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Estimate the CMB, synchrotron, dust Q/U signal in each pixel on the sky	



 The method	



1	



2	



k=1 (CMB), k=2 (synch), k=3 (dust). ���
There are variations on this, which can include monopoles, multi-temp dust, spectral 
curvature, simultaneous spectrum estimation. Many applications to temperature maps.	





Estimating parameters	



€ 

p(A1,A2,A3,β2,β3 d)

p(A1 d) = p(A1,A2,A3,β2,β3 d)dA2dA3dβ2dβ3∫

Map out the joint distribution for A (amplitudes) and beta (spectral indices) vectors, 
and extract marginalized distribution for CMB Q/U in each pixel.	



•  If maps have 7 degree pixels, this would give 2x3x768 A parameters.	



•  Synchrotron spectral indices  - if they vary in e.g. 30 degree pixels, this 
gives 48 parameters, but can be thousands.	



•  p(A,b|d) is not a distribution we can draw analytic samples from 	





Gibbs sampling	


 Minimal case:	



1. For fixed beta, p(A|b,d) is Gaussian, 
so we draw a new A sample.	



2. For fixed A, p(b|A,d) is not known 
so draw a new beta sample using 
Metropolis algorithm, or other 
sampling method. 	



3.  Draw A and beta samples in turn 
until mapped out full distribution	



b	



A	





Application to data and 
to sims	





Application 1: 
WMAP	



Hinshaw et al 2008	





Estimated maps	


CMB	

 Synchrotron	

 Dust	
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Estimated errors	



Feed maps and covariance matrix into low-ell likelihood.	



Gave consistent results for large scale CMB power and tau:	



τ = 0.091± 0.019  (parametric)	



τ = 0.086 ± 0.017  (template)	
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But, needed priors	



€ 

βs = −3.0 ± 0.3
βd =1.7

€ 

Qd (n) = 0 ± 0.2Id (n)
Ud (n) = 0 ± 0.2Id (n)

In pixels of side ~30 degrees	
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Figure 11. R.m.s. fluctuations spectrum (antenna temperature units) of the polarized dust and synchrotron components. The symbols
are the best-fit template coefficients for dust (red triangles) and synchrotron (black stars). The dashed curves represent dust for βd = 1.5
(red dashed line) and synchrotron for βs = −3 (black dashed line). The CMB fluctuations (blue line) are normalized to the r.m.s. value,
0.24 µK (thermodynamic), of the simulated Q and U components of the CMB map.

Figure 12. Estimates of CEE
! (left plot) and CBB

! (right plot) computed with two different techniques. At each " value, we plot the
maximum likelihood value (tic mark), the region where the likelihood is greater than 50% of the peak value (thick line) and the region
where the likelihood is greater than 95% of the peak value (thin line). The black lines (right side of each pair) are estimated with
a pixel-based likelihood code with Nside = 8. The blue lines (left side of each pair) are estimated by Gibbs sampling the maps and
C!s simultaneously at Nside = 16. Note that we do not show results for CEE

2 as the comparison between conditional and marginal
distributions for " = 2 is not feasible using this method.

Application 2: Planck-like sims	





Armitage-Caplan et al 2011, 1103.2554	
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CMB Input Q Commander Q Galclean Q

Error Q Commander Q deviation Galclean Q deviation

CMB Input U Commander U Galclean U

Error U Commander U deviation Galclean U deviation

Figure 1. First row: input Q CMB map (left column), Commander posterior mean output Q map (middle column), and Galclean

posterior mean output Q map (right column). Second row: marginalized error, Commander difference in standard deviations per pixel
(middle column), and Galclean difference in standard deviations per pixel (right column) for the Q component. Third row: input U
CMB map (left column), Commander posterior mean output U map (middle column), and Galclean posterior mean output U map (right
column). Fourth row: As in second row but for the U component.

the presence of the foregrounds. This effect is summarized
in Table 2 which gives the average upper 95% cut-off limits
on estimates of r for r = 0.0 and the average estimates on
σ(r = 0.1) and σ(τ = 0.1) with and without foregrounds.
We also apply the standard WMAP P06 mask (Page et al.
2007), which masks about 26% of the sky, and calculate the
likelihood distributions for the masked case.

