Gravitational Lens Time Delays: Past, Present and Future

Sherry Suyu

Academia Sinica, Institute of Astronomy & Astrophysics

The Return of de Sitter II @ MPA

Many thanks to

Matt Auger (University of Cambridge) Roger Blandford (Stanford University) Tom Collett (University of Cambridge) Frédéric Courbin (EPFL, Lausanne) Chris Fassnacht (UC Davis) Zach Greene (Columbia University) Aleksi Halkola (University of Lübeck) **Stefan Hilbert (MPA, Garching)** Leon Koopmans (Kapteyn Institute) **Phil Marshall** (Stanford University) **Georges Meylan (EPFL, Lausanne) Dominique Sluse (AlfA, Bonn) Alessandro Sonnenfeld (UC SB) Chiara Spiniello (Kapteyn Institute)** Malte Tewes (EPFL, Lausanne) **Tommaso Treu (UC SB)** Kenneth Wong (ASIAA, Taiwan)

Outline

- Motivations
- Gravitational lens time delays
- A brief history and recent advances
- Results and implications for cosmology from two time-delay lenses
- Search for new lenses in HSC survey
- Adaptive optics imaging of lenses

H_0 , a key parameter

Planck collaboration (2013):

Tension? New physics? \blacktriangleright Need more precise & accurate H_0

*H*₀ provides critical independent constraints on

- nature of dark energy
- neutrino physics
- spatial curvature of the Universe

[e.g., Freedman et al. 2012, Suyu et al. 2012, Weinberg et al. 2012, Sekiguchi et al. 2010]

Independent methods are needed to overcome systematics, especially the unknown unknowns

Gravitational Lens Time Delays

RXJ1131-1231

Advantages:

For cosmography, need: (1) time delays (2) lens mass model (3) mass along line of sight sics

- simple geometry & well-tested physics
- one-step physical measurement of a cosmological distance

Brief History

- 1964: Method proposed by Refsdal
- 1970s: First lenses discovered
- 1980s: First time delay measured
 - Controversy. Solution: improve sampling
- 1990s: First Hubble Constant measured
 - Controversy. Solution: improve mass models
- 2000s: modern monitoring (COSMOGRAIL, Fassnacht & others)
- 2010s: Putting it all together.

Advances in 1) time delays

2) lens mass model

3) mass along line of sight

precision measurements (5-8% from a single lens)

(1) Time Delays

[Vanderriest et al. 1989]

Dedicated monitoring

Radio
 [e.g., Fassnacht et al. 2002]

 $\Delta t \mathcal{Q}$ lens

 Optical COSMOGRAIL [e.g., Courbin et al. 2011, Tewes et al. 2013]
 Kochanek et al. 2006

S. Suyu, 2013/10/14

(1) Time Delays

[Cosmological Monitoring of Gravitational Lenses]

monitoring lensed quasars since 2004 in the optical

expect to have delays with a few percent error for ~20 lenses

EPFL: G. Meylan, F. Courbin, M. Tewes, C. Faure, Y. Revaz, N. Cantale (Formerly: A. Eigenbrod, C. Vuissoz)
IIA Bangalore: T. Prabhu, C.S. Stalin, R. Kumar, D. Sahu
Univ. Bonn: D. Sluse
Univ. Liège: P. Magain, E. Eulaers, V. Chantry
UZAS Tashkent: I. Asfandiyarov
Univ. Zürich: P. Saha, J. Coles
Univ. Nottingham: S. Dye

Now also in close collaboration (monitoring, microlensing) with: C. Kochanek, A. Mosquera (Ohio), C. Morgan, C. MacLeod, L. Hainline (USNA)

(1) Time Delays

RXJ1131: Time delay with 1.5% Accuracy! [Tewes et al. 13b]

Based on state-of-the-art curve modeling techniques [Tewes et al. 13a]

9

Gravitational Lens Time Delays

RXJ1131-1231

For cosmography, need:
(1) time delays
(2) lens mass model
(3) mass along line of sight

(2) Lens Mass Model

Used only image positions of AGN (providing few constraints) Use extended images of AGN host

D∆t

С

 ϕ_{lens}

[e.g., Dye et al. 2005, Suyu et al. 2009]¹¹

S. Suyu, 2013/10/14

(2) Lens Mass Model

S. Suyu, 2013/10/14

(2) Lens Mass Model

Gravitational Lens Time Delays

RXJ1131-1231

For cosmography, need: (1) time delays (2) lens mass model (3) mass along line of sight

(3) Mass along Line of Sight

galaxy number counts + Millennium Simulation

S. Suyu, 2013/10/14

???

