Progress and challenges in large-scale structure weak lensing

Benjamin Joachimi

University College London b.joachimi@ucl.ac.uk

with H. Hildebrandt, H. Hoekstra, D. Kirk, T. Kitching, A. Taylor, M. Viola, and KiDS & RCSLenS Collaborations, Euclid Weak Lensing SWG

LSS Symposium, Garching

July 24th, 2015

B. Joachimi

image brightness moments

$$Q_{ij} = \int dx \, dy \, I(x, y) \, x^i \, y^j$$

• linear in the image pixel values

shear estimate

$$\chi = \frac{Q_{20} - Q_{02} + 2iQ_{11}}{Q_{20} + Q_{02}}$$

- \rightarrow follows Marsaglia-Tin distribution
- mean/mode do not recover true value
- pdf extends beyond unit circle

see also

Refregier+ 12 Miller+ 13 Kacprzak+ 13 Bernstein & Armstrong 14

Shear estimation: intrinsic ellipticities

Need a deep survey component to

- 1. calibrate noise bias on high S/N observations, or
- 2. extract intrinsic ellipticity distribution to put into image simulation

relative uncertainty in width of intrinsic ellipticity distribution

Shear estimation: calibration

 \rightarrow it seems likely all shear estimation algorithms will require calibration on simulations

Shear estimation: calibration

 \rightarrow it seems likely all shear estimation algorithms will require calibration on simulations

Photo-z: characterisation

▲UCL

Progress and challenges in large-scale structure weak lensing

Photo-z: uncertainty in mean

effect of uncertainty in priors on mean of tomographic redshift bins

• bias in the mean accounts for unidentified catastrophic redshift failures

(Amara & Refregier 07)

Baryon feedback: impact

10⁵ λ (Mpc/h) 1.0 **ILLUSTRIS** HALOFIT (Takahashi+ 2012) 10.0 0.1 HALOFIT (Smith+ 2003) 10⁴ 1.4 Illustris-Dark Illustris 10³ REF / DMONLY 1.2 $\Delta^{2}\left(k\right)$ DBLIMEV1618 / DMONLY 10² $P(k)/P(k)_{DMONLY}$ AGN / DMONLY 10¹ .0 10⁰ 0.8 Δ_{DM}^{2} Z=1 z=0 **OWLS** 0.6 10-2 0.1 100.0 1.0 10.0 ____ 10-3 k (h/Mpc) 10^{-1} 10^{0} 10¹ 10^{2} $k \; [h \; \mathrm{Mpc}^{-1}]$ -0.9 Vogelsberger+ 14 $\sigma_{\!_8}$ marginalised -1.0 T DES N -1.1 suppression 35% s° -1.2 @ k=5 h/Mpc ∘ § -1.3 -1.4 Ņ I<6000 I<5000 **Euclid-like** -1.5 0.25 0.30 0.20 0.35 Eifler+ 14 Semboloni+11 0.19 0.20 0.21 0.22 0.23 0.24 0.25 Ω_{m} Ω_m

Progress and challenges in large-scale structure weak lensing

Baryon feedback: modelling

- two parameters suffice to model feedback (halo size & concentration)
- prefer physical parameters over nuisance parameters \rightarrow calibration/ validation

<u>0</u>

0.0

0.2

Eifler+ 14

 \rightarrow use galaxy-halo measurements to calibrate/ put priors on feedback models

Intrinsic alignments: the problem

Intrinsic alignments: impact

Progress and challenges in large-scale structure weak lensing

Intrinsic alignments: mitigation

• nulling works, but removes substantial amount of cosmological information

- self-calibration works, and recovers most/all of the constraints
- red/blue galaxy split may work as well (Krause+ 15)

Error determination: noise biases

Progress and challenges in large-scale structure weak lensing

Error determination: covariance estimators

scaling of errors/biases with no. of realisations

- non-linear shrinkage estimator
- no prior/extra information used

(Lam 15)

bias of covarianc Simulation, tomographic $\xi_{\pm l}$ 0.2 0.1 0 -0.1 $N_D = 30$ -0.2error on covariance 0.1 bias of inverse Max. likelihood 3 Shrinkage 2 analytic 1 0 error on inverse 1 Ð 0.1 0.01 100 Ns

scaling of errors/biases with no. of realisations

- non-linear shrinkage estimator
- no prior/extra information used

(Lam 15)

Data vector:

- Euclid-like N-body lightcones
- CFHTLenS mask applied
- 2 tomographic bins
- shear correlation functions

Error determination: super-sample covariance

Error determination: super-sample covariance

Progress and challenges in large-scale structure weak lensing

Conclusions

Key topics in weak lensing cosmology have seen good progress recently but still face major challenges:

- *shear estimation* methodology and calibration;
- *photometric redshift* characterisation;
- modelling *baryonic effects* on non-linear matter power spectrum;
- mitigating *intrinsic galaxy alignments*;
- precise and accurate errorbars on weak lensing statistics.

Lessons learnt:

- Precision cosmology with weak lensing is impossible without detailed understanding of the galaxy samples involved.
- A thorough understanding of all statistical properties and tools involved is vital for precision cosmological analyses of large-scale structure.