For our chosen simulations and modeling, we find mini-
mal error inflation in στ and σr. στ remains nearly constant
at ∼ 0.005 in the absence or presence of foregrounds. σr

increases from ∼ 0.02 to ∼ 0.03 with the addition of fore-
grounds. Our limits on r = 0 show that it is more sensitive to
the presence of foregrounds than an estimation of an r = 0.1

signal. We find σr/r = 0.32 for r = 0.1 and στ/τ = 0.05
for τ = 0.1 using Commander. Using a Fisher matrix ap-
proach, Betoule et al. (2009) find values of σr/r similar to
ours: σr/r = 0.34 with foregrounds and σr/r = 0.25 with
noise only. In another Fisher matrix forecast for Planck,
Baumann et al. (2009) finds σr = 0.011 for r = 0.01 without
foregrounds.

Our pixel likelihood code can be used not only to con-
strain parameters, but also to find the power at each mul-
tipole in the polarized power spectra. At each multipole,
we compute the conditional likelihood as a function of CEE

"

and CBB
" for # = 2− 7 with all other multipoles held fixed

at the fiducial ΛCDM values, using the method described

Same results, two different codes: Galclean and 
Commander	





10 C. Armitage-Caplan et al.

Figure 4. Likelihood distributions for τ (left plot) and r (right plot) for four simulations of CMB+foregrounds with τ = 0.1 and r = 0.1.
The four different simulations are represented by the black, blue, green, and red curves. Results from Commander are shown with a solid
line and results from Galclean are shown with a dashed line. Note that the Galclean curve for the red simulation is completely overlaid
by the Commander curve for the red simulation (left plot), and that the Galclean curve for the green simulation is completely overlaid
by the Commander curve for the green simulation (right plot). We find σ(τ) ≈ 0.004 and σ(r) ≈ 0.03.

Figure 5. τ = 0.1 foreground-free case for 10 simulations. The left-hand plot shows the likelihood distributions for each of the 10
simulations, while the plot on the right-hand side is the sum of the log-likelihoods of the 10 distributions.

Figure 6. r = 0.1 foreground-free case for 10 simulations. The left-hand plot shows the likelihood distributions for each of the 10
simulations, while the plot on the right-hand side is the sum of the log-likelihoods for the 10 simuations.

Armitage-Caplan et al 2011	



Recover input optical depth and tensor-to-scalar ratio	
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Synchrotron Input P Commander Sync P Galclean Sync P

Error Q Commander Q deviation Galclean Q deviation

Dust Input P Commander Dust P Galclean Dust P

Error Q Commander Q deviation Galclean Q deviation

Figure 2. Maps of the polarization amplitude P =
√

Q2 + U2 for the synchrotron at 30 GHz (first row) and dust at 353 GHz (third
row). The difference in standard deviations per pixel for the Q component (second and fourth rows) indicate that the synchrotron and
dust maps have been recovered to the expected statistical result.

Foreground-Free With Foregrounds (Unmasked) With Foregrounds (Masked)

r = 0.0 < 0.008 < 0.017 < 0.023

σ(r = 0.1) 0.023 0.027 0.032

σ(τ = 0.1) 0.004 0.004 0.005

Table 2. Average upper 95% cut-off limits on estimates of r = 0, and average estimates on σ(r = 0.1) and σ(τ = 0.1). We find a
foreground-free error on r that matches the size of errors found in analogous Fisher matrix forecasts for Planck (Betoule et al. 2009;
Baumann et al. 2009). The effect of foregrounds is seen to inflate the error bar in the case of r but not τ . The error on r for the r = 0.1
model is amplified by a factor of ∼ 1.4, and the 95% cut-off limit on r for the r = 0.0 model is amplified by a factor of ∼ 3, when
foregrounds are included.

Large-Scale Polarized Foreground Component Separation for Planck 9

Dust index Synchrotron index

Figure 3. Spectral index, β, input map (top), output map (second row), error map (third row), and deviation map (bottom row) for
dust (left) and synchrotron (right). Note that in areas of low signal-to-noise, the error is driven to the prior value of 0.5 for dust and 0.3
for synchrotron in areas of low signal-to-noise.

