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Goals and Data

Probe 2d redshift space clustering deep into the non linear regime. 
Few studies on these scales!	



Information on scales R=0.8 to 32 h-1 Mpc?	



Galaxy-halo connection for massive galaxies at z=0.57	



Velocity dispersions of satellites relative to their parent halos. 
Check assumptions on σFOG 	



Growth rate of cosmic structure, fσ8	



Constraints on these scales are particularly interesting for 
constraining modified gravity models

BOSS: Baryon Oscillation 
Spectroscopic Survey	


1.5 million galaxies

15.3 Gpc3    9376 deg2

“CMASS” z=[0.43,0.7]
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redshift space distortions. On large scales, Eq. 4 implies (Kaiser
1987)

�s
g(k) = (b + fµ2)�r

m(k). (5)

Here �s
g is the observed (in “redshift space”) galaxy density fluc-

tuation for wavevector k, b is the real space linear galaxy bias,
and �r

m(k) is the true underlying matter density fluctuation (i.e., in
“real space”, without velocity perturbations included in the redshift
direction coordinate). The parameter µ is the cosine of the angle
between k and the LOS, and the known µ dependence allows a
measurement of f�8 after marginalizing over the unknown galaxy
bias. In the present work, we work strictly in configuration space;
see Fisher (1995) for the configuration space equivalent of Eq. 5.

On smaller scales investigated in the present work, nonlinear-
ities become important and the relationship between v and �m be-
comes substantially more complicated. A detailed description of
many distinct physical effects that impact the observed redshift
space galaxy clustering on small scales is given in Tinker (2007).
Because of the complexity of the modeling and the high statistical
precision of our data, we resort to N-body simulations to provide
predictions for our observables, which we describe below.

2.3 Two-dimensional correlation function ⇠(r�, r⇡)

Because RSD effects only distort the observed coordinates (or pair
separations) in the LOS direction, the two-point correlation func-
tion ⇠ is fundamentally a function of two variables. In Fig. 1 we
choose as coordinates the LOS separation, r⇡, and the separation
transverse to the LOS, r� to display our measurement from the
galaxy sample analysed in the present work. This measurement
uses the angular upweighting method described in Sec. 4.1 to cor-
rect for fiber collisions. Two primary features are apparent: on
large scales (⇠ 8 h�1 Mpc and above), contours of constant ⇠ are
“squashed” in the LOS direction. The correlation between the den-
sity and velocity field described by Eq. 4 on average reduces the ap-
parent separation between pairs of galaxies along the line of sight.
On smaller scales where Eq. 4 breaks down, the contours are in-
stead stretched along the LOS. Galaxies orbiting in the potential of
a gravitationally bound dark matter halo have a virial-like velocity
component. As we will see, the SDSS-III CMASS galaxies shown
here occupy massive dark matter halos with large virial velocities.
The prominent feature in ⇠ along the LOS (i.e., at r� < 1 h�1

Mpc) is due to these motions, often called “fingers-of-god” (FOGs)
(Jackson 1972); note that these virial-like velocities distort ⇠ at all
separations, and their impact must be mitigated even in analysis of
relatively large scales (e.g., Reid et al. 2012).

In this work we choose not to analyse ⇠(r�, r⇡) directly, since
information is spread over a large number of bins. As described in
Sec. 5.1, we estimate measurement errors by bootstrapping the sur-
vey, and therefore need to reduce the number of measurements to
well below the number of bootstrap regions, which are limited in
number since each region must span scales larger than we include
in our analysis. On large scales and for the highly biased tracers we
consider here, the majority of redshift space information is avail-
able by measuring the first two even multipoles (` = 0, 2) of ⇠:

⇠`(si) =
2` + 1

2

Z
dµs ⇠(si, µs)L`(µs), (6)

where redshift space separation s is defined by s2 = r2
�+r2

⇡ and µs =

r⇡/s is the cosine of the angle of the galaxy pair with respect to the
line of sight. Here L` is the Legendre polynomial of order `. Both
our measurement and theoretical estimates of ⇠0,2 are computed by

Figure 1. The two-dimensional correlation function ⇠(r�, r⇡) of SDSS-III
CMASS galaxies. The perturbations of the observed redshifts about the
Hubble flow due to peculiar velocities introduce anistropy in the correlation
strength with respect to the line of sight (y-axis in the figure). In this plot
fiber collisions have been corrected using the angular upweighting method.
The dashed circle indicates the separation scale (⇠ 8 h�1 Mpc) at which
the observed quadrupole transitions from positive (dominated by Finger-of-
God velocities) to negative (dominated by large scale Kaiser infall veloci-
ties). Contours at ⇠ = [2, 1, 0.5, 0.25] are shown with solid black curves.

