

CMB lensing tomography with the DES Science Verification galaxies

Tommaso Giannantonio (KICC/IoA/DAMTP Cambridge)

TG et al., arXiv:1507.05551 Crocce et al., arXiv:1507.05360

With: P. Fosalba, R. Cawthon, Y. Omori, M. Crocce, F. Elsner, B. Leistedt, S. Dodelson, A. Benoit-Lévy, W. Percival, H. Peiris, J. Weller, R. Crittenden, B. Soergel, and many others (the DES and SPT collaborations)

Garching, 24.7.2015

CMB anisotropies

- **Primary**: at last scattering
- Secondary anisotropies:
 - Reionisation
 - Gravity (CMB Lensing, Integrated Sachs-Wolfe effect, kinetic SZ effect)

Tests of structure growth

CMB lensing

• Lensing deflection: potential ϕ , convergence $\kappa = \phi l^2/4$

$$\varphi(\hat{\mathbf{n}}) = -\int_0^{\chi_*} d\chi \, \frac{\chi_* - \chi}{\chi_* \chi} \, \left[\Phi + \Psi\right] \left(\chi \hat{\mathbf{n}}, \eta_0 - \chi\right)$$

- Reconstructed from higher-order temperature statistics [Okamoto & Hu 03] by Planck, SPT, ACT
- Want to measure CMB lensing tomography
 - Motivation: trace evolution of structure formation, galaxy bias and the gravitational potentials ($\Phi+\Psi$)
 - Use cross-spectra CMB lensing-galaxies
- Measured with WMAP [Smith+ 07], Planck, SPT, ACT, [Sherwin+11, Bleem+12, Planck 13, TG&Percival 13, ...], S/N far from optimal
- CMB lensing kernel peaks at z ~ 2

DES is deeper, denser

[Planck XV 15]

w(θ) Galaxies - Planck lensing

DES Science Verification galaxies [M. Crocce+, E. Rykoff+]

- Source extractor Gold Catalog: 25M objects
 - Star/galaxy separation
 - Artefacts cuts (crazy colours)
 - 0.2 < photo-z < 1.2
 - Completeness 18 < i < 22.5
 - · 2.7M galaxies: 'Benchmark' sample
- Mask: 131 sq. deg
 - · LMC
 - Depth > 22.5
 - Good photometry

CMB lensing data

[SPT via MoU, thanks to G. Holder, L. Bleem]

- Planck: public lensing convergence к map & mask [Planck15]
 - Full sky
 - Noise-dominated
- **SPT**: lensing maps from SPT-SZ SURVEY [van Engelen+ 12]
 - Smaller area, overlaps DES SV
 - Lower, but anisotropic noise
 - Higher resolution

500

0

1000

Multipole

1500

S/N ~ 8 (5) expected for SPT (Planck)

2000

Results, real space

- Two-point correlation function $w(\theta)$
- Data well-fit by Fiducial LCDM (Planck), $\sim 2\sigma$ tension between auto and cross
- Covariances: analytical, Monte Carlos, Jack Knife, N-body

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

DES-DES: $b = 1.22 \pm 0.03$ **DES-SPT:** 6σ : A = 0.84 ± 0.13 **DES-Planck:** 4σ : A = 0.78 ± 0.21

Results, harmonic space

- Angular power spectrum C_I
- Data well-fit by Fiducial LCDM; 2σ tension between auto and cross
- Covariances: N-body & others

DES-DES: $b = 1.22 \pm 0.04$ **DES-SPT:** 6σ: A = 0.84 ± 0.15 **DES-Planck:** 4σ : A = 0.81 ± 0.20

Redshift tomography

- Correlation functions in five photo-z bins
- Correlation always detected at >2 σ
- Typically cross lower than expected from auto

Full set of galaxy-galaxy correlations [See Crocce et al. 2015]

Systematic tests [with R. Cawthon, B. Leistedt, M. Crocce]

- Dust [Planck], seeing, sky brightness, air mass, [B. Leistedt+], catalog sys. [A. Bauer]
- Cuts in all 19 systematics: Measured correlations are robust
- Correcting for systematics also robust

Photo-z tests

- Assume TPZ [Carrasco-Kind & Brunner 13,14]
 vs. BPZ [Benítez 00] in sample selection and model
- Measured correlations are robust: both full sample and tomography

Measuring the growth of structure

• E_G estimator [Zhang+07, Reyes+10, Pullen+15]

$$E_G \propto \frac{C_\ell^{\kappa g}}{C_\ell^{\theta g}} = \frac{C_\ell^{\kappa g}}{\beta \, C_\ell^{g g}} \,,$$

• Simple estimator - depends on b:

$$\hat{D}_{i} = \left\langle \sqrt{\frac{\left(C_{\ell}^{\kappa g}\right)_{\text{obs}}^{i}}{\left(\ell_{\ell}^{\kappa g}\right)_{\text{the}}^{i}}} \right\rangle_{\ell}$$

Better D_G estimator: does not depend on b, nor on theory D:

$$\left(\hat{D}_G \right)_i \equiv \left\langle \frac{\left(C_{\ell}^{\kappa g} \right)_{\text{obs}}^i}{\left(\mathcal{C}_{\ell}^{\kappa g} \right)_{\text{the}}^i} \sqrt{\frac{\left(\mathcal{C}_{\ell}^{gg} \right)_{\text{the}}^i}{\left(C_{\ell}^{gg} \right)_{\text{obs}}^i}} \right\rangle_{\ell}$$

Difficult with photometric survey: need RSD β = f/b, or bias prior

Slash quantities: had their growth D removed

$$D_{G} \propto \frac{(\Omega_m H_0 \sigma_8)_{\text{true}}}{(\Omega_m H_0 \sigma_8)_{\text{fiducial}}} D(z)$$

•

Bias and Growth

- First simple application: measure bias and linear growth
- **Bias evolution**: simple polynomial fit

 $b(z) = 1 + a_1 z + a_2 z^2 + a_3 z^3$

- Result compatible with CFHTLS [Coupon+12] and with Nbody (MICE) [Crocce+ 15]
- Cross-correlation Amplitude A = b A_{Lens}: lower
- **Growth D**_G: *roughly* consistent with LCDM, 1.7σ lower
 - Template amplitude fit: $A_D = 0.73 \pm 0.16$
 - At face value, could be interpreted as shift of $\omega_m\sigma_8$ by ~25%
 - Or bias stochasticity r
- These are statistical error bars

 $D_G(z) = A_D \left[D_G(z) \right]_{\text{fid}}$

Conclusions

 LSS-CMB correlations: many complementary probes of structure formation

<u>CMB Lensing — Galaxy cross-correlation</u>

 Detected at 6σ (SPT), 4σ (Planck), solid with respect to systematics tested

Redshift tomography for the first time: mainly agrees with fiducial cosmology but 1.7σ low

DES-Year1: CMB lensing, clustering, kSZ [poster by B. Soergel], ISW: full propagation of systematics and DE/MG implications