi-
plicative factor by which bQ is shifted away from bξ in the
bias ratio b̂Q. The growth factor measured with τ has larger
errors than the results from Q as a consequence of the larger
errors in the bias estimation.

Our analysis shows that the new way to measure the
growth factor from bias ratios is competitive with the
method based on two separate bias measurements. While
having larger errors the new method has the advantage of
requiring much weaker assumptions on dark matter correl-
ations than the standard method and therefore provides an
almost model independent way to probe the growth factor
of dark matter fluctuations in the Universe.

We demonstrated that besides the growth factor, D,
the growth rate of matter, f , can also be directly meas-
ured from the galaxy (or halo) density fields with bias ra-
tios from third-order statistics. This provides an altern-
ative method to derive the growth rate, which is usually
obtained from velocity distortions probed by the aniso-
tropy of the two-point correlation function (RSD). The typ-
ical errors found on SDSS, BOSS and WiggleZ using RSD
are around 15-20% (Cabré and Gaztañaga 2009; Blake et al.
2011; Tojeiro et al. 2012), which are comparable to the ones
we find in Fig. 15 when considering the high redshift bins
(20%).

Given that the two methods explored here use differ-

Figure 17. Q for dark matter (dotted) and for halo samples
(symbols) with two different mass thresholds: b1 = bξ ≃ 1.09
(blue) and b1 = bξ ≃ 1.83 (red). We compare results in real
space (filled triangles) and redshift space (open circles), which
agree within the errors on these large scales (r12 = r13/2 = 24
h−1Mpc at z=0). Predictions are shown for both: the local bias
model (dashed lines) and non-local bias model (continuous). In
both cases we have fixed b1 = bξ and fit for c2.

ent information from higher-orders correlation (Q uses the
shape, while τ uses collapse configurations) one can reas-
onably guess that the two methods are not strongly correl-
ated. So a possible strategy would be to use the Q method
(more precise) to measure the (velocity) growth rate and, in
parallel, to use the τ method to extract the growth factor.
This would help to break degeneracies between cosmological
parameters in different gravitational frameworks.

Our analysis is performed in real space to have clean
conditions for comparing different bias and growth estim-
ates. This is a good approximation for the reduced higher-
order correlations on the large scales considered in this
study, as measurements in redshifts space always seem to
be within one sigma error of the corresponding real space
result (see Fig. 17). Note how the small, but systematic,
distortions in redshifts space seem to agree even better with
the local bias model than in real space on the largest scales.

Applying the methods described above to obtain accur-
ate bias and growth measurements from observations will
require additional treatment of redshifts space distortions or
projection effects. Two possible paths could be followed. In
a three dimensional analysis redshifts space distortions need
to be modeled (e.g. Gaztañaga and Scoccimarro 2005). The
projected three-point correlation can also be studied sep-
arated by in redshift bins (Frieman and Gaztañaga 1999;
Buchalter et al. 2000; Zheng 2004). Both ways will result
in larger errors, but we do not expect this to be a limita-
tion because our error budget is totally dominated by the
uncertainty in the bias. A more detailed study of this is-
sue is beyond the scope of this paper and will be presented

From K. Hoffmann, et al (2014) arXiv:1403.1259
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lines respectively). The non-local model seems to approxim-
ate Q measurements from halo samples better but there are
still some discrepancies that we will explore in a separate
analysis. Besides non-local contributions to the bias model,
further reasons for the difference between bQ and bτ might
be that non-linear terms in the bias function and the mat-
ter field have different impacts on Q and τ . In addition we
found that estimations of the quadratic bias parameter c2
from Q and τ can also differ significantly from each other.

Understanding the differences between bξ, bQ and bτ is
crucial for constraining cosmological models with observed
third-order halo statistics. We will therefore deepen our ana-
lysis in a second paper by studying bias from halo-matter-
matter statistics, direct analysis of the halo versus matter
fluctuations and predictions from the peak-background split
model to disentangle between non-linear and non-local ef-
fects on the different estimators.

For measuring the growth factor D we have intro-
duced a new method. This new method uses the bias ratio
b̂(z) = b(z)/b(z0), derived directly from halo density fluc-
tuations with reduced third-order statistics. Its main ad-
vantage with respect to the approach of measuring b(z) and
b(z0) separately is that it does not require the modelling of
(third-order) dark matter statistics. Instead, it works with
the hypothesis that

(i) the reduced dark matter three-point statistics is inde-
pendent of redshift z

(ii) the bias ratio b̂(z) = b(z)/b(z0) from two- and three-
point statistics is equal.

