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Testing the laws of gravity
with cosmological data



How fast are structures 
growing within it?

Probes of the cosmological model

How fast is the Universe 
expanding with time?



The WiggleZ Dark Energy Survey

• 1000 sq deg , 0.2 < z < 1.0

• 200,000 redshifts

• blue star-forming galaxies

• Aug 2006 - Jan 2011



Baryon acoustic peak

• Standard ruler in galaxy clustering pattern which allows 
the mapping out of cosmic distances

arXiv : 1108.2635



Analysis of BOSS-WiggleZ overlap (1)
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Figure 4. The correlation functions of CMASS-BW (top), WiggleZ-BW (bottom) and the cross-correlation (middle) in the overlap
regions between CMASS and WiggleZ. The grey lines show the correlation functions for the five individual sub-regions (see Figure 1),
while the colored data points show the combined correlation functions calculated from eq. 10. The error bars are the diagonal of the
combined covariance matrices (see Figure 7). Note, that the scatter in the grey lines does not represent the error in the data points,
since each grey line corresponds to a different volume and is weighted accordingly. The black lines show the best fit to the individual
correlation functions corresponding to the upper part of Table 2.

relation functions of the five individual sub-regions using
the covariance matrices calculated above and following the
procedure outlined in White (2011) and Blake et al. (2011).
Each sub-region is weighted by its corresponding uncertainty

C−1ξtot(s) =
5
∑

regionsi

[Ci]−1ξi(s), (10)

with Ci being the covariance matrices of the individual sub-
regions. The inverse covariance matrix for the combined cor-
relation functions is given by

C−1 =
5
∑

regions

[Ci]−1, (11)

which follows from eq. 10. The combined covariance matrices
before and after density field reconstruction are presented in
Figure 7. The combined correlation functions for CMASS-
BW, WiggleZ-BW and the cross-correlation function are
shown in Figure 4 as colored data points. We also com-
pare the CMASS-BW correlation function with the CMASS-
DR11 correlation function in Figure 8. While the CMASS-
BW correlation function before reconstruction is in excellent
agreement with CMASS-DR11, we find the prominent BAO
peak at slightly larger scales compared to CMASS-DR11.
We will discuss this aspect further when fitting these corre-
lation functions in section 7.2.

It has been shown that the inverse covariance C−1 de-
rived from a finite number of realizations underestimates the
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CMASS
[overlap region]

WiggleZ
[overlap region]

Cross-correlation

• Baryon acoustic peak in cross-correlation (Beutler et al.)

arXiv : 1506.03900



Analysis of BOSS-WiggleZ overlap (2)

• Redshift-space distortions 
(Marin et al.)

arXiv : 1506.03901
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Figure 6. Correlation matrix (normalised covariance matrix) of the
WiggleZ-CMASS multipoles based on COLA mocks. The matrix is
divided in the contributions from the monopole and quadrupole of
WiggleZ-BW (W), CMASS-BW (C) and cross 2PCFS (X), and each
pixel represents a separation s (in h�1Mpc).

et al. 2013), and a growth rate f(z = 0.54) = 0.75, when
estimating � = f/b, it is expected that r⇥,Kaiser

= 0.997 ⇠ 1.
We measure the value of r⇥ from our data, assuming it is a

constant on all scales (an assumption we do not expect to hold
on scales smaller than 15 � 20 h�1Mpc). Using the redshift
space distortion model described in section 4.1, and the COLA
mocks to build our covariance matrix, we use the correlation
monopoles to fit for the bias parameters of the WiggleZ-BW
and CMASS-BW galaxies and r⇥ for each overlap region and
the joint likelihood (see section 4.3 for details of the fitting
procedure).

Figure 5 presents the posterior probability distribution of
r⇥, as a function of the minimum scale of fit smin. Focusing
on the fits to the combined regions, we can see that they are
not consistent with r⇥ = 1 at the 2� level on scales smin ⇠ 20
h�1Mpc. This behaviour may be explained by a number of
factors such as non-linear pairwise velocities, non-linear bias
and stochasticity. CMASS galaxies tend to be hosted in the
centres of large halos and in high density regions, precisely the
regions that are avoided by WiggleZ galaxies. We expect that
on large scales both galaxies trace similar structures, and this
is confirmed in the measurements of r⇥ being consistent with
1 when fitting on large scales.