Index prior -3+-0.3	
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Figure 4. Likelihood distributions for τ (left plot) and r (right plot) for four simulations of CMB+foregrounds with τ = 0.1 and r = 0.1.
The four different simulations are represented by the black, blue, green, and red curves. Results from Commander are shown with a solid
line and results from Galclean are shown with a dashed line. Note that the Galclean curve for the red simulation is completely overlaid
by the Commander curve for the red simulation (left plot), and that the Galclean curve for the green simulation is completely overlaid
by the Commander curve for the green simulation (right plot). We find σ(τ) ≈ 0.004 and σ(r) ≈ 0.03.

Figure 5. τ = 0.1 foreground-free case for 10 simulations. The left-hand plot shows the likelihood distributions for each of the 10
simulations, while the plot on the right-hand side is the sum of the log-likelihoods of the 10 distributions.

Figure 6. r = 0.1 foreground-free case for 10 simulations. The left-hand plot shows the likelihood distributions for each of the 10
simulations, while the plot on the right-hand side is the sum of the log-likelihoods for the 10 simuations.
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Figure 7. The solid curves show the likelihood distributions for r for the r = 0.0 foreground-free simulations while the dashed curves
show the likelihood distributions from maps estimated by Commander. The widening of the likelihood curves from solid to dashed line
is commensurate with the increased uncertainty in our estimate of r due to the presence of foregrounds.

in Nolta et al. (2009). For example, the conditional likeli-
hood of CEE

4 is f(x) ∝ L(d|..., CEE
3 , CEE

4 = x,CEE
5 ...). We

compare the power at each multipole in the Gibbs CMB
map to the template-cleaned case (described in §2.6) and
to the foreground-free case, shown in Fig. 8 and Fig. 9
for the r = 0.1 simulation. For CEE

! , the results are
consistent between the three cases. For the CBB

! spectra,
we find that the template-cleaned conditional slices agree
with the foreground-free curves as well, or better than, the
Gibbs slices, indicating that the more economical template-
cleaning method is an effective (and fast) option for fore-
ground removal in the case of low spectral index variation
established in our data model. However, we argue that Gibbs
sampling should be used instead of, or in addtition to, tem-
plate cleaning, in order to benefit from the Gibbs feature
that the inclusion of foreground uncertainties in the covari-
ance matrix can be propagated to the limits on r. This effect
appears as the inflation in the Gibbs CBB

! distributions over
the template distributions for the r = 0.0 simulation, shown,
in particular for ! = 2, 4 and 5 in Fig. 10.

In Fig. 11, we plot the results from the Commander
template fitting. The data points are the best-fit template
coefficients for the dust and synchrotron emission at 30, 44,
70, 100, 143, and 217 GHz . The dashed curves show the
emission, in antenna units, of the thermal dust for βd =
1.5 and of the synchrotron for βs = −3. The curves are
normalized to the r.m.s. values of the 23 GHz and 353 GHz
template maps for synchrotron and dust, respectively.

4.3 Comparison between C! estimates from Gibbs

sampling and pixel likelihood code

In §2.5 we discussed a potential issue with our standard pixel
likelihood code in the case that the marginalized distribu-
tions p(A|d) contain non-Gaussianities. We investigate our
CMB marginal posteriors and do find a small level of non-
Gaussianity particularly in regions where the foreground sig-
nal is large. We proposed several options for addressing this
issue in §2.5, and in this section we show a comparison be-
tween our standard pixel-likelihood and Gibbs sampled C!

estimates in order to assess the level of non-Gaussianity seen
in the CMB marginal posteriors.

We run the pixel-likelihood code to compute the condi-
tional likelihood as a function of CEE

! and CBB
! for ! = 2−6

with all other multipoles held fixed at the fiducial ΛCDM
values. We additionally marginalize over CTT

! and CTE
!

when computing the CEE
! likelihood in order to account

for correlations between the TT, TE, and EE components.
We neglect correlations between ! values. We run the Gibbs
sampler (Commander) in the mode in which the CMB power
spectra is sampled simultaneously with the foreground com-
ponents, as described in §2.5. In Fig. 12 we show slices
through the C! distribution obtained from the Gibbs estima-
tor compared to the pixel likelihood. We find the estimates
from the two methods to be equivalent up to small differ-
ences. The small discrepancies between the Gibbs and pixel
likelihood estimates are due to the pixel likelihood code us-
ing Nside = 8, compared to the higher resolution Nside = 16
used for the Gibbs code. Another source of differences may
be from !− !′ correlations present in the Gibbs samples but
not in the pixel likelihood which estimates slices of C! for all
other multipoles fixed. These results indicate that it is rea-
sonable to approximate the foreground-marginalized CMB
pixel amplitudes as Gaussian in the pixel-based likelihood.