The first assumption was tested in this study numerically,
while the validity of the second follows directly from our bias
comparison.

In general the comparison between D from perturba-
tion theory with measurements from our new method and
the standard approach reveals a good agreement. In the case
of Q we explain this result by a cancellation of the multi-
plicative factor by which bQ is shifted away from bξ in the
bias ratio b̂Q. The growth factor measured with τ has larger
errors than the results from Q as a consequence of the larger
errors in the bias estimation.

Our analysis shows that the new way to measure the
growth factor from bias ratios is competitive with the
method based on two separate bias measurements. While
having larger errors the new method has the advantage of
requiring much weaker assumptions on dark matter correl-
ations than the standard method and therefore provides an
almost model independent way to probe the growth factor
of dark matter fluctuations in the Universe.

We demonstrated that besides the growth factor, D,
the growth rate of matter, f , can also be directly meas-
ured from the galaxy (or halo) density fields with bias ra-
tios from third-order statistics. This provides an altern-
ative method to derive the growth rate, which is usually
obtained from velocity distortions probed by the aniso-
tropy of the two-point correlation function (RSD). The typ-
ical errors found on SDSS, BOSS and WiggleZ using RSD
are around 15-20% (Cabré and Gaztañaga 2009; Blake et al.
2011; Tojeiro et al. 2012), which are comparable to the ones
we find in Fig. 15 when considering the high redshift bins
(20%).

Given that the two methods explored here use differ-

Figure 17. Q for dark matter (dotted) and for halo samples
(symbols) with two different mass thresholds: b1 = bξ ≃ 1.09
(blue) and b1 = bξ ≃ 1.83 (red). We compare results in real
space (filled triangles) and redshift space (open circles), which
agree within the errors on these large scales (r12 = r13/2 = 24
h−1Mpc at z=0). Predictions are shown for both: the local bias
model (dashed lines) and non-local bias model (continuous). In
both cases we have fixed b1 = bξ and fit for c2.

ent information from higher-orders correlation (Q uses the
shape, while τ uses collapse configurations) one can reas-
onably guess that the two methods are not strongly correl-
ated. So a possible strategy would be to use the Q method
(more precise) to measure the (velocity) growth rate and, in
parallel, to use the τ method to extract the growth factor.
This would help to break degeneracies between cosmological
parameters in different gravitational frameworks.

Our analysis is performed in real space to have clean
conditions for comparing different bias and growth estim-
ates. This is a good approximation for the reduced higher-
order correlations on the large scales considered in this
study, as measurements in redshifts space always seem to
be within one sigma error of the corresponding real space
result (see Fig. 17). Note how the small, but systematic,
distortions in redshifts space seem to agree even better with
the local bias model than in real space on the largest scales.

Applying the methods described above to obtain accur-
ate bias and growth measurements from observations will
require additional treatment of redshifts space distortions or
projection effects. Two possible paths could be followed. In
a three dimensional analysis redshifts space distortions need
to be modeled (e.g. Gaztañaga and Scoccimarro 2005). The
projected three-point correlation can also be studied sep-
arated by in redshift bins (Frieman and Gaztañaga 1999;
Buchalter et al. 2000; Zheng 2004). Both ways will result
in larger errors, but we do not expect this to be a limita-
tion because our error budget is totally dominated by the
uncertainty in the bias. A more detailed study of this is-
sue is beyond the scope of this paper and will be presented

Real Space Model
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lines respectively). The non-local model seems to approxim-
ate Q measurements from halo samples better but there are
still some discrepancies that we will explore in a separate
analysis. Besides non-local contributions to the bias model,
further reasons for the difference between bQ and bτ might
be that non-linear terms in the bias function and the mat-
ter field have different impacts on Q and τ . In addition we
found that estimations of the quadratic bias parameter c2
from Q and τ can also differ significantly from each other.

Understanding the differences between bξ, bQ and bτ is
crucial for constraining cosmological models with observed
third-order halo statistics. We will therefore deepen our ana-
lysis in a second paper by studying bias from halo-matter-
matter statistics, direct analysis of the halo versus matter
fluctuations and predictions from the peak-background split
model to disentangle between non-linear and non-local ef-
fects on the different estimators.