Examining individual regions it can be noticed that it
is region S22 which reduces the overall fit to r⇥. Its lower
value of r⇥ is driven by a high auto-correlation function in the
WiggleZ-BW S22 region, although the scatter is compatible
with the variance against mock catalogs. The best fits to the
growth rate do not significantly change when the S22 region
is excluded, and in the final fits we include all regions.

3.3 Covariance estimation

We estimate the correlations between the multipoles of the
auto- and cross-2PCF by calculating the covariance matrix in
each region n from COLA mocks. A deviation from the mean
of a quantity X, in separation bin i, for the mock k can be

written as

�k
i,n = Xk

i � hXii (8)

where, in our case, X corresponds to the monopole or
quadrupole of the auto- or cross-2PCF in each bin. The co-
variance matrix of each region n is determined as

Cn,ij =
1

N
mocks

N
mocksX

k=1

�k
i,n�

k
j,n (9)

After calculating Cn for all regions, we can determine the com-
bined covariance matrix (Blake et al. 2011a)

C

�1

comb =

NregX

n=1

C

�1

n (10)

Figure 6 shows the correlation matrix (normalised covariance
matrix) for all our measurements, showing the strong correla-
tion between the measurements of the two tracers.

Since we used a large, but finite number of mock catalogs
for the covariance estimation, there is an underestimation of
the uncertainties. Following the work of Hartlap et al. (2007);
Percival et al. (2014), we correct for the finite number of mocks
by multiplying the variance estimated from the likelihood dis-
tribution by

m� =
1 +B(N

bins

�N
p

)
1 + 2A+N(N

p

+ 1)
(11)

where N
bins

is the number of bins entering the fits, N
p

is the
number of free parameters, and

A�1 = (N
mocks

�N
bins

� 1)(N
mocks

�N
bins

� 4), (12)

B = A(N
mocks

�N
bins

� 2), (13)

where N
mocks

is the number of mock realisations. Also, the
sample variance should be multiplied by

mv = m�
N

mocks

� 1
N

mocks

�N
bins

� 2
. (14)

We useN
mocks

= 480 and perform measurements in separation
bins up to s = 80 h�1Mpc. From constraining models using
one-tracer auto-correlation function multipoles to simultane-
ous fits using both auto and cross correlations, the mv factor
lies in the range mv = 1.1� 1.45.

4 CONSTRAINTS ON COSMIC GROWTH

4.1 Modelling the RSD

Redshift-space distortions modify the 2-point clustering of
galaxies on both large and small scales, which we will sum-
marise here. Due to its peculiar velocity v, a galaxy at a po-
sition in real space r gets mapped to s in redshift space:

s = r+
(1 + z)v · r̂

H(z)
r̂ (15)

where r̂ is the galaxy unit vector along the line of sight (LOS)
direction, vr ⌘ v · r̂ is the line-of-sight component of its veloc-
ity, and H(z) is the Hubble parameter at a redshift z.

On large scales, as described by Kaiser (1987), hereafter
K87 (also see Hamilton 1998 for derivations in configuration
space), matter overdensities �m grow coherently as r · v /

�f�m where f ⌘ d lnG(a)/d ln a is the linear growth rate
of fluctuations. The evolution of the growth rate in certain
models can be approximated by the evolution of the matter

c� 0000 RAS, MNRAS 000, 000–000
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Figure 4. Combined monopole (top row) and quadrupole (bottom row) of ⇠(s, µ) for the WiggleZ and CMASS auto-correlation function
(left and middle columns) and the cross-correlation function (right column). Lines are measurements of individual regions, symbols display
the combined measurements. Results are plotted as s2⇠l(s) as a function of separation s.

measurements (as symbols). The di↵erent amplitude of clus-
tering of the WiggleZ-BW and CMASS-BW galaxies reflects
the di↵erence in the type of halos these galaxies inhabit. Due
to the limited volume where the correlations are measured, we
correct our correlation function values by the ‘integral con-
straint’ (Peebles 1980; Beutler et al. 2012). The corrections to
the WiggleZ and BOSS correlations di↵er in each region and
have values of the order of 8⇥10�4 and 1⇥10�3 respectively for
the smaller regions (where the integral constraint is higher),
and do not significantly a↵ect the RSD model constraints.