replacing the integral with a direct sum over bins of width dµs =

0.1. Each bin in redshift space separation si is averaged over a finite
band of separations.

To mitigate the effect of fiber collisions, our primary analy-
sis uses the statistic ⇠̂0,2 which approaches ⇠0,2 on large scales, but
eliminates all bins that include pairs with r� < 0.534 h�1 Mpc. This
choice corresponds to pairs separated by the fiber collision radius
62” at the maximum redshift included in our analysis, z = 0.7.
Heuristically, we estimate

⇠̂`(si) =
2` + 1

2

Z µmax(si)

0
dµs⇠(s, µs)L`(µs). (7)

In practice, our implementation is slightly more complicated, but
we emphasize that the measurement and theoretical predictions are
computed with exactly the same algorithm, and so the details are ir-
relevant for the comparison of the two. We start with relatively fine
logarithmic binning in s (d log10 s = 0.035) and µ (dµs = 0.005) to
compute ⇠(s, µ). We then aggregate the small s bins into larger bins
for which we report our measurements. In the case where some of
the small bins have r� larger than the cutoff, we estimate ⇠ in the
larger s bin from only that subset of small bins. If none of the bins
have large enough r� in the µ-bin, we set ⇠ for that bin to 0 before
integrating over µ to estimate ⇠̂0,2; this is equivalent to only integrat-
ing up to a µmax that is different for each fine s bin. The previous
step ensures that no pairs with r� smaller than the fiber collision
scale are included. The exact s and µ boundaries for our final bins
are listed in Table 3.

2.4 N-body simulation Halo Catalogs

We make use of three periodic N-body simulation boxes through-
out this paper. The simulation parameters are listed in Table 1. The
LowRes box has parameters favored by WMAP7 (Komatsu et al.
2011), while the HiRes box adopts the “Planck+WP+highL+BAO”
constraints from the Planck analysis (Planck Collaboration 2013);
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Spherical average ξ0(s).  
Anisotropy ξ2(s).  
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replacing the integral with a direct sum over bins of width dµs =

0.1. Each bin in redshift space separation si is averaged over a finite
band of separations.

To mitigate the effect of fiber collisions, our primary analy-
sis uses the statistic ⇠̂0,2 which approaches ⇠0,2 on large scales, but
eliminates all bins that include pairs with r� < 0.534 h�1 Mpc. This
choice corresponds to pairs separated by the fiber collision radius
62” at the maximum redshift included in our analysis, z = 0.7.
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In practice, our implementation is slightly more complicated, but
we emphasize that the measurement and theoretical predictions are
computed with exactly the same algorithm, and so the details are ir-
relevant for the comparison of the two. We start with relatively fine
logarithmic binning in s (d log10 s = 0.035) and µ (dµs = 0.005) to
compute ⇠(s, µ). We then aggregate the small s bins into larger bins
for which we report our measurements. In the case where some of
the small bins have r� larger than the cutoff, we estimate ⇠ in the
larger s bin from only that subset of small bins. If none of the bins
have large enough r� in the µ-bin, we set ⇠ for that bin to 0 before
integrating over µ to estimate ⇠̂0,2; this is equivalent to only integrat-
ing up to a µmax that is different for each fine s bin. The previous
step ensures that no pairs with r� smaller than the fiber collision
scale are included. The exact s and µ boundaries for our final bins
are listed in Table 3.

2.4 N-body simulation Halo Catalogs

We make use of three periodic N-body simulation boxes through-
out this paper. The simulation parameters are listed in Table 1. The
LowRes box has parameters favored by WMAP7 (Komatsu et al.
2011), while the HiRes box adopts the “Planck+WP+highL+BAO”
constraints from the Planck analysis (Planck Collaboration 2013);
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A 2.5% Measurement of the Growth Rate from BOSS

Model:  5 standard HOD 
parameters + velocity 
parameters 
-γHV (∝fσ8)  
-γIHV (satellites)  
-γcenv (centrals)  

Joint fit to wp and “xi-hat” 

Growth of structure  
fxσ8=0.450±0.011  
2.5 x improvement over 
DR11 large scale analysis

wp(rσ) ξ0 ”hat”

Reid, Seo, Leauthaud et al. 2014

18 Reid et al.

Figure 16. The marginalized distribution of f�8 from our HiRes box (blue)
and three MedRes boxes (black; red shows their average). In this case
�cenv = 0 and �IHV = 1 were held fixed. We compare this to the constraints
from Planck⇤CDM fits ( f�8 = 0.480±0.010) and our DR11 analysis of the
CMASS galaxy clustering restricted to large scales s > 25 h�1 Mpc, where
we found f�8 = 0.447 ± 0.028. Vertical dashed lines show our hard prior
on the MedRes box of ±10% of the f�8 value in the MedRes cosmology.