5 CONCLUSIONS

We have investigated two independent Gibbs sampling codes
for polarized CMB foreground separation in the case of diag-
onal noise, and power law dust and synchrotron models. We
have constructed the large-scale posterior CMB and fore-
ground amplitude maps as well as the dust and synchrotron
spectral index maps using the Planck sky model and noise
levels, and without masking the Galactic plane. We explored
constraints on τ and r for our Planck model and found that
our Bayesian algorithms produced results consistent with
τ = 0.1 and r = 0.1 at 1- and 2σ. We find σ(τ = 0.1) ≈ 0.004
and σ(r = 0.1) ≈ 0.03. We find a 95% cut-off limit on an
r = 0 detection at r < 0.02. While our specific predictions on
στ and σr are limited by our simplified noise and data mod-
els, we have shown that the Gibbs-estimated CMB maps and
errors capture the additional uncertainty due to the presence
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Figure 10. Conditional likelihood slices for CMB CBB
! for the r = 0.0 simulation, estimated from the polarization CMB maps cleaned

using Gibbs sampling (black), and compared to the template cleaned maps (blue). We expect that Gibbs sampling is needed over template
cleaning to provide appropriate r limits and find that Gibbs sampling does tend to inflate the distributions, particularly for ! = 2, 4 and
5, in this case.

1. Test on fg-free 
sims	



2. Error inflation 
with fg included	



3. Compare to template-cleaning	





What if we get modeling 
wrong? 	





Missing components	
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Test Recovered r Recovered r Bias (σ) Recovered τ Bias (σ)
r = 0 r = 0.1 τ = 0.1

Baseline Tests

(1) Baseline (uniform βs) < 0.03† 0.092 ± 0.033 — 0.094 ± 0.005 –
(2) Baseline (non-uniform βs) < 0.03† 0.092 ± 0.033 — 0.094 ± 0.005 –

Incorrect Model

(A) Dust 2-component-a 0.02 ± 0.016 0.125 ± 0.037 +0.9 0.097 ± 0.005 +0.6
(B) Dust 2-component-b < 0.04† 0.096 ± 0.036 +0.2 0.094 ± 0.005 < +0.1
(C) Synchrotron curvature 0.03 ± 0.020 0.125 ± 0.039 +0.9 0.097 ± 0.005 +0.6

Extra Components

(D) 1% free free < 0.03† 0.091 ± 0.032 < −0.03 0.094 ± 0.005 < +0.1
(E) 1% spinning dust < 0.04† 0.094 ± 0.033 < +0.03 0.094 ± 0.005 < −0.1

Incorrect Priors

(F) Strong βs prior mismatch 0.168 ± 0.047 0.197 ± 0.047 +2.1 0.104 ± 0.006 +1.7
(G) Weak βs prior mismatch 0.029 ± 0.021 0.117 ± 0.039 +0.6 0.096 ± 0.005 +0.4
(H) Strong βd prior mismatch 0.133 ± 0.044 0.224 ± 0.040 +3.3 0.107 ± 0.005 +2.6
(I) Weak βd prior mismatch < 0.04† 0.111 ± 0.034 +0.6 0.096 ± 0.005 +0.4

Table 2. Marginalized estimates and corresponding biases for r for simulations with r = 0 and r = 0.1, and for τ for simulations with
τ = 0.1. †These values are the upper 95% confidence levels for r = 0.

Figure 2. Recovered distributions for the tensor-to-scalar ratio, r, for simulations containing polarized components that are neglected
in the models. The baseline results (test 1) are compared to those with a 1% polarized free-free component (test D), and a 1% polarized
spinning dust component (test E), for r = 0 (left), and r = 0.1 (right). At this polarization level, these components are sufficiently
sub-dominant that they do not bias the recovered parameters.

fect conclusions. The free-free intensity is generated from
the PSM, which is consistent with WMAP data. The para-
metric model fits for power-law synchrotron and dust but
omits the free-free component.