3.2 Cross-correlations between WiggleZ-BW and
CMASS-BW clustering

In addition to the auto-correlations, we also measured the
cross-correlation between the two sets for tracers using the
estimator

⇠
cross

(s, µ) =
DWDC �DWRC �RWDC +RWRC

RWRC
, (5)

where the W and C subscripts represent the quantities in
the WiggleZ and CMASS galaxies, respectively. The cross-
correlation function measurement provides an independent
validation of the assumption that both galaxy types trace the
same large structures on a range of scales, and also serves to
test our linear and local galaxy bias model.

To test the strength of the correlation between the tracers
is, we also constrain the cross-correlation coe�cient, r⇥, which
is produced from the relation

⇠l=0

WiggleZ⇥CMASS

(s) = r2⇥(s)⇠
l=0

WiggleZ

(s)⇠l=0

CMASS

(s), (6)
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Figure 5. The cross-correlation coe�cient r⇥ for the WiggleZ-
CMASS-BW correlations for each overlap regions, and when com-
bining all regions, as a function of the smallest scale smin (in
h�1Mpc) of the fit.

with |r⇥| 6 1. On large scales in redshift-space, and assum-
ing linear, deterministic bias, this quantity should tend to the
value (Mountrichas et al. 2009):

r⇥,Kaiser

=
1 + 1

3

(�W + �C) + 1

5

�W�Cq�
1 + 2

3

�W + 1

5

�2

W

� �
1 + 2

3

�C + 1

5

�2

C

� (7)

Assuming bW = 1 and bC = 2 (Reid et al. 2012; Contreras
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Figure 9. Fits to the RSD model parameters using correlation mul-
tipoles with 24 < s < 80 h�1Mpc. We show results when analysing
individual surveys and joint constraints. The purple line shows the
prediction from WMAP5 cosmology.

these scales there is evidence of no systematics depending on
the type of galaxy used. Our constraints on the growth rate are
consistent with our fiducial cosmology f�

8

(z = 0.54) = 0.46.
Consistent with previous work, we recover that the bias

of the WiggleZ-BW galaxies, bW ⇠ 1, is smaller than that
of the CMASS-BW galaxies, bC ⇠ 2. The value of the best-
fitting chi-squared statistic indicates that the model provides
a reasonable fit to the data in all cases. For the pairwise dis-
persion, values for the di↵erent tracers are consistent with the
predicted value from theory (section 4.1).

Combining the two tracers including their cross-
covariance yields slightly better constraints for f�

8

(z = 0.54)
at the level of 10% (compared to WiggleZ constraints alone).
This result indicates that for these tracers, in a low den-
sity regime (where the common cosmic variance cancellation
does not improve the constraints, see Blake et. al 2013), even
in the presence of a slightly larger Hartlap-Percival correc-
tion, the improvement is due to reduced shot noise. When
including the cross-correlations the improvement is of the or-
der of 20% (again, compared with WiggleZ constraints alone).
In the case when we include the cross-correlations, we ob-
tain our poorest value for �2/d.o.f., implying that our sim-
ple constant r⇥ model may not describe all of the complex-
ities of the cross-correlation. Given this result, we quote as
result of our paper for the growth rate constraint the one ob-
tained when we combine only the auto-correlations, yielding
f�

8

(z = 0.54) = 0.413± 0.054.

5 SUMMARY & CONCLUSIONS

In this work we have presented the first cosmological RSD
analysis using data from two overlapping surveys, WiggleZ
and CMASS. After defining the overlap volumes, we mea-
sured 2-point auto- and cross-correlations functions of these
tracers; after obtaining their multipoles and calculating their
cross-covariance using N-body mock catalogs, we compared
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Figure 10. Fits to the growth rate f�
8

(z) from di↵erent galaxy
surveys: 6dF (Beutler et al. 2012), 2dFGRS (Hawkins et al. 2003),
GAMA (Blake et al. 2013), WiggleZ (Blake et al. 2011b), SDSS
LRGs (Samushia et al. 2012), CMASS-DR9 (Reid et al. 2012),
VVDS(Guzzo et al. 2008), and VIPERS (de la Torre et al. 2013).

them with RSD models in order to measure the growth rate
of structure f�

8

at an e↵ective redshift z = 0.54. Our main
findings are:

• The cross-correlation coe�cient r⇥ between the WiggleZ-
BW and CMASS-BW galaxies agrees with the expectation
that on large scales, the two classes trace similarly the large
scale structure with r⇥ ⇠ 1. On smaller scales s . 20 h�1Mpc,
r⇥ < 1, likely produced by a combination of a number of
factors such as non-linear pairwise velocities, non-linear bias
and stochasticity.

