Galaxy gravitational redshifts and Lyman-alpha emission intensity: Results from SDSS/BOSS

Rupert Croft
Shadab Alam
Shirley Ho
Jordi Miralda-Escude
Zheng Zheng

+ SDSS/BOSS collaboration

Center for Cosmology

observational cosmology

. . .

observational cosmology

precision cosmology:

BAO lensing redshift distortions

- - -

Test of GR: lab measurement of gravitational redshifts.

1960 Pound-Rebka experiment

gravitational potential difference

$$\Delta \phi$$

gravitational redshift

$$z_g = \frac{\Delta \lambda}{\lambda} \simeq \frac{\Delta \phi}{c^2}$$

$$\mathrm{cz_g} \mathrm{=} \, v \approx \frac{gh}{c} \, \mathrm{=} \, 7.5 \mathrm{\times} 10^{-7} \, \mathrm{m/s}$$

best place to look: galaxy cluster

prediction: cz=10-50 km/s (Nottale 1976)

redshift of a galaxy:

Redshift map of SDSS galaxies

Redshift map of SDSS galaxies

Peculiar motions
of galaxies in
clusters give velocity
dispersion
>1000 km/s

have ~100 galaxies so Poisson error on mean is ~100 km/s

z_g signal is ~10 km/s

Solution: average over many clusters

First application to observational data (SDSS) by Wojtak et al. (2011): (Nature 477, 576)

(other measurements: Dominguez 2012, Sadeh 2015, Jimeno 2015)

What about gravitational redshifts from large-scale structure?

SDSS galaxies

Use all data: average over all pairs of galaxies: most massive one in a pair will have higher $z_{\rm g}$

2d (parallel and perp to line of sight) cross-correlation function of top mass half and bottom mass half of galaxies.

Estimator: compare mean redshift of pairs of galaxies in shells

Analytic theory vs simulation

Other relativistic effects: Zhao & Peacock (2012), Kaiser(2013), Bonvin et al. (2014), McDonald (2009) e.g., special relativistic beaming:

Halo model of relativistic effects:

First measurement from SDSS data (CMASS+LOWZ):

Shadab Alam et al., in prep.

(using jackknife covariances: ~3.8 sigma)

Still more possible : optimal weighting+ more data available now What will be possible with new surveys in ~10 years?

Simulation mock catalogs and analytic predictions for Euclid galaxy redshift survey:

(including mass-dependent weighting)

 $r (h^{-1}Mpc)$

Distance to central galaxy

Will measure gravitational redshift amplitude to 2%.

Lya intensity mapping of the cosmic web

RC et al. 2015, arxiv:1504.0488

Observing the Lya map

(spectra of every sky pixel observed)

Why do intensity mapping?

It avoids biases from:

- source detection,
- luminosity measurement in an aperture
- determination of backgrounds
- extrapolation to faint objects

It is sensitive to all clustered emission.

our observational setup: cross-correlation of quasar positions with residual flux in pixels

the predicted quasar-Lya emission

cross-correlation:

$$\xi_{q\alpha}(r) = b_q b_\alpha f_\beta \langle \mu_\alpha \rangle \xi_\rho(r)$$

quasar bias | lya emission bias

Kaiser redshift distortion factor

mean Lya surface brightness

CDM correlation function

100

 $r (h^{-1}Mpc)$

units are (SB):
$$ergs^{-1} cm^{-2} Å^{-1} arcsec^{-2}$$

model has two parameters:

$$\xi_{
m qlpha}(r)=b_qb_lpha f_eta\langle\mu_lpha
angle \xi_
ho(r)$$
 $b_qb_lpha f_eta\langle\mu_lpha
angle$
amplitude

shape of CDM correlation function parametrized by $\Omega_{\rm M}$ (hold others fixed)

result

SDSS/BOSS

$$\xi_{{
m q}\alpha}(r)$$

CDM model fit

(using 100 jacknives to compute covariance matrix)

What is
$$\langle \mu_{\alpha} \rangle$$
 ?

We measure
$$\xi_{q\alpha}(r) = b_q b_\alpha f_\beta \langle \mu_\alpha \rangle \xi_\rho(r)$$

Use other observations to constrain these

$$\langle \mu_{\alpha} \rangle = (3.9 \pm 0.9) \times 10^{-21} (3/b_{\alpha}) \,\mathrm{erg \, s^{-1} \, cm^{-2} \, \mathring{A}^{-1} \, arcsec^{-2}}$$

(mean Lya surface brightness at <z>=2.55)

(note: scales with poorly known bias factor of Lya emission, b_{α} , should be ~3)

Interpretation

(1) Lya emission from star formation in galaxies.

Convert:

Lya SB -> luminosity density -> SFRD

$$\rho_{\rm SFR}(z=2.55) = (0.28 \pm 0.07)(3/b_{\alpha}) M_{\odot} \rm yr^{-1} Mpc^{-3}$$

Interpretation: other possible sources

- (2) Scattering of quasar Lya
- (3) Fluorescence of quasar radiation
- (4) Fluorescence of UVBG
- (5) Scattering of Lya from UVBG
- (6) Cooling radiation
- (7) Observed Low SB Lya halos

All expected to be negligible

Consequences

- ★This is 30x larger than previous results individually detected Lya emitters!
- *It is ~the same as the dust-corrected SFRD at this redshift.
- **★**Lya "escape fraction" is 100%

to explain this, we need all star forming galaxies to be surrounded by low surface brightness halos which have so far escaped detection.

Summary

2 results from SDSS/BOSS not in survey design

(1) First measurement of gravitational redshifts from LSS

future: Euclid 50x more data

(2) First intensity mapping measurement in the optical

future: we only used 1/200,000 of sky area!