Test E (spinning dust) includes a 1% polarized spinning
dust emission in addition to synchrotron and thermal dust.
Spinning dust Q and U emission are given by Qsd(ν) =
0.01Isd(ν) cos(2γ) and Usd(ν) = 0.01Isd(ν) sin(2γ), where
Isd(ν) is a spinning dust intensity map at frequency ν es-
timated from the PSM, and the angles γ are the same as
the thermal dust angles. The parametric model omits the
spinning dust component.

The resulting likelihoods are shown in Fig. 2, and pa-
rameters given in Table 2. We find that these small unmod-

eled components have a negligible effect on the estimated
parameters; the induced biases are within 0.04σ of the base-
line measurement in each case.

4.3 Incorrect priors

In our baseline model estimation we imposed Gaussian pri-
ors of βs = −3± 0.3 for the synchrotron spectral index, and
βd = 1.5 ± 0.5 for the thermal dust emissivity index. This
allowed an estimate of the CMB in areas of the sky with a
low signal-to-noise ratio. Even with seven frequencies, if the
signal-to-noise ratio is low, the synchrotron and dust com-
ponent can become degenerate with the CMB unless priors
are imposed.

Armitage-Caplan et al 2012	

•  Insert 1% polarized spinning dust or free-free	





Incorrect spectral model	
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Figure 1. Recovered distributions for the tensor-to-scalar ratio, r, for mismatched simulation and models, comparing the baseline (test
1) with three mismatched cases for r = 0 (left), and r = 0.1 (right). Modeling a two-component thermal dust simulation (modified
black-body emission with dust at mean temperatures 16 K and 10 K) with a power-law dust spectral index (test A) biases r high by
about 1σ, as does neglecting a curvature in the synchrotron spectral index (test C). Modeling a two-component dust simulation with a
one-component modified black-body model (Test B) has only a minor effect.

use model 7 of Finkbeiner at al. (1999), with [Q, U ](ν) ∝
A1νβ1Bν(T1)+A2νβ2Bν(T2). In this model the first compo-
nent is sub-dominant, with A2/A1 = 24.6. The dust

emissivity indices are β1 = 1.5, β2 = 2.6 over the

whole sky. Synchrotron emission is simulated as power-
law with a spatially uniform βs. The parametric model fits
to power-law dust and synchrotron, neglecting the curva-
ture of the dust spectrum. In Test B (two-component-dust-
b), dust emission is again simulated with two temperature
components (as in Test A), while the parametric model fits
to a one-component dust model, [Q, U ](ν) ∝ νβBν(T ). We
fix the temperature T over the sky to the values of T2 from
the simulation, and estimate a single index βd in every pixel.

Using these test cases, we perform component separa-
tion and use the resulting CMB maps to compute the like-
lihoods for parameters τ and r for the r = 0 and r = 0.1
simulations. The distributions are shown in Fig. 1, and re-
covered mean values for r, and τ , for these and all other
tests are summarized in Table 2. For r = 0 we quote 95%
upper limits; for r = 0.1 and τ we give 68% confidence lev-
els. For r = 0.1 we find a non-negligible bias on r of 1σ
high for Test A, fitting a two-component dust model with a
power-law, and a similar bias high for the optical depth, τ .
Using a one-temperature component model to fit the two-
component simulation (Test B), recovers r with only ∼ 0.2σ
bias. We see a similar effect for the r = 0 case, where for
Test A the recovered r value is greater than zero at 1σ, but
Test B is consistent with the baseline case.

4.1.2 Synchrotron frequency dependence

Synchrotron emission is expected to be roughly power-law
in frequency (see e.g., Rybicki & Lightman 1979), the re-
sult of relativistic cosmic-ray electrons accelerated in the
Galactic magnetic field (Strong et al. 2007). However, a
steepening of the index with frequency is also expected, due
to increased energy loss of the electrons (e.g., Banday &
Wolfendale 1991; Strong et al. 2007). The WMAP data are
consistent with power-law emission, but a modest steepening

would fit the data, and can be parameterized by a curvature
of the spectral index. In a pessismistic scenario, the degree
of steepening could vary significantly over the sky, or the
frequency dependence could be ill-fit by a single curvature
parameter.

