

Cosmological constraints from the galaxy power spectrum of VIPERS PDR-1 +

Julien Bel work done by Stefano Rota, Ben Granett, Luigi Guzzo & VIPERS Team

Osservatorio Astronomico di Brera, INAF, Merate/Milano

Theoretical and Observational Progress on Large-scale Structure of the Universe 21/07/2015

Outline:

- 1. Model power spectrum
- 2. Test of systematics
- 3. VIPERS PDR1 +
- 4. Comparison with other surveys
- 5. Conclusions

Local Universe, z~0: 2dFGRS

1

Measuring the power spectrum

decompose the density field on the Fourier basis $\delta(\mathbf{x}) = \int \delta(\mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{x}} d^3x$

the power spectrum is the amplitude squared of the coefficients

$$\delta(\mathbf{k}) = \int \delta(\mathbf{x}) \, \mathrm{e}^{-\mathrm{i}\mathbf{k}\cdot\mathbf{x}} \, \mathrm{d}^3\mathbf{k}$$

FKP, P(k) estimator

$$\hat{F}(\mathbf{x}_{P}) = \mathbf{w}(\mathbf{x}_{P}) \frac{\mathbf{n}_{G}(\mathbf{x}_{P}) - \alpha \mathbf{n}_{R}(\mathbf{x}_{P})}{\alpha \sum_{R} \bar{n}(\mathbf{x}_{R}) \mathbf{w}^{2}(\mathbf{x}_{R})}$$

 $\hat{P}(\mathbf{k}) = |\hat{\delta}_{FKP}(\mathbf{k})|^{2} - P_{shot}$

Measuring the power spectrum

decompose the density field on the Fourier basis $\delta(\mathbf{x}) = \int \delta(\mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{x}} d^3x$

the power spectrum is the amplitude squared of the coefficients

$$\delta(\mathbf{k}) = \int \delta(\mathbf{x}) \, \mathrm{e}^{-\mathrm{i}\mathbf{k}\cdot\mathbf{x}} \, \mathrm{d}^3\mathbf{k}$$

Andrea Pezzotta's poster

FKP, P(k) estimator
$$n_{\rm G}(\mathbf{x}_{\rm P}) - \alpha n_{\rm R}(\mathbf{x}_{\rm P})$$

 $\mathbf{FIZD} \mathbf{D}(1)$

$$\mathbf{x}_{\mathrm{P}}) = \mathbf{w}(\mathbf{x}_{\mathrm{P}}) \frac{\mathbf{n}_{\mathrm{G}}(\mathbf{n}_{\mathrm{P}}) - \alpha \mathbf{n}_{\mathrm{R}}(\mathbf{n}_{\mathrm{P}})}{\alpha \sum_{\mathrm{R}} \bar{n}(\mathbf{x}_{\mathrm{R}}) \mathbf{w}^{2}(\mathbf{x}_{\mathrm{R}})}$$
$$\hat{\mathbf{P}}(\mathbf{k}) = |\hat{\delta}_{\mathrm{FKP}}(\mathbf{k})|^{2} - \mathbf{P}_{\mathrm{shot}}$$

2

VIPERS window function

VIPERS window function

MultiDark (Prada et al. 2012) HOD mock catalogues made by S. de la Torre

VIPERS window function

$$\hat{P}_{obs}(\mathbf{k}) = \int P(\mathbf{k}') |W(\mathbf{k} - \mathbf{k}')|^2 \frac{d^3 \mathbf{k}'}{(2\pi)^3} = P * |W|^2$$

Possible BAO reconstruction? (Angela Burden and Will Percival)

Redshift-space distortions

Test of systematics

Obtained from 200 Pinocchio mock catalogues (Monaco et al. 2002)

Test of systematics

Obtained from 200 Pinocchio mock catalogues (Monaco et al. 2002)

P(k) from the VIPERS PDR-1

P(k) from the VIPERS PDR-1

Cosmology

• CAMB (Ω_M,f_B) + HALOFIT non-linearities redshift-space distortions: KAISER + DISPERSION MODEL (ov)

 linear and scale-independent bias (b)

window function

Cosmological results: Ω_M and Ω_B/Ω_M

ASSUMPTIONS: flat ΛCDM Universe

COSMOLOGICAL PARAMETERS FIXED TO PLANCK: h, Hubble constant n_s, spectral index A_s, primordial amplitude

