Cosmological constraints from the galaxy power spectrum of VIPERS

PDR-1 +

Julien Bel
work done by Stefano Rota,
Ben Granett, Luigi Guzzo & VIPERS Team

Osservatorio Astronomico di Brera, INAF, Merate/Milano

Theoretical and Observational Progress on Large-scale Structure of the Universe
21/07/2015

This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 291521
1. Model power spectrum
2. Test of systematics
3. VIPERS PDR1 +
4. Comparison with other surveys
5. Conclusions
Local Universe, z~0: 2dFGRS

k-range fitted: $0.02 < k < 0.15 \, h \, \text{Mpc}^{-1}$
Measuring the power spectrum

decompose the density field on the Fourier basis

\[\delta(x) = \int \delta(k) e^{i k \cdot x} \, d^3 x \]

the power spectrum is the amplitude squared of the coefficients

\[\delta(k) = \int \delta(x) e^{-i k \cdot x} \, d^3 k \]

FKP, \(P(k) \) estimator

\[\hat{\delta}(x_P) = w(x_P) \frac{n_G(x_P) - \alpha n_R(x_P)}{\alpha \sum_R \bar{n}(x_R) w^2(x_R)} \]

\[\hat{P}(k) = |\hat{\delta}_{FKP}(k)|^2 - P_{\text{shot}} \]
Measuring the power spectrum

decompose the density field on the Fourier basis

\[\delta(x) = \int \delta(k) e^{ik \cdot x} \, d^3x \]

the power spectrum is the amplitude squared of the coefficients

\[\delta(k) = \int \delta(x) e^{-ik \cdot x} \, d^3k \]

FKP, \(P(k) \) estimator

\[\hat{\delta}(x_P) = w(x_P) \frac{n_G(x_P) - \alpha n_R(x_P)}{\alpha \sum \bar{n}(x_R) w^2(x_R)} \]

\[\hat{P}(k) = |\hat{\delta}_{FKP}(k)|^2 - P_{\text{shot}} \]
VIPERS window function
VIPERS window function

\[\hat{P}_{\text{obs}}(k) = \int P(k') |W(k - k')|^2 \frac{d^3 k'}{(2\pi)^3} = P \ast |W|^2 \]

MultiDark (Prada et al. 2012) HOD mock catalogues made by S. de la Torre
VIPERS window function

\[\hat{P}_{\text{obs}}(k) = \int P(k') |W(k - k')|^2 \frac{d^3k'}{(2\pi)^3} = P \ast |W|^2 \]

Possible BAO reconstruction? (Angela Burden and Will Percival)
Redshift-space distortions

\[P_s(k) = P_r(k)(1 + \beta \mu_k^2)^2 e^{-[\mu_k k \sigma_v]^2} \]

\[P_{\text{conv}}(k) = \int P_s(k') |W(k - k')|^2 \frac{d^3k'}{(2\pi)^3} \]
Test of systematics

Obtained from 200 Pinocchio mock catalogues (Monaco et al. 2002)

\[
C_{ij} = \frac{1}{N_R - 1} \sum_{m}^N R \left[P_m(k_i) - \bar{P}(k_i) \right] \left[P_m(k_j) - \bar{P}(k_j) \right]
\]
Test of systematics

\[\chi^2(p) = \sum_{ij} [P_{\text{obs}}(k_i) - P_M(k_i; p)] C_{ij}^{-1} [P_{\text{obs}}(k_j) - P_M(k_j; p)] \]

Error on the average of 26 (W1) and 31 (W4) N-body based mock catalogues

\[C_{ij} = \frac{1}{N_R - 1} \sum_m [P_m(k_i) - \bar{P}(k_i)] [P_m(k_j) - \bar{P}(k_j)] \]

Obtained from 200 Pinocchio mock catalogues

(Monaco et al. 2002)
$P(k)$ from the VIPERS PDR-1
$P(k)$ from the VIPERS PDR-1
Cosmology

- CAMB (Ω_M, f_B) + HALOFIT non-linearities
- linear and scale-independent bias (b)

- redshift-space distortions: KAISER + DISPERSION MODEL (σ_v)
- window function
Cosmological results: Ω_M and Ω_B/Ω_M

ASSUMPTIONS:
- flat ΛCDM Universe

COSMOLOGICAL PARAMETERS FIXED TO PLANCK:
- h, Hubble constant
- n_s, spectral index
- A_s, primordial amplitude

FREE PARAMETERS:
- σ_v, velocity dispersion
- b, linear bias
- $f_b=\Omega_B/\Omega_M$, baryonic fraction
- Ω_M, matter density

FIT:
- $0.01 < k < 0.3 \, h \, \text{Mpc}^{-1}$
- $(500 \lesssim \lambda \lesssim 20 \, h^{-1} \, \text{Mpc})$
Cosmological results: Ω_M and Ω_B/Ω_M

ASSUMPTIONS:
- flat ΛCDM Universe

COSMOLOGICAL PARAMETERS FIXED TO PLANCK:
- h, Hubble constant
- n_s, spectral index
- A_s, primordial amplitude

FREE PARAMETERS:
- σ_v, velocity dispersion
- b, linear bias
- Ω_B/Ω_M, baryonic fraction
- Ω_M, matter density

FIT:
- $0.01 < k < 0.3 \, h \, \text{Mpc}^{-1}$
- $500 \lesssim \lambda \lesssim 20 \, h^{-1} \, \text{Mpc}$
Comparison with $z \sim 0$, 2dFGRS