In Test C (synchrotron curvature), the simulated Galac-
tic foreground includes a steepening of the synchrotron index
with frequency while the parametric model retains power-
law synchrotron emission. The synchrotron emission has
spectral curvature such that the index decreases by 0.3
between 30 and 100 GHz. Figure 1 and Table 2 show
the results from this third test case. The effect on the re-
covered CMB is non-negligible. We find that a synchrotron
curvature simulation generates a bias of about 1σ high in r,
or δr ∼ 0.03, roughly the same level as the two-component
dust simulation with power-law model. This mismatch also
results in a 1.5σ preference for r > 0 for the r = 0 model.

4.2 Additional polarized components

Our model and simulations contain only synchrotron and
thermal dust emission components. Other emission compo-
nents are not expected to be significantly polarized (see e.g.,
Fraisse et al. (2008), and Section 5 for further discussion).
However, both free-free and spinning dust emission are de-
tected in intensity, and they may be minimally polarized at
the few-percent level. Macellari et al. (2011) find an upper
limit on spinning dust of 5% and an upper limit on free-
free polarization of < 3%. Dickinson et al. (2011); López-
Caraballo et al. (2011) reduce the upper limits on spinning
dust polarization to ∼ 1− 2%.

Test D (free-free) simulates a Galactic foreground that
includes a 1% polarized free-free emission in addition to
the synchrotron and dust emission. Free-free Q and U emis-
sion are given by Qff(ν) = 0.01Iff (ν) cos(2γ) and Uff(ν) =
0.01Iff (ν) sin(2γ), where Iff(ν) is a free-free intensity map at
frequency ν and γ are the thermal dust angles. This assumes
that the free-free polarization angles match the thermal dust
angles, which is unrealistic but should not significantly af-

Armitage-Caplan et al 2012	

•  Assume power-law when modified grey-body	


•  Assume one-component when two-component	


•  Assume no curvature when really has curvature 

(0.3 from 30-100 GHz)	





Wrong priors	
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Figure 3. Recovered distributions for r, if prior distributions are imposed on spectral indices that do not exactly match the simulation
inputs. The baseline (test 2) has a dust index βd = 1.5, and a synchrotron index with mean βs = −3 over the sky. Indices for Stokes Q
and U are fit in 3-degree pixels over the sky, with Gaussian priors βs = −3 ± 0.3 and βd = 1.5 ± 0.5. Offsetting the synchotron prior by
1σ to −2.5 ± 0.5 (test F), significantly biases the recovered r high (top panels, for r = 0, left, and r = 0.1, right). A ∼ 0.5σ offset (test
G) results in a smaller but non-negligible bias. Similar biases are found for offsets in the dust prior (bottom), for βd = 2.0± 0.5 (test H)
and βd = 1.7 ± 0.5 (test I). These biases arise from over-parameterizing the model in low signal-to-noise regions.

The priors are astrophysically motivated; synchrotron
emission is expected to have an index in the typical range
−3.5 <

∼ βs
<
∼ − 2.5, depending on the injection spectrum

and nature of diffusion and cooling (Rybicki & Lightman
1979; Fraisse et al. 2008). Thermal dust emission is expected
to have emissivity index in the range 1 <

∼ β <
∼ 2.5 (see e.g.,

Fraisse et al. 2008). The 2σ range of the prior therefore cap-
tures physically reasonable beheaviour. However, our simu-
lations are perfectly matched to these priors: the simulated
synchrotron indices are either exactly −3.0 in Test 1, or have
a mean over the sky of −3 in Test 2, and the dust was sim-
ulated to have an index of 1.5. The real sky will likely not
match so well: we expect the emission to lie in the prior
range, but will not precisely match the mean. Dickinson et
al. (2009) conducted a similar study to quantify the effect
of priors using real data. Though they found that the priors
had a small impact on the CMB spectra, they considered un-
polarized emission, where foregrounds are relatively smaller.

We test the effects of these prior choices by fixing the
simulation spectral behavior, but choosing alternative Gaus-
sian priors with means that are offset from the simulation
inputs.

