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Galaxies are not randomly distributed in our sky.

To exploit the information present 
in the large-scale structure we 
measure fluctuations in the 
number counts of galaxies: 

∆ =
N − N̄

N̄

Why does     fluctuate over the sky?∆
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We observe in redshift space: the redshift is affected by 
galaxies’ velocity       redshift-space distortions.

Magnification bias: gravitational lensing changes the solid 
angle and the threshold of observation.

4

Fluctuations in the galaxy number counts

First approximation: galaxies are a tracer of the dark matter

Three well-known sources of distortions:

Bias: the distribution of galaxies is a biased tracer.

These distortions have already been measured.

Kaiser 1987

Broadhurst, Taylor 
and Peacock 1995

∆ =
δρ

ρ̄
≡ δ
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Fluctuations in the galaxy number counts

First approximation: galaxies are a tracer of the dark matter

Three well-known sources of distortions:

Bias: the distribution of galaxies is a biased tracer.

These distortions have already been measured.

Kaiser 1987

Broadhurst, Taylor 
and Peacock 1995

∆ = b · δ −
1

H
∂r(V · n) + (5s− 2)

∫
r

0

dr
′
r − r

′

2rr′
∆Ω(Φ+Ψ)
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Relativistic distortions

Besides these three well-known sources of distortions, 
there are a lot of other subdominant distortions.

Examples:

ObserverGravitational redshift:

ISW and Shapiro time delay
Observer

Change the redshift

Observer

Change the radial size of the bin

Yoo et al (2010)
CB and Durrer (2011)
Challinor and Lewis (2011)
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Full calculation

The observed over-density is:

N(z,n) = ρ(z,n) · V (z,n) N̄(z) = ρ̄(z) · V̄ (z)and

∆(z,n) =
N(z,n)− N̄(z)

N̄(z)

At linear order in perturbation theory:

∆(z,n) = b · δ(z,n) +
δV (z,n)

V
− 3

δz

1 + z
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Result

density redshift space distortion

lensing

Doppler

gravitational 
redshift

potential

Yoo et al (2010)
CB and Durrer (2011)
Challinor and Lewis (2011)

∆(z,n) = b · δ −
1

H
∂r(V · n)

−

∫

r

0

dr′
r − r′

rr′
∆Ω(Φ+Ψ)

+

(

1−
Ḣ

H2
−

2

rH

)

V · n+
1

H
V̇ · n+

1

H
∂rΨ

+Ψ− 2Φ+
1

H
Φ̇− 3

H

k
V +

2

r

∫

r

0

dr′(Φ+Ψ)

+

(

Ḣ

H2
+

2

rH

)

[

Ψ+

∫

r

0

dr′(Φ̇+ Ψ̇)

]
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Some of the relativistic distortions break the 
symmetry of the correlation function       dipole.
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Outline

I will discuss the impact of the relativistic distortions 
on our observables.

What is the optimal way of measuring the dipole.

I concentrate on the two-point correlation function:

ξ = 〈∆(x)∆(x′)〉
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Density

Observer

n

The density contribution          , 
generates an isotropic correlation 
function.

x

x
′

∆ = b · δ

ξ(s) = 〈∆(x)∆(x′)〉

s = |x− x
′|

depends only on

the separation

s

ξ(s) =
1

2π2

∫
dkk2P (k, z) j0(k · s)
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Density

The density contribution          , 
generates an isotropic correlation 
function.

∆ = b · δ

ξ(s) = 〈∆(x)∆(x′)〉

s = |x− x
′|
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the separation
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They generate a quadrupole and an 
hexadecapole

Redshift distor tions break the 
isotropy of the correlation function. 

14

Redshift distortions

Lilje and Efstathiou (1989), McGill (1990), Hamilton (1992)

∆ = b · δ −
1

H
∂r(V · n)

Observer Observer

Real space Redshift space

n n

ξ4 =
8f2

35

1

2π2

∫
dkk2P (k, z)j4(k · s)P4(cosβ)

ξ2 = −

(

4f

3
+

4f2

7

)

1

2π2

∫

dkk2P (k, z)j2(k · s)P2(cosβ)
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Redshift distortions

Lilje and Efstathiou (1989), McGill (1990), Hamilton (1992)

∆ = b · δ −
1

H
∂r(V · n)

ξ4 =
8f2

35

1

2π2

∫
dkk2P (k, z)j4(k · s)P4(cosβ)

ξ2 = −

(

4f

3
+

4f2

7

)

1

2π2

∫

dkk2P (k, z)j2(k · s)P2(cosβ)

Observer n

x

x
′

β
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Relativistic distortions

The relativistic distortions break 
the symmetry of the correlation 
function.

This differs from the breaking of isotropy, which is 
symmetric: the squeezing is the same for galaxies in front 
and behind the centre of the over-density.

To measure the asymmetry, we need two populations 
of galaxies: faint and bright.

Observer n

x

x
′

cosβ

The correlation function differs 
for galaxies behind or in front of 
the central one.

CB, Hui and Gaztanaga (2013)
McDonald (2009), Croft (2013)

Redshift distortions have even powers of 



LSS ESO      Camille Bonvin      p. /3017

Relativistic distortions

The relativistic distortions break 
the symmetry of the correlation 
function.

This differs from the breaking of isotropy, which is 
symmetric: the squeezing is the same for galaxies in front 
and behind the centre of the over-density.

To measure the asymmetry, we need two populations 
of galaxies: faint and bright.

cosβ

The correlation function differs 
for galaxies behind or in front of 
the central one.

CB, Hui and Gaztanaga (2013)
McDonald (2009), Croft (2013)

Redshift distortions have even powers of 

Observer n

x

x
′



LSS ESO      Camille Bonvin      p. /3018

Relativistic distortions

The relativistic distortions break 
the symmetry of the correlation 
function.