$h = 0.72$
Comparison with $z \sim 0$, 2dFGRS vs SDSS

$h = 0.72$

Fitting to the SDSS power spectrum
By Tegmark et al. (2004)
Cole et. al. (2003)
Percival et al. (2001)
Comparison with $z \sim 0$, VIPERS vs 2dFGRS

$h = 0.72$
Internal consistency check: Ω_M

\begin{align*}
\eta_{g,R}(r) &= \frac{\xi_{g,R}(r)}{\sigma_{g,R}^2} \\
\text{Bel et al. (VIPERS Team) 2013}
\end{align*}

Clustering ratio:

Gaussian prior on:

- $h=0.738$ (HST prior)
- $\Omega_B h^2$ (BBN prior)
- n_s, A_s (Planck prior)

<table>
<thead>
<tr>
<th>Ω_M</th>
<th>$\Omega_b h^2$</th>
<th>h</th>
<th>n_s</th>
<th>$\ln(10^{10} A_s)$</th>
<th>σ_{TOT} [km s$^{-1}$]</th>
<th>$b(z_1 / z_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>prior</td>
<td>0.1 − 0.9</td>
<td>0.0213 ± 0.0010</td>
<td>0.738 ± 0.024</td>
<td>0.9616 ± 0.0094</td>
<td>3.103 ± 0.072</td>
<td>514 ± 24</td>
</tr>
<tr>
<td>best fit</td>
<td>$0.272^{+0.027}_{-0.031}$</td>
<td>$0.0211^{+0.0010}_{-0.0004}$</td>
<td>$0.735^{+0.018}_{-0.016}$</td>
<td>$0.9630^{+0.0054}_{-0.0088}$</td>
<td>$3.096^{+0.046}_{-0.057}$</td>
<td>522^{+16}_{-18}</td>
</tr>
</tbody>
</table>
Conclusions

- Measure of the VIPERS galaxy power spectrum including all the selection effects of the survey

- At low redshift: Similar degeneracy in the Ω_M-f$_B$ plane found in 2dFGRS and SDSS

- Consistency with the Planck results for Ω_M-f$_B$, even assuming a different cosmology (h=0.72 instead of h=0.67)

- Constraint on $\Omega_M = 0.272^{+0.027}_{-0.030}$, consistent with VIPERS measurements in configuration space

- Next: Use the final release of VIPERS to constrain also the total neutrino mass
Consistency with Planck

$h = 0.67$ (Planck)

$h = 0.72$
Impact of the minimum scale

$P(k)$ more linear
fiducial cosmology

assuming two different fiducial cosmologies

Correcting the wrong fiducial cosmology

\[\Omega_{M=0.27} \]

\[\Omega_{M=0.40} \]

\[P'(k') = P(k) \times \alpha^2 \alpha' \]

\[k'_\parallel = \alpha' \parallel \times k' \parallel \]

\[k'_\perp = \alpha' \perp \times k'_\perp \]
VIPERS window function:
cone-like geometry and angular mask

\[\hat{P}_{\text{obs}}(k) = \int P(k') |W(k - k')|^2 \frac{d^3k'}{(2\pi)^3} = P * |W|^2 \]
cone-like geometry

W1 and W4 MultiDark mocks in 0.6<z<0.9

theoretical model $P(k)$:

MultiDark cosmology in real space +
linear regime at $<z>\sim 0.7$ +
HALOFIT (non-linearities) +
linear and scale-independent bias
cone-like geometry and angular mask

W1 and W4 MultiDark mocks in 0.6<z<0.9

theoretical model P(k):

- MultiDark cosmology in real space +
- linear regime at $<z>\approx 0.7$ +
- HALOFIT (non-linearities) +
- linear and scale-independent bias

![Graph showing theoretical model P(k)]

- **model P(k)**
- **measured P(k) in W1**
- **measured P(k) in W4**
Power spectrum statistic: Fourier space

\[\hat{P}(k) = \frac{1}{N_k} \sum_{k < |k'| < k + \delta k} |\delta(|k'|)|^2 , \]

\[P(k) = \frac{\hat{P}(k_x, k_y, k_z) - S(k_x, k_y, k_z)}{\left[\text{sinc} \left(\frac{\pi k_x}{2k_N} \right) \left[\text{sinc} \left(\frac{\pi k_y}{2k_N} \right) \text{sinc} \left(\frac{\pi k_z}{2k_N} \right) \right]^{2p} \right]. \]

with \(p = 2 \) for the CIC assignment scheme.

\[S = P_{SN} \times \prod_{i=1}^{3} \left[1 - \frac{2}{3} \sin^2 \left(\frac{\pi k_i}{2k_N} \right) \right] \quad P_{SN} = \frac{\sum_{G=1}^{N_G} w^2(x_G) + \alpha^2 \sum_{R=1}^{N_R} w^2(x_R)}{N^2} . \]

\[\hat{W}(x_P) = w(x_P) \frac{N(x_P)/H^3}{N} , \]
Directly predicted by theory

\[P(k, z) = P_{\text{prim}}(k) D^2(z) T^2(k) \]

\[T(k) = f(k, \Omega_M h^2, \Omega_B h^2) \]

varying \(\Omega_M \)

varying \(f_B = \Omega_B / \Omega_M \)