For measuring the growth factor D we have intro-
duced a new method. This new method uses the bias ratio
b̂(z) = b(z)/b(z0), derived directly from halo density fluc-
tuations with reduced third-order statistics. Its main ad-
vantage with respect to the approach of measuring b(z) and
b(z0) separately is that it does not require the modelling of
(third-order) dark matter statistics. Instead, it works with
the hypothesis that

(i) the reduced dark matter three-point statistics is inde-
pendent of redshift z

(ii) the bias ratio b̂(z) = b(z)/b(z0) from two- and three-
point statistics is equal.

The first assumption was tested in this study numerically,
while the validity of the second follows directly from our bias
comparison.

In general the comparison between D from perturba-
tion theory with measurements from our new method and
the standard approach reveals a good agreement. In the case
of Q we explain this result by a cancellation of the multi-
plicative factor by which bQ is shifted away from bξ in the
bias ratio b̂Q. The growth factor measured with τ has larger
errors than the results from Q as a consequence of the larger
errors in the bias estimation.

Our analysis shows that the new way to measure the
growth factor from bias ratios is competitive with the
method based on two separate bias measurements. While
having larger errors the new method has the advantage of
requiring much weaker assumptions on dark matter correl-
ations than the standard method and therefore provides an
almost model independent way to probe the growth factor
of dark matter fluctuations in the Universe.

We demonstrated that besides the growth factor, D,
the growth rate of matter, f , can also be directly meas-
ured from the galaxy (or halo) density fields with bias ra-
tios from third-order statistics. This provides an altern-
ative method to derive the growth rate, which is usually
obtained from velocity distortions probed by the aniso-
tropy of the two-point correlation function (RSD). The typ-
ical errors found on SDSS, BOSS and WiggleZ using RSD
are around 15-20% (Cabré and Gaztañaga 2009; Blake et al.
2011; Tojeiro et al. 2012), which are comparable to the ones
we find in Fig. 15 when considering the high redshift bins
(20%).

Given that the two methods explored here use differ-

Figure 17. Q for dark matter (dotted) and for halo samples
(symbols) with two different mass thresholds: b1 = bξ ≃ 1.09
(blue) and b1 = bξ ≃ 1.83 (red). We compare results in real
space (filled triangles) and redshift space (open circles), which
agree within the errors on these large scales (r12 = r13/2 = 24
h−1Mpc at z=0). Predictions are shown for both: the local bias
model (dashed lines) and non-local bias model (continuous). In
both cases we have fixed b1 = bξ and fit for c2.

ent information from higher-orders correlation (Q uses the
shape, while τ uses collapse configurations) one can reas-
onably guess that the two methods are not strongly correl-
ated. So a possible strategy would be to use the Q method
(more precise) to measure the (velocity) growth rate and, in
parallel, to use the τ method to extract the growth factor.
This would help to break degeneracies between cosmological
parameters in different gravitational frameworks.

Our analysis is performed in real space to have clean
conditions for comparing different bias and growth estim-
ates. This is a good approximation for the reduced higher-
order correlations on the large scales considered in this
study, as measurements in redshifts space always seem to
be within one sigma error of the corresponding real space
result (see Fig. 17). Note how the small, but systematic,
distortions in redshifts space seem to agree even better with
the local bias model than in real space on the largest scales.

Applying the methods described above to obtain accur-
ate bias and growth measurements from observations will
require additional treatment of redshifts space distortions or
projection effects. Two possible paths could be followed. In
a three dimensional analysis redshifts space distortions need
to be modeled (e.g. Gaztañaga and Scoccimarro 2005). The
projected three-point correlation can also be studied sep-
arated by in redshift bins (Frieman and Gaztañaga 1999;
Buchalter et al. 2000; Zheng 2004). Both ways will result
in larger errors, but we do not expect this to be a limita-
tion because our error budget is totally dominated by the
uncertainty in the bias. A more detailed study of this is-
sue is beyond the scope of this paper and will be presented

Redshift Space Model
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Summary and future work

• Usual 2-point statistics of galaxies do not capture full cosmological 
information 

• LPT approach to modeling 3-point correlation function 

• Galaxy bias and RSD can be included in configuration-space 
model 

• Test against N-body simulations on various scales / in different 
triangular configurations 

• Possibilities for extending model beyond tree-level PT, including 
fingers of god, etc, for better agreement on small scales
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