

New methods in the analysis of galaxy distance catalogues

Guilhem Lavaux

Institut d'Astrophysique de Paris

+ collaborators/students: Michael J. Hudson, Jonathan Carrick, Stephen Turnbull

LSS conference, Garching/ESO

July 21st 2015

Galaxies in Large scale structures

Some new development in cosmic flows

Large scale statistical analysis (I)

Lavaux & Hudson (2011, MNRAS) Carrick, Turnbull, Lavaux & Hudson (2015, MNRAS) http://cosmicflows.iap.fr/ http://cosmicflows.uwaterloo.ca/

2M++ galaxy compilation: sources

Lavaux & Hudson (2011, MNRAS)

2M++ galaxy compilation: galaxies distribution

Lavaux & Hudson (2011, MNRAS)

Analysis framework

velocity field reconstruction from density

Analysis framework

velocity field reconstruction from density

Results

rowth of structur	e		
		β*	$\chi^2/(\text{D.O.F.})$
	Forward Likelihood (LW)		
	A1	0.440 ± 0.023	-
	SFI++ Galaxy Groups	0.429 ± 0.022	-
	SFI++ Field Galaxies	0.423 ± 0.045	-
	All	0.431 ± 0.021	
	Forward Likelihood (NW)	0.439 ± 0.020	-
	Inverse VELMOD (LW)	0.387 ± 0.048	-
	χ^2 (LW)	0.444 ± 0.026	2194/2899
	χ^2 (NW)	0.442 ± 0.028	2200/2899

Bulk flow

-		$v_{\rm x} ({\rm km s^{-1}})$	$v_{\rm y}~({\rm km~s^{-1}})$	$v_{\rm z}~({\rm km~s^{-1}})$
	BF_{2M++}	-3 ± 8	-72 ± 11	38 ± 11
	LG_{2M++}	-18 ± 27	-422 ± 41	328 ± 37
C	$\mathbf{V}_{\mathrm{ext}}$	89 ± 21	-131 ± 23	17 ± 26
	$BF_{2M++} + V_{ext}$	86 ± 22	-203 ± 26	55 ± 28
	$LG_{2M++} + V_{ext}$	71 ± 34	-553 ± 47	345 ± 46

Results: convergence of the velocity of LG

AMPLITUDE

Results: convergence of the velocity of LG

ALIGNMENT

Results: gravity

Insisting on low-z peculiar velocities

Hudson & Turnbull (2012)

Large scale structure calibrated map

Large scale structure calibrated map

Summaries of results

- LG convergence as **expected** by LCDM
- Misalignment fluctuations within LCDM predictions
- $f\sigma_8$ in **agreement** with results from other probes
- **Bulk flow** still **high** but in **good agreement** with both observations and expectations

Calibrated velocities and maps at http://cosmicflows.uwaterloo.ca .

Large scale statistical analysis (II)

Red-figured volute-krater showing Hippolytus. Apulia c. 340 BC. Photo © Maicar Förlag - GML

Velocity Reconstruction using Bayesian Inference Scheme Lavaux (2015, submitted, in review)

The reconstruction problem: extrapolation

The reconstruction problem: extrapolation

An example: the Cosmic Flows-2 catalog

An example: the Cosmic Flows-2 catalog

The VIRBIuS model

Two observational constraints:

Simplifying assumptions:

Curl-free velocity field $heta(\mathbf{x}) =
abla.\mathbf{v}(\mathbf{x})$

Velocity tracers are not biased

Isotropic radial selection effect for distances

Residual ϵ uncorrelated

Priors: Velocity field θ Gaussian Random field $\langle \hat{\theta}(\mathbf{k}) \hat{\theta}(\mathbf{k}') \rangle = (2\pi)^3 \delta(\mathbf{k} + \mathbf{k}') P(k)$ Distances $\pi(d) \propto d^p \exp\left[-\left(\frac{d}{d_{\text{cut}}}\right)^n\right]$ Extra free parameters

Lavaux (submitted, 2015)