This differs from the breaking of isotropy, which is 
symmetric: the squeezing is the same for galaxies in front 
and behind the centre of the over-density.

To measure the asymmetry, we need two populations 
of galaxies: faint and bright.

cosβ

The correlation function differs 
for galaxies behind or in front of 
the central one.

CB, Hui and Gaztanaga (2013)
McDonald (2009), Croft (2013)

Redshift distortions have even powers of 

Observer n

B

F

F



LSS ESO      Camille Bonvin      p. /3019

Anti-symmetries

density redshift space distortion

lensing

Doppler

gravitational 
redshift

potential

∆(z,n) = b · δ −
1

H
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−

∫

r

0

dr′
r − r′

rr′
∆Ω(Φ+Ψ)

+

(

1−
Ḣ
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The following terms break the symmetry:

Cross-correlation

∆rel =

(

1−
Ḣ

H2
−

2

rH

)

V · n+
1

H
V̇ · n+

1

H
∂rΨ

Similar to measurements of gravitational redshift in clusters.
Wojtak, Hansen and Hjorth (2011), Sadeh, Feng and Lahav (2015)

See also Croft’s talk on Monday
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Dipole in the correlation function
CB, Hui and Gaztanaga (2013)

ν1(s) =
A

2π2

∫

dk

k

(

k

H0

)

ns−1

Tδ(k)TΨ(k) j1(k · s) Observer n

β

B

F

ξ(s,β) = D2

1
f
H

H0

(

Ḣ

H2
+

2

rH

)

(bB − bF)ν1(s) · cos(β)

By fitting for a dipole in the correlation function, we 
isolate the relativistic effects. We get rid of the 
dominant monopole and quadrupole generated by 
density and velocities.
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Optimising the measurement

What is the optimal way of measuring the dipole?

Naive try: 

cosβij

Problem: we loose a lot of pairs (all the auto-correlations).

Can we do better?

We split the populations into two populations (bright and faint)

We measure the cross-correlation function

We weight each pair by
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We split the population of galaxies according to their luminosity

Generic kernel

In each pixel we count             and fluctuationsnLi
(xi) δnLi

(xi)

We combine all pixels and populations into

ξ̂ =
∑

ij

∑

LiLj

wxixjLiLj
δnLi

(xi)δnLj
(xj)

The kernel    tells us how to combine the pairs.

Example:

To isolate the monopole: wxixjLiLj
∝ δK(sij − s)

To isolate the quadrupole: wxixjLiLj
∝ δK(sij − s)P2(cosβij)

w

CB, Gaztanaga and Hui, in preparation
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Anti-symmetric kernel

To isolate the relativistic effects, the kernel must depend 
on the luminosity.

It must be anti-symmetric in        

It must be anti-symmetric in           

wxixjLiLj
= −wxixjLjLi

wxixjLiLj
= −wxjxiLiLj

Li ↔ Lj

xi ↔ xj

For two populations the signal is proportional to bB − bF

The signal is proportional to cosβij
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Variance

Three contributions:

Poisson noise

Cosmic variance

Mixed term

Important property: the cosmic variance of the density 
exactly vanishes.

var(ξ̂) =
∑

ijLiLj

∑

abLaLb

wxixiLiLj
wxaxbLaLb

×

[

〈

δnLi
(xi)δnLa

(xa)
〉〈

δnLj
(xj)δnLb

(xb)
〉

+ i ↔ j

]
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Minimising the variance

L = var(ξ̂) + λ0

[

〈ξ̂〉 − ξtrue
]

+
∑

ijLiLj

λijLiLj

(

wxixjLiLj
− wxjxiLjLi

)

We minimise the variance under the constraints:

Bij =
λ0

4

(

Ḣ

H2
+

2

rH

)

(bLi
− bLi

)
〈

δi (V · n)j
〉

Nij =
1

2
dn̄Li

bLi
bLj

Cij

w = (11 +N
T )−1

B(11 +N)−1
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Minimising the variance

In the regime where the Poisson noise dominates:

We calculate the signal-to-noise with this kernel. It 
depends on the characteristics of the survey and 
on the populations of galaxies.

Example: millenium simulation

Measurement of the bias and the number density 
for 6 populations of halos.

wxixjLiLj
=

3

8π
(bLi

− bLj
) cosβijδK(sij − s)

Jennings, Baugh and Hatt (2015)
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Result

Using the optimal kernel increases the signal-to-noise 
by 40 percents.

6 pop optimal kernel

6 pop normal kernel

2 pop normal kernel

CB, Gaztanaga and Hui, in preparation

0 < z < 0.2
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Future

Measurements: in BOSS, signal compatible with zero 
within error bars for two populations of galaxies. Signal-
to-noise smaller than one.

Try with more populations and the optimal kernel.

Try at lower redshifts, main sample of SDSS.

Try with the full kernel: w = (11 +N
T )−1

B(11 +N)−1
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Conclusion

Our observables are affected by relativistic effects.

These effects have a different signature in the 
correlation function: they induce anti-symmetries.

We can construct an optimal kernel to measure the 
dipole in the correlation function. 
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Multipoles
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Contamination

The density and velocity evolve with time: the density of the 
faint galaxies in front of the bright is larger than the density 
behind. This also induces a dipole in the correlation function.

Larger redshift     
      smaller density

Observer n

B

F

F
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Dipole in the correlation function
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Observer n

β

B

F

ξ(s,β) = D2

1
f
H

H0

(

Ḣ

H2
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2

rH
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(bB − bF)ν1(s) · cos(β)

bB − bF ≃ 0.5