7.5 Fits to f�8(z = 0.57)

Next, we consider the effect of linearly varying the overall ampli-
tude of the peculiar velocity field with the parameter �HV, and in-
terpret the result as a change in the effective f�8. We justify this
interpretation in Sec. 7.7. Here we consider only the case when the
other velocity parameters �cenv = 0 and �IHV = 1 are held fixed.
The marginalized distribution of f�8 shown in Fig. 16 is clearly
noisy due to the finite volume of our N-body simulation boxes.
We therefore computed constraints separately from three indepen-
dent MedRes boxes (labelled Fiducial=MedRes0, MedRes1, and
MedRes2 in Table 4) as well as with the single HiRes box we had
available (top row, third column in the table). The marginalized f�8

constraints are consistent across the boxes, despite the ⇠ 1� shift
in fiducial value between the box cosmologies. Averaging over the
MedRes simulation boxes, we find f�8 = 0.450 ± 0.011, consis-
tent with our recent large-scale analysis of DR11 (Samushia et al.
2013) which found f�8 = 0.447 ± 0.028 for a ⇤CDM expansion
history. Our raw statistical error is equal to Planck’s ⇤CDM pre-
diction of f�8 = 0.48 ± 0.010; the difference between the two in-
dependent measurements is 1.9�, which we take to be reasonable
agreement since we have not included a modeling systematics error
budget. Despite the dominance of satellite galaxies on the observed
anisotropies (Fig. 13), there is still ample information on the rate of
structure growth on these smaller scales where the clustering signal
is strong and well-measured, resulting in a factor of 2.5 reduction
in uncertainty on f�8 compared with our DR11 large-scale RSD
analysis. In Fig. 17 we show the theoretical prediction from the
best fit model using the MedRes0 box. In this model f�8 = 0.452
and we have held �IHV = 1 and �cenv = 0 fixed. Compared to the
best fit model with �HV = 1 ( f�8 = 0.472) in Fig. 14, the amplitude
of ⇠2 on large scales provides a better fit to the data. These are the
same scales dominating the Samushia et al. (2013) large-scale RSD
measurement of f�8; the last ⇠ 1.5 bins overlap between the anal-
yses. The best fit models as a function of f�8 have nearly identical
behavior in the first three bins s < 3 h�1 Mpc, and divide on larger
scales, indicating that the constraint on f�8 is driven by the rela-
tive amplitudes of ⇠̂0 and ⇠̂2. Fig. 17 also shows that even though
the model was fit to wp(r� < 2 h�1 Mpc) and ⇠̂0,2, it provides a good

fit to wp out to 25 h�1 Mpc (�2 = 12.4 for 18 bins), and correctly
models scales below the fiber collision radius, so that ⇠0,2 is also fit
(�2 = 20.9 for 20 bins).

7.6 Robustness of the f�8 constraint to model extensions

The basic redshift-independent HOD model we are using to fit
the CMASS clustering assumes that the observed galaxies are a
subsample of objects defined by those HOD parameters. We en-
force only a broad prior on n̄HOD from the observed CMASS se-
lection function n̄(z). However, both intrinsic stochasticity in the
stellar mass-halo mass relation and photometric errors in the imag-
ing catalog will broaden the distribution of halo masses hosting
the CMASS sample. In order to test our sensitivity to the allowed
host halo mass scatter, we refit our measurements with the n̄HOD

prior shifted to higher values: 4.25 < 104n̄HOD(h�1 Mpc)3 < 4.75.
The results of fits that fix or vary f�8 are labelled in Table 4 as
“high n̄HOD.” This choice is similar to relaxing our assumption that
Ncen(M) in Eq. 17 approaches one at large halo masses. Indeed, we
find that this region of HOD parameter space provides a better fit
to the observed clustering (��2 ⇠ 4). There are small (expected)
shifts in the HOD parameters with the higher n̄HOD prior; most im-
portantly for our conclusions in this work, the constraint on f�8

shifts by only ⇠ 0.5�.
Both the color selection and photometric errors in the imag-

ing used for target selection could result in halos where the central
galaxy does not pass our target selection cuts, while one or more
satellite galaxies in that halo do pass. To test the impact of such
cases (labelled “cen/sat” test in Table 4), we consider the dras-
tic case where 20% of centrals in massive halos are not CMASS
selected galaxies, implemented in our model by simply multiply-
ing Ncen(M) by 0.8. In contrast to the rest of our analyses, in this
test we do not require a central galaxy in order for a particular
halo to host a satellite galaxy, thus lowering the contribution of
“one-halo” central-satellite pairs at fixed HOD parameters. This
model provides a much better fit than our fiducial HOD assump-
tions (��2 = 10.2). The satellite fraction is larger, n̄HOD in the
model moves closer to the typical n̄ in the sample, and the satel-
lite occupation distribution steepens. In future work we hope to ex-
plore such model extensions more generally in concert with a bet-
ter understanding of the impact of photometric errors on targeting,
as well as redshift evolution and intrinsic diversity in the CMASS
galaxy population. Again, the important result for the present work
is that a plausible extension of our halo occupation modeling can
improve the fit, but the constraint on f�8 shifts only slightly.