• We tested redshift-space distortion models in mock cata-
logues simulating WiggleZ and CMASS galaxies, including the
selection functions of our overlapping volumes. When fitting
scales s > 24 h�1Mpc we recover our fiducial cosmological
parameters using di↵erent tracers, and that a single velocity
dispersion provides an adequate description for the distortions
in our range of scales. We confirmed a lack of a significant im-
provement when using the multitracer technique, given the
sparsity of the sampling for these tracers.

• The fits to f�
8

(z) from all tracers are consistent with each
other and with the predictions of a ⇤CDM universe, showing
no evidence for strong modelling systematic errors as a func-
tion of galaxy type.

As shown in Figure 10, our combined fit for the growth
rate f�

8

(z = 0.54) = 0.413 ± 0.054 is in excellent agreement
with estimates from di↵erent surveys. Although more sophis-
ticated models for the RSD can be employed, the motivation
for our work was to show consistency in the cosmological fits
when using di↵erent tracers. This agreement provides further
strong evidence for the robustness in the growth rate mea-
surements which are important for answering the outstanding
questions on the nature of dark energy and large-scale gravity.

c� 0000 RAS, MNRAS 000, 000–000



Tests of large-scale gravity

• Can tests of G.R. be extended to cosmic scales?  
And can that yield insight into dark energy?



Tests of large-scale gravity

Galaxy peculiar velocities Weak gravitational lensing

• Two powerful probes of gravitational physics:



• Simultaneous measurements of distance D and redshift z

• Use standard candle (supernovae, fundamental plane, ...)

[Small print :
this equation is not exact!]

Peculiar velocity measurements



Peculiar velocity measurements

• 6dF Galaxy Survey is large 
southern-sky redshift survey

• 9,000 peculiar velocity 
measurements using 
fundamental plane distances 
[biggest existing sample]

• We measure the velocity 
power spectrum which is 
proportional to the growth 
rate

• Credit to Andrew Johnson!



• We model the likelihood of the observed radial 
velocities vi in terms of the covariance Cv

• Covariance matrix depends on the velocity power 
spectrum Pv(k) and the errors in the data

• We do Monte Carlo Markov Chain fit for amplitude of 
Pv(k) in k-bins, i.e. growth rate in k-bins

Results from our velocity fits

arXiv : 1404.3799



Results from our velocity fits

• Here is our result : consistency with the prediction with 
particular sensitivity to large scales

“Standard model”

arXiv : 1404.3799
Gpc scales !



Cosmological consequences
14 Johnson et al.

Figure 5. 68% and 95% confidence regions for the four Gmatter(k, z) bin parameters. Here z > 1 here is referring to the redshift range
2 > z > 1. Note all of the parameters specified in Table 2 are being varied in this analysis yet for clarity we only plot the constraints on
Gmatter(k, z). Recall we have defined Base as High�l + low�l +WP+BAO+ SNe.

as the high-z and low-z Gmatter bins are highly correlated,
as can be seen in Fig. 5. This degeneracy occurs as some
probes, such as the CMB, are sensitive to integrated quanti-
ties over redshift, such that higher growth at high-z can be
compensated for by lower growth at low-z.

Introducing direct PV measurements the constraints
shift from the green to the grey contours. The most promi-
nent shift occurs in the low-z and low-k Gmatter bin, as ex-
pected: we find a shift from Gmatter(z < 1; k < 0.01) =
0.81+0.59

�0.46 to Gmatter(z < 1; k < 0.01) = 1.32+0.42
�0.29. We

find further improvements in the constraints for the high-
wavenumber and low-redshift bin. Future PV surveys should
be able to considerably improve on this situation (cf. Koda
et al. 2014). Using the best-fit parameters from Set 4, we
measure �2

6dFGSv = 778 with 979 data points: the full

6dfGSv velocity field is smoothed onto a grid with 979 non-
empty elements (cf. Johnson et al. 2014).