Test F (‘strong’ βs prior mismatch) examines a reason-
ably strong case of mismatch between the model prior and

simulation for synchrotron. Using Test 2 as the baseline, it
simulates synchrotron emission with values of βs that range
between −3.3 and −2.8, but the parametric model assumes
power-law synchrotron with a prior on βs of −2.5±0.5. Test
G (‘weak’ βs prior mismatch) assumes a prior of −2.8± 0.5.
Test H (strong βd prior mismatch) has a mismatch between
the model prior and simulation for dust. Using the base-
line simulations, the dust emission has βd = 1.5 while the
parametric model assumes a prior on βd of 2.0 ± 0.5. Test I
(‘weak’ βd prior mismatch) assumes a prior of 1.7 ± 0.5.

The likelihoods for these cases are plotted in Fig. 3,
with parameters reported in Table 2. These mismatches
result in the most significant biases. For synchrotron, the
strong mismatch case results in a 3.5σ spurious detection of
r (0.17 ± 0.05), for a model with no tensor component. The
recovered value for r is also biased about 2σ high for the
r = 0.1 case, and the optical depth τ is high by almost 2σ.
The weak mismatch case, with prior −2.8±0.5, is biased by
∼ 0.6σ in r, with a spurious signal at the 1σ level. Similar
results are seen for the dust emission. For the strong mis-
match a signal is significantly detected at 3σ when r = 0,
and biased more than 3σ for r = 0.1 (returning 0.22±0.04).
The weak mismatch case suffers from a bias of 0.6σ in r,
and 0.4σ in τ .
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5 DISCUSSION

We have found that modelling polarized Galactic fore-
grounds incorrectly can lead to significant biases in the re-
covered CMB signal. In this section we discuss the reasons
these biases are observed, and how they might be mitigated.

5.1 Effect of priors

When marginalizing over foreground uncertainty using a pa-
rameterized method, components are distinguished by their
frequency dependence. This provides a way of separating the
black-body CMB signal from the foreground components. In
the low signal-to-noise regime a prior on this spectral behav-
ior breaks the degeneracy between CMB and foregrounds.

However, we find that choosing an incorrect, yet phys-
ically reasonable, prior for the frequency dependence can
have a significant impact on the estimated cosmological sig-
nal. With a simulated synchrotron spectral index between
−3.3 and −2.8, and a Gaussian prior of −2.5±0.5 on the in-
dex in each pixel, the tensor-to-scalar ratio is overestimated
by ∼ 3σ for an r = 0.1 model, or a spurious detection made
when r = 0. The effect is less extreme when the mean of the
Gaussian prior is closer to the input, −2.8, but a bias of 1σ
is still observed. In the limit of a low signal-to-noise ratio,
this can be understood as equivalent to setting the spec-
tral index to the wrong value over the whole sky. A prior
of βs = −2.5 ± 0.5 results in an index that is everywhere
∼ −2.5, instead of the mean simulated value βs ∼ −3. Simi-
larly, a prior on the dust index, or emissivity, of βd = 2.0±0.5
results in an index of ∼ 2.0 instead of the simulated 1.5.

This incorrect recovery in regions having a low signal-
to-noise ratio is demonstrated in the left panels of Fig. 4
for the synchrotron Q-Stokes component. Away from the
Galactic plane, the index is estimated to be roughly −2.5±
0.5. We also show in Fig. 5 the frequency dependence of
the components, rms averaged over the masked sky in 3.6◦

pixels, and compared to the CMB signal in both E-modes
and B-modes for r = 0.1. Assuming that the synchrotron
pivot is fixed at 30 GHz, an index that is too shallow by
βs ∼ 0.5 overestimates the synchrotron power by of order
0.1 µK in antenna temperature at the foreground minimum
of 100 GHz. This is significant compared to the r = 0.1 B-
mode signal, so a bias is expected. Similarly for dust, with
a pivot at 353 GHz, a dust emissivity index too steep by
βd ∼ 0.5 would underestimate the dust at 100 GHz by up
to ∼ 0.1 µK in antenna temperature; significant compared
to the r = 0.1 signal.

This specific case where the prior is systematically dif-
ferent to the input by up to 1σ everywhere on the sky is
a pessimistic scenario, but not implausible. To avoid the
risk of bias, one must therefore take care in how the fore-
ground model is parameterized. In the Bayesian framework,
our chosen model has too many free parameters, given the
low signal-to-noise ratio, so the result is being driven by the
prior. To mitigate this, there are several ways of increas-
ing the signal-to-noise ratio in the indices: including an-
cillary data from complementary experiments like WMAP
and C-BASS (King et al. 2010), assuming common temper-
ature and polarization spectral indices, using larger pixels to
define the indices, or defining spectral indices in harmonic
space to allow spatial coherence.