We introduce the parameter �IHV to rescale the relative veloc-
ity between satellite galaxies and their host halos. This parame-
ter is meant to absorb the effect of galaxy velocity bias as well as
variations in the halo mass function due to cosmological parameter
uncertainties. White Cohn, & Smit (2010) examine in detail the ve-
locity structure of subhalos within group-scale halos at z=0.1, and
suggest a theoretical uncertainty in velocity bias of O(10%). Wu et
al. (2013) used N-body and hydrodynamical simulations to study
the relationship between the galaxy and dark matter intrahalo ve-
locity dispersion in halos of mass ⇠ 1014 M�, i.e., well-matched to
the typical satellite galaxy host halo mass according to our HOD
model fits. They found that averaging over all cluster galaxies,
�IHV,gal/�IHV,DM = 1.065, while averaging only over the five bright-
est satellites yielded a ratio of 0.868. The latter is likely more ap-
plicable to the massive galaxies comprising the CMASS sample.
Rather than smoothly varying �IHV, we run separate MCMC chains
at �IHV = 0.8 and �IHV = 1.2; this range incorporates the small
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but no systematic error!
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But …..

“CMASS” : Constant Mass

Simple selection function

Single constant HOD 
with redshift
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Because observed 
clustering of CMASS 

does not appear to vary 
with redshift :



Stellar Mass Completeness of 
the BOSS CMASS and LOWZ 

samples

Leauthaud et al. 2015	


!

arXiv:1507.04752	



http://arxiv.org/abs/1507.04752
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Stellar Mass Function at Redshifts 0.43 - 0.7

z2=[0.43,0.54]
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Mass Completeness of CMASS Sample

also for the LOWZ sample at 0.15<z<0.43

★Completeness depends on M* and redshift	



★Notice that mean M* increases with redshift

Leauthaud et al. 2015



A Redshift Dependent Model 
for CMASS

Saito et al. in prep



★ Account for BOSS selection function (stellar mass, color)

★Model built from N-body simulations directly via abundance matching

In collaboration with Shun Saito, Andrew Hearin, Jeremy Tinker, Martin White, Beth Reid 

stellar mass  ⇔  Vpeak	



assume color is un-correlated with other 
halo properties at fixed M*

 ➠

A Redshift Dependent Model for CMASS

(More sophisticated model = see Shun’s talk this afternoon)

★Model : for simplicity, begin with assumption that galaxy color in high 
mass halos is a stochastic process



1 Gpc3 N-body Simulation

Re
ds

hif
t



Re
ds

hif
t

Step 1:  Determine Mass Function and abundance match (Vpeak)

our best fit

deconvolved for scatter

1 Gpc3 N-body Simulation



1 Gpc3 N-body Simulation

Step 1:  Determine Mass Function and abundance match (Vpeak)
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1 Gpc3 N-body Simulation

Step 2 :  Redshift dependence of stellar-mass completeness
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Results: fits to 𝛷(M*) and wp(r)   

Galaxy Number Density	


𝛷(M*)   

Projected Correlation Function	


wp(r)   



Results: Halo Occupation 



Results: Halo Occupation 



Results: Halo Occupation 

Mean halo mass (stellar mass)	


for the CMASS sample 

increases with z	


(factor of 3.5 for Mhalo)



BUT …



A Fundamental Discrepancy

Redshift dependance of 
multipoles is constant with 
redshift (Reid et al. 2014)

Mean halo mass (stellar mass)	


for the CMASS sample increases 
with z 

?

Observable consequences for both clustering and lensing   
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Conclusion

?

stellar mass  ⇔  Vpeak	



assume color is un-correlated with other 
halo properties at fixed M*

★Model: galaxy color in high mass halos 
is a stochastic process



Summary and Conclusions

2d redshift space clustering from BOSS and 
lensing from surveys such as HSC and DES = 
tiny error bars!	



Semi-linear scales, R=0.8 to 32 h-1 Mpc: 
galaxy formation + cosmology	



Stellar mass completeness for BOSS 
(Leauthaud et al. 2015)	



Galaxy-halo connection for massive galaxies 
at z=0.57?  
color in high mass halos is not a 
stochastic process at fixed stellar mass

Velocity dispersions of satellites - check 
assumptions in previous papers on σFOG	



How  robust are constraints on fσ8 ?