Including RSD measurements results in the shift from
the grey to red contours, for which we find a significant im-
provement in the constraint on the high-z and high-k Gmatter

bin. Moreover, we find that the RSD measurements have
more influence on the high-z bin than the the low-z bin:
this is an further consequence of measuring integrated quan-
tities. As a systematic check we isolate the measurements
from WiggleZ and BOSS and perform separate fits, we find
that the two separate constraints on Gmatter are consistent.
We can also assess how well our model fits the observations.
By adding the multipole likelihoods we find ��2 = 322, for
a total of 324 measurement points. Individually, for the fit
to the WiggleZ multipoles, with 126 data points per redshift

c� 2015 RAS, MNRAS 000, 000–000
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where GN is Newton’s gravitational constant, and the equa-
tions are defined in terms of the comoving-gauge density
perturbation �m = �m + (3H/k2)✓m.

2.2 Glight(k, z) and Gmatter(k, z)

We now introduce two dimensionless free parameters Glight

and Gmatter that we use to model deviations to the field
equations. Our model is now specified as (Daniel & Linder
2013)

r2 = 4⇡GNa2⇢̄m�m ⇥Gmatter (6)

r2(�+  ) = 8⇡GNa2⇢̄m�m ⇥Glight . (7)

The first equation governs the motion of non-relativistic par-
ticles, while the second controls the propagation of light
along null geodesics. As a result, Gmatter can be measured
using RSDs and direct PVs, and Glight can be measured
using weak lensing. Because of this distinction the two pa-
rameters are significantly less correlated than models in-
volving a ‘slip’ relation (e.g., Bean & Tangmatitham 2010).
Note that the variables {⌃, µ} in Simpson et al. (2013) and
Zhao et al. (2012) are equivalent to {Glight, Gmatter}. There
is also a trivial re-mapping to the {Q,R} parameters used
by Bean & Tangmatitham (2010), through Gmatter = QR,
Glight = Q(1 +R)/2.

To ensure our model can test for a variety of deviations
from GR we allow for both scale- and redshift-dependence:
that is, Glight = Glight(z, k) and Gmatter = Gmatter(z, k).
To specify these parameters we use a high vs. low-redshift,
large vs. small scale binning approach introduced by Daniel
& Linder (2010). Note, however, that very general func-
tional forms for these parameters (including scale-dependent
terms) have been developed (Silvestri, Pogosian & Buniy
2013; Baker et al. 2014). We leave such investigations to
future work.

Our adopted model introduces 8 free parameters and
requires one to specify a redshift and wavenumber transi-
tion scale, zt and kt. We set zt = 1 and kc = 0.01 Mpc�1;
therefore, we have two redshift bins (viz., 0 < z < 1 and
1 < z < 2) and two wavenumber bins (10�4Mpc�1 < k <
10�2Mpc�1 and 0.01Mpc�1 < k < 0.1Mpc�1), while for
z > 2 and k < 10�4Mpc�1 GR is restored. The transition
between bins is implemented using an arctan function of
width �z = 0.05 and �k = 0.001.

For our first model we choose to leave the cosmic ex-
pansion unmodified at the ⇤CDM prediction, and concen-
trate on the growth of structure. Henceforth, we will refer
to this model as model I. To calculate the relevant observ-
ables (to be discussed in the next section) we use camb and
CosmoMC. The modified field equations (Eq 7) are incorpo-
rated into camb using the publicly available code ISITGR
(Dossett, Ishak & Moldenhauer 2011), and the exact equa-
tions implemented in camb are given by Dossett, Ishak &
Moldenhauer (2011). Note the only significant di↵erence be-
tween the equations employed in camb and Eq (7) is that
the latter are written within the synchronous gauge (Ma &
Bertschinger 1995).

A few technical comments on the model are unavoid-
able: Firstly, super-horizon curvature perturbations need to
be conserved independent of the form of field equations
(Bertschinger & Zukin 2008). This condition was shown to

be satisfied for this model by Pogosian et al. (2010). Addi-
tionally, it is natural to include a smoothness theory prior
on these parameters, however, given the large distance be-
tween the centre of our bins we choose not to include such a
prior (Silvestri, Pogosian & Buniy 2013). With more accu-
rate data, and hence a larger number of bins, this argument
will no longer be valid. Finally, the accuracy of any map-
ping from our model to physical models (i.e., those derived
from an action) relies on the validity of the quasi-static ap-
proximation (QSA). Following the arguments presented in
Silvestri, Pogosian & Buniy (2013) it is reasonable to include
a theoretical prior to ignore such deviations.