Numerical issues: The problem

<u>Huge posterior:</u> > 10⁷ parameters

$$P(\lbrace d_i \rbrace, \lbrace \hat{\theta}_{i,j,k} \rbrace, \sigma_{\mathrm{NL}}, A_S, H, \tilde{H}, n, p, d_{\mathrm{cut}} | \lbrace z_i \rbrace, \lbrace \mu_i \rbrace, \lbrace \sigma_{z,i} \rbrace, \lbrace \sigma_{\mu,i} \rbrace)$$

Numerical issues: The problem

<u>Huge posterior:</u> > 10⁷ parameters

$$P(\lbrace d_i \rbrace, \lbrace \hat{\theta}_{i,j,k} \rbrace, \sigma_{\mathrm{NL}}, A_S, H, \tilde{H}, n, p, d_{\mathrm{cut}} | \lbrace z_i \rbrace, \lbrace \mu_i \rbrace, \lbrace \sigma_{z,i} \rbrace, \lbrace \sigma_{\mu,i} \rbrace)$$

Cannot evaluate a gridded posterior

Cannot run a classical Metropolis-Hasting Markov-Chain algorithm

BUT if we have a good proposal for a step of the chain it is doable

Likelihood and posterior

$$\mathcal{L} = P(\{\mu_i, z_i\} | \{d_i\}, \{\sigma_{z,i}, \sigma_{\mu,i}\}, \{\hat{\Theta}(k_q)\}, H, \widetilde{H}, \Sigma_{\mathrm{NL}}, \mathcal{T}, \{p_q^{type}\})$$

$$\propto \prod_{i=1}^{N_d} \left(\sigma_{z,i}^2 (1 + \bar{z}_i)^2 + \sigma_{\mathrm{NL},type(i)}^2\right)^{-1/2} \times$$

$$\exp\left\{-\frac{1}{2} \sum_{i=1}^{N_d} \frac{\left[v_i^r(z_i, d_i) - Hf\Psi_{r,i}(q^h)\right]^2}{\left[(\sigma_{z,i}^2 (1 + \bar{z}_i(d_i))^2 + \sigma_{\mathrm{NL},type(i)}^2\right]} - \frac{(\mu_i - 5\log_{10}(d_i^L/10 \text{ pc}))^2}{\sigma_{\mu,i}^2}\right\}$$

$$P(\mathcal{D}^{L} = \{d_{i}\}, \hat{\Theta} = \{\hat{\Theta}(k_{q})\}, \tilde{H}, H, \Delta_{\mathcal{R}}^{2}, \{\sigma_{\mathrm{NL},q}\}, \mathcal{T}|$$
$$\mathcal{M} = \{\mu_{i}\}, \mathcal{Z} = \{z_{i}\}, \Sigma_{z} = \{\sigma_{z,i}\}, \Sigma_{\mu} = \{\sigma_{\mu,i}\}) =$$
$$\frac{\mathcal{L} \times \pi(\mathcal{D}^{L})\pi(\hat{\Theta})\pi(\Sigma_{\mathrm{NL}})\pi(H)\pi(\{type(q)\})\pi(\Delta_{\mathcal{R}}^{2}))}{\int \mathrm{d}H\mathrm{d}\hat{\Theta}\mathrm{d}\mathcal{D}^{L}\mathrm{d}\Sigma_{\mathrm{NL}} \mathcal{L} \times \pi(\mathcal{D}^{L})\pi(\{type(q)\})\pi(\hat{\Theta})\pi(\{\sigma_{\mathrm{NL},q}\})\pi(H)}.$$

Reconstructed « density » and velocity field

Application: halo mock catalog

Some early results on Cosmic Flows-2

Fourier scale cut at k=0.1 h/Mpc (~60 Mpc/h real scale)

Conclusion on VIRBIuS

- **Promising** results on mock catalogs
- Applicable to all distance data (SN, TF, FP, ...)
- **Cosmology is built-in** in the model, includes all potential known/unknown errors in tracers.
- Velocity bias model starts being important
- New tool, later available publicly with documentation

Conclusion

Understand the data collection Proper statistical modeling Develop analytical description of dynamics Numerical integration, scaling to large computing farms Posterior interpretation