Figure 6. Recovered distributions for input r = 0.1 for the base-
line simulation with mean synchrotron index input βs = −3, and
Gaussian priors −2.5 ± 0.5 or −2.8 ± 0.5 (test F and G). The
prior-dependent biases are reduced when the signal-to-noise is in-
creased by assigning Q and U common indices (top, F2), or adding
low-frequency data from WMAP or C-BASS (bottom, F3).

We consider two of these possible improvements. Each
three-degree pixel can have a distinct spectral index for I,
Q, and U. The first natural improvement is to fix the Q and
U spectral indices to be common in each pixel, βs

Q = βs
U .

Physically this is reasonable; the polarized signal comes from
the same region of the Galaxy for both Q and U-type, and
can be expected to have the same frequency dependence,
consistent with observations (Kogut et al. 2007; Dunkley et
al. 2009a; Gold et al. 2009). We repeat Tests F and G with
this condition (Tests F2 and G2), and show the recovered
index map in Fig. 4, with the likelihoods for r in Fig. 6. The
index map now has a higher signal-to-noise ratio, and the
bias on r reduced from more than 2σ to 1σ (for a prior of
βs = −2.5 ± 0.5). Fixing the temperature and polarization
indices to be common is less physically motivated so we do
not consider this here; depolarization effects could lead to
different regions of the Galaxy contributing to the integrated
polarization signal.

The signal-to-noise ratio can also be improved by
adding ancillary data that better traces the foregrounds.
Since the synchrotron signal dominates at lower frequencies,
additional data at the low frequency range will increase the

9

Figure 4. Estimated synchrotron spectral index for the Q-Stokes parameter (showing mean, top, and uncertainty, bottom), for a
simulation with mean βs = −3 and prior −2.5 ± 0.5 (Test F). Allowing free Q and U spectral indices, and using just 30-353 GHz
data (left), the prior of −2.5 is returned in low signal-to-noise regions. If Q and U signals are assigned a common index (centre), the
signal-to-noise is increased. If low-frequency simulated data from WMAP (23 GHz) and C-BASS (5 GHZ) is added (right), the spectral
index map is recovered with high signal-to-noise.

Figure 5. Frequency scaling of the foreground components in the baseline simulation (test 1), rms averaged over the unmasked sky in
3.7◦ pixels (" ∼ 50 scales), and compared to the CMB E-mode signal for τ = 0.1 (solid blue curve) and B-mode signal for r = 0.1 (dashed
blue curve). If an incorrect spectral index in synchrotron or thermal dust is assumed (e.g., by imposing a prior: tests F, G, H, and I), or
a synchrotron curvature neglected (test C), the over- or under-subtraction of foregrounds at ∼ 100− 150 GHz is significant compared to
an r = 0.1 signal.

Armitage-Caplan et al 2012	

•  Assume synch prior 
-2.5±0.5 or -2.8±0.5 in 4 
deg pixels, when really -3.0	



•  Same effect for dust	


•  Same effect for r=0	


•  Increasing S/N with C-BASS 

helps	


0 < sigma < 0.5	





Some observations	


1.  Method can return wrong answer where S/N is low, if applied 

blindly.	



2.  Be very careful when imposing priors, or over-parameterizing 
model. 	



3.  Also be careful under-parameterizing model!	



4.  All modeling errors over-predict r	



5.  However, properly treated, this formalism is powerful: it 
inflates CMB error to account for foreground uncertainty.	



6.  So far, limited application beyond reionization bump à to go 
for l~100 need to think about how to include spectral 
variation. In fact, spatial coherence is missing in most models.	





Summary	


•  So far, polarized foreground removal has not required more 

than simple template cleaning.	



•  But, parameterizing the foregrounds, and marginalizing over 
their parameters, allows for more rigorous error propagation, 
which is much more important for smaller CMB signals. 	



•  The community has codes ready to do this, but the models may 
not be most ‘elegant’.	



•  It is clear that care must be taken in how the model is set up, 
avoiding too much freedom in low S/N regime.	