2.3 Varying Growth and Expansion: {�, w0, wa}
As more freedom is introduced to model deviations from
GR the precision of the inferred parameters degrades. We
must decide then which features of the standard model to
preserve; for example, to what extent does the expansion
history dictate the growth history. This presents a balancing
problem with no clear solution. To partially circumvent this
issue we adopt a second model (which we label model II). In
contrast to our first model, this model includes only minimal
extensions to the standard model. As a result there are fewer
free parameters and more precise tests are possible (although
we nonetheless introduce deviations to both the expansion
and growth history).

This minimal extension to the standard model using
the parameters {w0, wa, �} has been advocated by Linder
& Cahn (2007); Linder (2005), and Simpson & Peacock
(2010), and applications have been presented, for exam-
ple, by Huterer & Linder (2007). To expand on this, we
introduce deviations to the expansion history through a
time-dependent equation of state w(z), which is expressed
in terms of two free parameters: w0 = w(a = 0) and
wa = �(dw/da)

��
a=1

, as a function of the redshift w(z) =
w0+waz/(1+z). Note the expansion history is still governed
by the Friedman equation, there is simply more freedom
in the properties of the dark energy component. We intro-
duce deviations in the growth history by parameterizing the
growth rate as f(z) ⌘ ⌦m(z)� , where � is the growth index;
within GR one expects � ⇠ 0.55. The growth rate is defined
by f(a) ⌘ d lnD(a)/d ln a, and D(a) ⌘ �(a)/�(a = 1).

3 PRIMARY DATASETS: METHODOLOGY

Below we will outline the measurements we use in Sec. 5,
in addition to the tools we use to analyze them. A gen-
eral summary is provided in Table 1 where the datasets,
the measured quantities, and the fitting ranges adopted are
specified. The focus will be on introducing extensions to the
public MCMC code CosmoMC (Lewis & Bridle 2002) and camb
(Lewis, Challinor & Lasenby 2000) to update the range of
datasets one can analyze.

3.1 Velocity Power Spectrum

The radial PVs of galaxies in the local universe induce a
fluctuation in the apparent magnitude m, defined as (Hui &
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• Use these data to test for deviations from 
GR using a phenomenological model

Green : CMB+BAO+SNe
Grey : + peculiar velocities

Red : + RSD
Blue : + CMB X-correlations



• Sensitive to theories of gravity in complementary ways

• General perturbations to FRW metric:

•           are metric gravitational potentials, identical in 
General Relativity but can differ in general theories

• Relativistic particles (e.g. light rays for lensing) collect 
equal contributions and are sensitive to

• Non-relativistic particles (e.g. galaxies infalling into 
clusters) experience the Newtonian potential 

Lensing and clustering : complementarity



Lensing and clustering : complementarity

• Need overlapping galaxy redshift and lensing surveys!

WiggleZ

RCS2CFHTLS



Testing gravity with galaxy-galaxy lensing

Source galaxies:
measure lensing

of their light!

Lens galaxies:
measure their velocities!

• What is the gravity generated by the density field?

arXiv : 1507.03086



• Measure cross-correlations between source shapes 
from CFHTLenS / RCSLenS (to r ~ 25) and lenses from 
WiggleZ / BOSS (covering 0.15 < z < 0.7)

• Total overlap area ~ 500 deg2

• Shape measurements using “lensfit” give shape density 
of 14 arcmin-2 [CFHTLenS] and 6 arcmin-2 [RCSLenS]

• Source photometric redshift catalogue using BPZ

• Battery of systematic tests of shear measurements, 
results blinded

Testing gravity with galaxy-galaxy lensing
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where we have introduced the redshift-space distortion pa-
rameter β = f/b, which governs the amplitude of the mea-
sured RSD.

The anisotropic imprint of RSD in galaxy clustering al-
lows the measurement of the gravitational growth rate and,
consequently, powerful tests of gravitational physics. How-
ever, it also introduces an extra amplitude factor in the rela-
tion between ξgg and ξmm, complicating inferences about the
galaxy bias. In order to avoid this issue the real-space “pro-
jected” correlation function wp(R), independent of RSD, can
instead be constructed by integrating the 3D galaxy corre-
lation function ξgg(R, Π) along the line-of-sight:

wp(R) =

∫ ∞

−∞

ξgg(R, Π) dΠ. (14)

Our method of estimating wp(R) from the data is described
in Section 6.1. In practice the limits of Equation 14 must be
taken as large, finite values.

