Combining Probes of Large-Scale Structure in the Precision Cosmology Era

Elisabeth Krause (KIPAC/Stanford) with input from the DES & LSST-DESC collaborations

Theoretical and Observational Progress on LSS, 7/20/2015

The Power of Combining Cosmological Probes

- Best constraints obtained by combining cosmological probes
 independent probes: multiply likelihoods
- Combining LSS probes (from same survey) requires more advanced strategies
 clustering, clusters and WL probe same underlying density field, are correlated
 correlated systematic effects
 requires joint analysis

Joint Analysis Ingredients

Introducing CosmoLike

- Likelihood analysis library for combined probes w_aCDM analyses
- Observables from three LSS object types, and their cross-correlations
 galaxies (positions), clusters (positions, N₂₀₀), sources (shapes, positions)
 galaxy clustering, cluster abundance + cluster lensing (mass self-calibration), galaxy-galaxy lensing, cosmic shear, CMB cross-correlations
 separate n(z) + specific nuisance parameters for each object type
- Consistent modeling across probes, including systematic effects
- Computes non-Gaussian halo model (cross-)covariances
 - see Becker+15 (tomorrow) for comparison with WL mocks
- Optimized for high-dimensional likelihood analyses
- Currently limited beta release, preparing for public release

CosmoLike Data Vector

Combined Probes Systematics

- "Precision cosmology": excellent statistics systematics dominated
- Easy to think up large list of known systematics + nuisance parameters
 - ø galaxies: LF, bias (e.g., 5 HOD parameters + b₂ per z-bin,type), photo-zs, ...
 - clusters: mass-observable relation, projection effects, off-centering, ...
 - shear: calibration, photo-zs, intrinsic alignments, shear calibration, ...
 - Σ (poll among DES working groups) ~ 500-1000 parameters
 - does not cover previously unknown systematics
 - null test + controlling known systematics necessary preparation for identifying these
- Marginalize, self-calibrate (if model is known)
 - costly (computationally, constraining power)
 - need to prioritize

Work Plan for Known Systematics

What's the dominant known systematic?
No one-fits-all answer, need to be more specific!
Specify data vector (probes + scales)
Identify + model systematic effects

find suitable parameterizations
needs to be consistent across probes

- Constrain systematics models, priors on nuisance parameters
 - independent observations
 - other observables from same data set
 - split data set

Joint Analysis Flow Chart

Work Plan for Known Systematics

- Specify data vector
- Identify + model systematic effects
- Combine theory, simulation + data to improve models + priors

Worked example: LSST WL tomography: 5 z-bins, 20 < I < 5000

impact + mitigation of baryons, intrinsic alignments

Impact of Baryons on LSSTWL

Mitigation of Baryons in WL

- PCA based mitigation
 strategy (Eifler, EK, et al. 14)
- Reduce FoM degradation by improving priors on range of baryonic scenarios
 - measure stacked halo
 profiles (e.g. SZ, X-ray)
 - update parameter range for hydro sims
 - feed these into updated marginalization scheme

Intrinsic Alignments

- Not all weak lensing source galaxies randomly oriented
- Alignment mechanisms: halo shape vs. angular momentum
 - collapse in tidal field causes halo shape alignments linear IA
 - leading description for (large-scale) alignment of early type galaxies
 - well-detected, e.g. Mandelbaum+06, Hirata+07, Joachimi+11, Singh+14
 - tidal torquing may cause halo spin-up, angular momentum correlations quadratic IA
 may cause shape alignments of late type galaxies no clear detection so far
- This analysis: linear IA only (follow-up on quadratic IA in progress)
- Many different flavors/variation for linear IA models

Linear IA Models

 $P_{\rm GI}(k,a) = A(L,a,\Omega_{\rm M},?)f_{\rm GI}(P_{\delta}(k,a),P_{\rm lin}(k,a),?)$ $P_{\rm II}(k,a) = A^{2}(L,a,\Omega_{\rm M},?)f_{\rm II}(P_{\delta}(k,a),P_{\rm lin}(k,a),?)$

model shapes (f_{GI}, f_{II}) - an incomplete list

- Iinear (Catelan+01, Hirata+04): f = P_{lin}
- freeze-in (Kirk+12): $f_{II} = P_{Iin}(k,z_f), f_{GI} = sqrt(P_{Iin}(k,z_f) P_{\delta}(k,z))$
- full tidal model: EFT + density weighting (Blazek+15)
- non-linear (Bridle&King 07): $f = P_{\delta}$

what's A?

