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The Power of Combining
Cosmological Probes

@ Best constraints obtained by combining
cosmological probes

@ independent probes: multiply likelihoods
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@ Combining LSS probes (from same survey)
requires more advanced strategies

@ clustering, clusters and WL probe same _ 2
underlying density field, are correlated M
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@ correlated systematic effects ST T,
Betoule et al. 2014

@ requires joint analysis



Joint Analysis Ingredients
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Introducing CosmolL.ike

@ Likelihood analysis library for combined probes woCDM analyses

@ Observables from three LSS object types, and their cross-correlations

@ galaxies (positions), clusters (positions, N2oo), sources (shapes, positions)

o galaxy clustering, cluster abundance + cluster lensing (mass self-calibration),
galaxy-galaxy lensing, cosmic shear, CMB cross-correlations

@ separate n(z) + specific nuisance parameters for each object type

@ Consistent modeling across probes, including systematic effects

@ Computes non-Gaussian halo model (cross-)covariances

o see Becker+|5 (tomorrow) for comparison with WL mocks

@ Optimized for high-dimensional likelihood analyses

@ Currently limited beta release, preparing for public release



- Cosmolike Data Vector
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Combined Probes Systematics

@ “Precision cosmology”: excellent statistics - systematics dominated

@ Easy to think up large list of known systematics + nuisance parameters

galaxies: LF, bias (e.g., 5 HOD parameters + b per z-bin,type), photo-zs, ...
clusters: mass-observable relation, projection effects, off-centering, ...

shear: calibration, photo-zs, intrinsic alignments, shear calibration, ...
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2 (poll among DES working groups) ~ 500-1000 parameters

Q

does not cover previously unknown systematics

null test + controlling known systematics necessary preparation for identifying these

@ Marginalize, self-calibrate (if model is known)
@ costly (computationally, constraining power)

@ need to prioritize



Work Plan for Known Systematics

@ What’s the dominant known systematic?
No one-fits-all answer, need to be more specific!
@ Specify data vector (probes + scales)

@ ldentify + model systematic effects

@ find suitable parameterizations

@ needs to be consistent across probes

@ Constrain systematics models, priors on nuisance parameters

@ independent observations
@ other observables from same data set

@ split data set
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Work Plan for Known Systematics

@ Specify data vector

@ ldentify + model systematic effects

@ Combine theory, simulation + data to improve models + priors

Worked example: LSST WL tomography: 5 z-bins, 20 <1 < 5000

impact + mitigation of baryons, intrinsic alignments



Impact of Baryons on LSST WL
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Mitigation of Baryons in VWL

o PCA based mitigation
strategy (Eifler, EK, et al. |14)

@ Reduce FoM degradation by AGN i
impact

improving priors on range 3 PCs marginalized
of baryonic scenarios - | 4 PCs marginalized

@ measure stacked halo
profiles (e.g. SZ, X-ray)

@ update parameter range
for hydro sims

o feed these into updated
marginalization scheme
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Intrinsic Alignments

@ Not all weak lensing source galaxies randomly oriented

@ Alignment mechanisms: halo shape vs. angular momentum

@ collapse in tidal field causes halo shape alignments - linear IA

@ leading description for (large-scale) alignment of early type galaxies
@ well-detected, e.g. Mandelbaum+06, Hirata+07/, Joachimi+| |, Singh+14

@ tidal torquing may cause halo spin-up, angular momentum correlations - quadratic IA

@ may cause shape alighments of late type galaxies - no clear detection so far

@ This analysis: linear IA only (follow-up on quadratic IA in progress)

@ Many different flavors/variation for linear |A models



Linear |A Models

PGI(ka CL) B A(L7 a, QM) ?)fGI (P5(k7 CL), Plin<k7 a)v ?)
PH(ka CL) IR AQ(La a, QM) ?)fII (P5(k7 CL), Plin(ka CL), ?)

@ model shapes (fai, fi) - an incomplete list
@ linear (Catelan+01, Hirata+04): f = Pii
@ freeze-in (Kirk+12): fi = Pin(k,zs), fai= sqrt(Pin(k,z) Ps (k,z))
@ full tidal model: EFT + density weighting (Blazek+|5)
@ non-linear (Bridle&King 07):f = Ps

@ what’s A!
@ old forecasts (e.g. Kirk+12): constant - based on SDSS L4 (Hirata+07)
@ Joachimi et al. | | fit dependence on <L>, z (see also Singh+14)
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Lg 1+ 2
@ if only red galaxies aligned A — A X fieq

@ what’s <A>|, fed for deep surveys like LSST/WFIRST?
@ so far, extrapolate LF from shallower surveys (GAMA, DEEP2)




Impact of Linear Alignments on LSST WL
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1A Mitigation: Amplitude marginalization,
power spectrum shape uncertainties

@ Marginalized over

amplitude normalization
+ redshift scaling (Ao, B, N,
Nhigh-z), 6 LF parameters
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@ joint analysis with g-g

lensing + clustering
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DES Forecasts: Photo-zs vs. Shot Noise
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Conclusions

@ Combining correlated observables requires joint models + analyses

@ For systematics limited analyses:

@ find suitable parameterizations for systematic effects

@ must be consistent across probes

@ simulations, specific observables (internal/external data)
@ constrain nuisance parameters

o self-calibration, external data sets

@ observations often not shot noise limited, smaller sample with better

systematics control may give better constraints
@ Use forecasts to prioritize preparatory systematics research + requirements

@ photo-zs key area for improvements
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DES Forecasts: Data Vector

focus on Y5 performance, n(z)+systematics informed by SV data

cosmic shear
@ 5 tomography bins
@ 251bins,25 <1< 5000
galaxy clustering
@ 3 redshift bins (0.2-0.4,0.4-0.6,0.6-0.8)
@ compare two samples: 0; <0.04; redMaGiC (n ~ 10-3(h/Mpc)3, Rozo+2015)

@ linear + quadratic bias only : | bins restricted such to k < 0.5 h/Mpc
galaxy-galaxy lensing

@ galaxies from clustering (as lenses) with shear sources
clusters - number counts + shear profile

@ so far, 8 richness, 3 z-bins (same as clustering)

@ tomographic cluster lensing (500 <| < 10000)
SN forecasts to be provided by Dan Scolnic
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DES Forecasts: Covariance

@ SN ~uncorrelated, hooray.

@ Analytic non-Gaussian covariance for everything else:

@ halo model bispectrum + trispectrum, sample N <>
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o 1600x1600 tomographic combined probes covariance,
and it’s positive definite!



DES Forecasts: Nuisance Parameters!?

@ cosmic shear

@ 5 tomography bins
@ 25 1bins,25 <1< 5000

@ galaxy clustering

@ 3 redshift bins (0.2-0.4,0.4-0.6,0.6-0.8,0.8-1.0)

@ compare two samples: 0; <0.04, redMaGiC

@ linear + quadratic bias only : | bins restricted to k < 0.5 h/Mpc
@ galaxy-galaxy lensing

@ galaxies from clustering (as lenses) with shear sources
@ clusters - number counts + sh=zr profile

@ so far, 8 richness. 4 z2-bins (same as clustering)

@ tomographiv ciuster lensing (500 < | < 10000)

@ SN forecasts to be provided by Dan Scolnic