2.4 Suppressing small-scale information

Equation 6 demonstrates that the amplitude of ∆Σ(R) de-
pends on the surface density of matter around galaxies
across a range of smaller scales from zero to R. This is prob-
lematic from the viewpoint of fitting cosmological models
to the data since at small scales, within the halo virial ra-
dius, the cross-correlation coefficient between the matter and
galaxy fluctuations is a complex function which is difficult
to predict from first principles (Baldauf et al. 2010, Man-
delbaum et al. 2010). In order to remove this sensitivity to
small-scale information these authors proposed a new statis-
tic, the annular differential surface density (ADSD), denoted
by Υ and defined by

Υgm(R, R0) = ∆Σ(R) −
R2

0

R2
∆Σ(R0)

=
2

R2

∫ R

R0

R′ Σ(R′) dR′

− Σ(R) +
R2

0

R2
Σ(R0), (15)

which does not contain information originating from scales
R < R0. The small-scale limit R0 is chosen to be large
enough to reduce the main systematic effects discussed
above, but small enough to preserve a high signal-to-noise
ratio in the measurements (also see the discussion in Man-
delbaum et al. 2013). An alternative approach is to model
the halo occupation statistics and marginalize over the free
parameters (e.g., Cacciato et al. 2013).

The corresponding quantity suppressing the small-scale
contribution to the galaxy auto-correlations is

Υgg(R, R0) = ρc
[

2
R2

∫ R

R0

R′ wp(R′) dR′ − wp(R) +
R2

0

R2
wp(R0)

]

. (16)

We discuss our choice of R0 and the measurement of the Υ
statistics in Section 6.3.

2.5 Testing gravitational physics: the EG statistic

In general scalar theories of gravity, the perturbed FRW
spacetime metric ds2 may be expressed in terms of the New-
tonian potential Ψ and curvature potential Φ:

ds2 = [1 + 2Ψ($x, t)] c2 dt2 − a(t)2 [1 − 2Φ($x, t)] d$x2. (17)

Relativistic particles, such as photons experiencing gravi-
tational lensing, collect equal contributions from these two
potentials as they traverse spacetime, such that their equa-
tions of motion (and hence the resulting lensing patterns)
are determined by ∇2(Ψ + Φ). However, the motion of non-
relativistic particles arising from the gravitational attraction
of matter, which produces galaxy clustering and RSD, is
sensitive only to the derivatives of the Newtonian potential
∇2Ψ (e.g., Jain & Zhang 2008).

In standard General Relativity (GR), in the absence of
anisotropic stress, Ψ($x, t) = Φ($x, t) and both potentials are
related to the matter overdensity via the Poisson equation
∇2Φ = 4πGa2ρmδm. Therefore, by measuring if both the
gravitational lensing of photons and galaxy peculiar veloc-
ity respond in an identical manner to the matter overdensity
traced by the lens galaxies in our datasets, we can perform
a fundamental test of whether the relation between (Ψ+Φ)
and Ψ follows the GR expectation (assuming this perturba-
tion approximation applies).

Zhang et al. (2007) proposed that this test can be effi-
ciently carried out by cross-correlating lens galaxies to both
the surrounding velocity field using RSD and to the shear of
background galaxies using galaxy-galaxy lensing. In partic-
ular, Reyes et al. (2010) implemented this consistency test
by constructing the “gravitational slip” statistic

EG(R) =
1
β

Υgm(R, R0)

Υgg(R, R0)
, (18)

which is independent of both the galaxy bias factor b and
the underlying amplitude of matter clustering σ8, given that
β ∝ 1/b, Υgm ∝ b σ2

8 and Υgg ∝ b2 σ2
8 . The perturbed GR

model prediction on large scales is then a scale-independent
quantity EG = Ωm/f (see Leonard et al. (2015) for a more
detailed discussion of this approximation). We measure EG

and carry out this consistency test in Section 6.3. We note
that a failure of this consistency check does not necessarily
indicate evidence for gravitational physics beyond GR: other
possible explanations would include a breakdown in validity
of linear perturbation theory, or that the value of Ωm or
curvature differs from that predicted by measurements of
the Cosmic Microwave Background radiation.