- old forecasts (e.g. Kirk+12): constant based on SDSS L4 (Hirata+07)
- Joachimi et al. II fit dependence on <L>, z (see also Singh+14)

$$A = A_0 \left(\frac{L}{L_0}\right)^{\beta} \left(\frac{1+z}{1+z_0}\right)^{\beta}$$

- if only red galaxies aligned $A \to A \times f_{\rm red}$
- what's <A>L, fred for deep surveys like LSST/WFIRST?
 - so far, extrapolate LF from shallower surveys (GAMA, DEEP2)

Impact of Linear Alignments on LSSTWL

IA Mitigation: Amplitude marginalization, power spectrum shape uncertainties

- Marginalized over amplitude normalization
 + redshift scaling (A₀, β, η, η_{high-z}), 6 LF parameters
- Biases from uncertainties in IA template
- Next steps: reduce FoM degradation by including priors on range of parameters + allowed templates
 - joint analysis with g-g
 lensing + clustering

DES Forecasts: Photo-zs vs. Shot Noise

Conclusions

- Combining correlated observables requires joint models + analyses 0 For systematics limited analyses: Ind suitable parameterizations for systematic effects must be consistent across probes
 simulations, specific observables (internal/external data) constrain nuisance parameters self-calibration, external data sets observations often not shot noise limited, smaller sample with better systematics control may give better constraints
- Our Use forecasts to prioritize preparatory systematics research + requirements
 - photo-zs key area for improvements

DES Forecasts: Data Vector

focus on Y5 performance, n(z)+systematics informed by SV data

cosmic shear

- 5 tomography bins
- galaxy clustering
 - 3 redshift bins (0.2-0.4,0.4-0.6,0.6-0.8)
 - compare two samples: $\sigma_z < 0.04$; redMaGiC (n ~ $10^{-3}(h/Mpc)^3$, Rozo+2015)
 - linear + quadratic bias only : I bins restricted such to k < 0.5 h/Mpc
- galaxy-galaxy lensing
 - galaxies from clustering (as lenses) with shear sources
- clusters number counts + shear profile
 - so far, 8 richness, 3 z-bins (same as clustering)
 - tomographic cluster lensing (500 < I < 10000)
- SN forecasts to be provided by Dan Scolnic

Backup Slides

DES Forecasts: Covariance

non-Gaussian c.v.

- SN ~uncorrelated, hooray.
- Analytic non-Gaussian covariance for everything else:
- halo model bispectrum + trispectrum, sample
 variance
 - Cov (N,N): Poisson + power spectrum
 - Cov ($<\delta\delta$ >, N): bispectrum, power spectrum
 - Cov (< $\delta\delta$ >, < $\delta\delta$ >), etc.: Covariance of 2pt statistics of (projected) density field $Cov(P(\mathbf{k}_1), P(\mathbf{k}_2)) \approx \frac{2\delta_D(\mathbf{k}_1 + \mathbf{k}_2)}{N_{k_1}}P^2(k_1) + \frac{\overline{T}(k_1, k_2)}{V_s} + \frac{\partial P(k_1)}{\partial \rho_L}$

2)	$\partial P(k_1)$	$\partial P(k_2) \sigma^2(\alpha)$
	$\top \overline{\partial \rho_L}$	$\partial \rho_L $ $\partial \rho_L$

sample variance

I600x1600 tomographic combined probes covariance, and it's positive definite!

Gaussian cosmic variance

		CONTRACTOR AND A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACT AND A CO	- An
ov (N, N)	Cov (<δδ>, N)	Cov (<δικ>, <i>N</i>)	Cov (<kk>, N)</kk>
iv (<ðð>, N)	Cov (<δδ>, <δδ>)	Cov (<δδ>, <δκ>)	Cov (<δδ>, <κκ
ιν (<δic>, N)	Cov (<δκ>, <δδ>)	Cov (<δικ>, <δικ>)	Cov (<ðk>, <kk< th=""></kk<>
w (⊲kk>, N)	Соч (<кк>, <ðð>)	Cov (<κκ>, <ðκ>)	Cov (<ĸĸ>, <ĸ
	ον (N, N) ν (<δδ>, N) ν (<δκ>, N) ν (<κκ>, N)	ον (Ν, Ν) Cov (<δδ>, Ν) ν (<δδ>, Ν) Cov (<δδ>, <δδ>) ν (<δκ>, Ν) Cov (<δκ>, <δδ>) ν (<κκ>, Ν) Cov (<κκ>, <δδ>)	ον (Ν, Ν) Cov (<δδ>, Ν) Cov (<δκ>, Ν) ν (<δδ>, Ν) Cov (<δδ>, <δδ>) Cov (<δδ>, <δκ>) ν (<δκ>, Ν) Cov (<δδ>, <δδ>) Cov (<δδ>, <δκ>) ν (<δκ>, Ν) Cov (<δκ>, <δδ>) Cov (<δκ>, <δκ>) ν (<κκ>, Ν) Cov (<κκ>, <δδ>) Cov (<κκ>, <δκ>)

DES Forecasts: Nuisance Parameters?

- cosmic shear
 - 5 tomography bins
- galaxy clustering

- shear calibration, photo-z (sources) IA, baryons
- 3 redshift bins (0.2-0.4,0.4-0.6,0.6-0.8,0.8-1.0)
- compare two samples: $\sigma_z < 0.04$, redMaGiC
- Inear + quadratic bias only : I bins restricted to k < 0.5 h/Mpc</p>
- galaxy-galaxy lensing
 - galaxies from clustering (as lenses) with shear sources
- clusters number counts + sheap profile
 so far, 8 richness, 4 p bins (same as clustering)
 tomographic cluster lensing (500 < I < 10000)
- SN forecasts to be provided by Dan Scolnic

N-M relation c-M relation off-centering completeness