FREE PARAMETERS:

 σ_{v} , velocity dispersion b, linear bias $f_b=\Omega_B/\Omega_M$, baryonic fraction Ω_M , matter density

FIT: $0.01 < k < 0.3 h Mpc^{-1}$ $(500 \le \lambda \le 20 h^{-1} Mpc)$

Cosmological results: Ω_M and Ω_B/Ω_M

ASSUMPTIONS: flat ΛCDM Universe

COSMOLOGICAL PARAMETERS FIXED TO PLANCK: h, Hubble constant n_s, spectral index \s, primordial amplitude

FREE PARAMETERS:

 $\sigma_{v,}$ velocity dispersion b, linear bias Ω_B/Ω_M , baryonic fraction Ω_M , matter density

FIT:

 $0.01 < k < 0.3 h Mpc^{-1}$ (500 $\leq \lambda \leq 20 h^{-1} Mpc$)

Comparison with z~0, 2dFGRS

Comparison with z~0, 2dFGRS vs SDSS

Comparison with z~0, VIPERS vs 2dFGRS

Internal consistency check: Ω_M

Conclusions

- Measure of the VIPERS galaxy power spectrum including all the selection effects of the survey
- At low redshift: Similar degeneracy in the Ω_M -f_B plane found in 2dFGRS and SDSS
- Consistency with the Planck results for Ω_M -f_B, even assuming a different cosmology (h=0.72 instead of h=0.67)
- Constraint on $\Omega_{\rm M} = 0.272^{+0.027}_{-0.030}$, consistent with VIPERS measurements in configuration space
- Next: Use the final release of VIPERS to constrain also the total neutrino mass

Consistency with Planck

Impact of the minimum scale

fiducial cosmology

assuming two different fiducial cosmologies

correcting the wrong fiducial cosmology

VIPERS window function:
cone-like geometry and angular mask

$$\hat{P}_{obs}(\mathbf{k}) = \int P(\mathbf{k}') |W(\mathbf{k} - \mathbf{k}')|^2 \frac{d^3 \mathbf{k}'}{(2\pi)^3} = P * |W|^2$$

k_i [h M2pc⁻¹]

cone-like geometry

cone-like geometry and angular mask

theoretical model P(k):

MultiDark cosmology in real space + linear regime at <z>~0.7 + HALOFIT (non-linearities) + linear and scale-independent bias Power spectrum statistic: Fourier space $\hat{P}(k) = \frac{1}{N_k} \sum_{k < |\mathbf{k}'| < k + \delta k} |\delta(|\mathbf{k}'|)|^2$,

$$P(\mathbf{k}) = \frac{\hat{P}(\mathbf{k}_{x}, \mathbf{k}_{y}, \mathbf{k}_{z}) - S(\mathbf{k}_{x}, \mathbf{k}_{y}, \mathbf{k}_{z})}{\left[\operatorname{sinc}\left(\frac{\pi \mathbf{k}_{x}}{2\mathbf{k}_{N}}\right)\operatorname{sinc}\left(\frac{\pi \mathbf{k}_{y}}{2\mathbf{k}_{N}}\right)\operatorname{sinc}\left(\frac{\pi \mathbf{k}_{z}}{2\mathbf{k}_{N}}\right)\right]^{2p}} . \quad (8)$$

with p = 2 for the CIC assignment scheme.

$$S = P_{SN} \times \prod_{i=1}^{3} \left[1 - \frac{2}{3} \sin^2 \left(\frac{\pi k_i}{2k_N} \right) \right] \quad P_{SN} = \frac{\sum_{G=1}^{N_G} w^2(\mathbf{x}_G) + \alpha^2 \sum_{R=1}^{N_R} w^2(\mathbf{x}_R)}{N^2}.$$

$$\hat{W}(\mathbf{x}_P) = w(\mathbf{x}_P) \, \frac{N(\mathbf{x}_P)/H^3}{N} \,,$$