3 DATA

We perform this test of gravitational physics by utiliz-
ing the overlap of lensing measurements from two imaging
surveys, the Canada-France-Hawaii Telescope Lensing Sur-
vey (CFHTLenS; Heymans et al. 2012) and the Red Clus-
ter Sequence Lensing Survey (RCSLenS, Hildebrandt et al.
2015), with two spectroscopic-redshift large-scale structure
surveys, the WiggleZ Dark Energy Survey (Drinkwater et
al. 2010) and the Baryon Oscillation Spectroscopic Survey
(BOSS, Eisenstein et al. 2011). Figure 1 displays the sky dis-
tribution of the CFHTLenS, RCSLenS, WiggleZ and BOSS
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• Galaxy-galaxy lensing measurements

Testing gravity with galaxy-galaxy lensing



• Is EG scale-independent, and what is its value?

Standard model

Testing gravity with galaxy-galaxy lensing
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• We find the “gravitational slip” EG is independent of 
scale with amplitude consistent with the standard model

Testing gravity with galaxy-galaxy lensing
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Testing gravity with galaxy-galaxy lensing

• Extension of these tests to higher redshift

How can we take this further?



• 50 AAT nights granted for spectroscopic follow-up of 
southern lensing surveys such as KiDS and DES

• Galaxy lens sample to test gravity by cross-correlating 
weak lensing distortions and galaxy velocities

• Photo-z calibration samples (direct / cross-correlation)

2dF Lensing Survey (2dFLenS)



• Local Universe survey of ~1M galaxy redshifts (z < 0.3) 
and ~100,000 velocities (z < 0.1) starting next year

• 1% measurement of H0 through baryon acoustic peak

• Perform new tests of General Relativity using combined 
analyses of the density and velocity fields

Taipan Galaxy Survey

degrades much more gracefully, with reduced performance in response to many component failures, rather than total 
system incapacity. 

Further, it is likely that the actuators can be very simple, reliable and long lifetime mechanisms based on a very few 
piezoelectric ceramic components. Their independent operation reduces the number of possible single point failures that 
disable the entire system. 

4.7. Instrument upgrade path 
A system based on Starbug concepts lends itself to future upgrades by its modular nature. Once a Starbug paradigm has 
been adopted, different (or more of the same) Starbug system components can be added without disturbing the 
fundamental architecture. A much high degree of planned upgrading and future-proofing is thereby achieved compared 
with systems that tightly integrate important system functionality with major physical structure. 

In particular, bugs carrying active sensing payloads of new and different types can be readily added at any time in the 
instrument’s life – it’s an ideal prototyping environment, while remaining a facility class instrument. 

5. INSTRUMENT CLASS APPLICATIONS 
We conceive a range of classes of instrument concepts that would be enabled or facilitated by Starbug-type positioning 
technologies. These range from making it easier to build instruments with capabilities similar to existing facilities, 
through to concepts that critically depend on unique Starbug characteristics. 

5.1. Fiber-fed, discrete object Multi-Object Spectroscopy 
Coming from the perspective of the current generations of robotic focal plane fiber positioners (epitomized by 2dF and 
FMOS-Echidna), this is perhaps the most obvious application of Starbug technology. In instruments of this class, 
Starbug actuators patrol a focal surface with more or less freedom of motion, each carrying a single optical fiber, 
somewhat like 2dF but where the magnetic buttons can be independently and simultaneously moved without the need 
for a large and precise robotic mechanism (Fig. 2). In this application, an optical fiber already forms a ‘tether’ for each 
bug, and thus provides an obvious route for service feeds (power and control) to the bugs. 

  

Fig. 2. A Starbug implementation (left) of a discrete-object fiber positioner uses magnetic buttons similar to those carrying the 
fibers for OzPoz (right) and other pick-and-place positioners, but mounted on micro-robotic actuators that can be 
independently and simultaneously positioned by ‘walking’ across the field plate. 

Discrete MOS Starbug instruments offer clear and dramatic weight savings over pick-and-place technologies when the 
focal surface is large. A single focal plate suffices because of the relatively short configuration time that results from 



• Apparent existence of dark energy motivates new 
tests of large-scale gravitational physics

• Two observable signatures are non-relativistic galaxy 
velocities and relativistic lensing of light

• We have performed new measurements using the 
latest galaxy redshift, velocity and lensing surveys

• General Relativity + cosmological constant + 
perturbed FRW metric models remain a good fit

• The quest to understand dark energy continues!

Summary