(3) Mass along Line of Sight

???

(3) Mass along Line of Sight

galaxy mass assignment + Millennium Simulation

S. Suyu, 2013/10/14

???

Two time-delay lensesB1608+656RXJ1131-1231

Discovery: Myers et al. 1995 Delays: Fassnacht et al. 2002 Modeling: Suyu et al. 2009, 2010 Pilot Study: measured $D_{\Delta t}$ to 5% B S D A G C

Discovery: Sluse et al. 2003 Delays: Tewes et al. 2012 Modeling: Suyu et al. 2013 Blind Analysis: test analysis method ¹⁹

Blind Analysis

- Prevents unconscious experimenter bias
- allows us to test for the presence of residual systematics
- PDF centroids of cosmological parameters are hidden

Blind Analysis

Blinded time-delay distance

- Prevents unconscious experimenter bias
- allows us to test for the presence of residual systematics
- PDF centroids of cosmological parameters are hidden
- when ready to unblind, publish unblinded results without modification ²¹

Cosmological Probe Comparison

WMAP7owCDM prior

[Suyu et al. 2013a]

contour orientations are different: complementarity b/w probes
contour sizes are similar: lensing is a competitive probe

HOLICOW (H₀ Lenses in COSMOGRAIL Wellspring)

3 more lenses:

- delays with a few percent uncertainty from COSMOGRAIL
- *HST* deep imaging for modeling
- Lens galaxy spectroscopy pending
- Imaging and spectroscopy of the fields pending

How to get more lenses?

Hyper Suprime-Cam Survey

3 layers Wide: 1400 deg², grizy, r~26 Deep: 27 deg², grizy+3NB, r~27 Ultra-Deep: 3.5 deg² (2 pointings), grizy+3NB, r~28

Number of lenses in HSC

HSC-Wide: 1400 deg² with r~26

HSC-Deep: 27 deg² with r~27

> ~600 lenses (~80 are quads)

[Oguri & Marshall 2010]

26

[Anguita et al. 2009]

How to tell if this is a lens? use configuration of blended images 27

S. Suyu, 2013/10/14

Image configurations of lenses

S. Suyu, 2013/10/14

Follow-up: requirement for lens mass modeling

- High sensitivity to detect the ring
- High angular resolution to resolve the ring
- Until now, this has meant HST observations

B1608+656 HST

29

SHARP: An alternative approach

- SHARP = Strong-lensing High Angular Resolution Program
- Use laser guide star adaptive optics with Keck II Telescope
- Get resolution comparable to or better than HST, while using a mirror that has 16 times the collecting area

• Team SHARP:

Chris Fassnacht, Simona Vegetti, John McKean, Dave Lagattuta, Leon Koopmans, Matt Auger

© Paul Hirst 2006

 $\theta \sim \lambda / \Gamma$

³⁰ [Material courtesy of Chris Fassnacht]

AO vs. Space: B0712+472

SHARP Image Gallery

B0128

B0445

J0837

J1446

J1248

B1938

J0913

J1605

10924

J1619

B0712

B1359

HE0435

J1009

J0252

J1144

MG0751

All images are 3" on a side [Fassnacht et al, in prep] 32 [Material courtesy of Chris Fassnacht]

SHARP for time-delay cosmography?

Can AO data produce similar cosmological constraints as HST data for time-delay systems?

First test on RXJ1131-1231 [Chih-Fan Chen et al, in preparation]

HST/ACS F814W

Keck AO Ks (1 hr exposure)

AO would be an efficient way to follow up time-delay lenses especially given advances in current and future AO systems (e.g., Keck, VLT, Gemini, LBT, TMT, GMT, EELT)

Future Prospects

[Linder 2011]

 Current and future surveys will discover hundreds of QSO lenses [Oguri & Marshall 2010]: HSC: ~600 (~80 quads) DES: ~1000 (~130 quads) LSST: ~8000 (~1000 quads)

When combine 150 lenses with CMB+SN:

- Area of w_a-w₀ contour tightens by a factor of ~5
- All cosmological parameters are better determined by factors of ~3 with the inclusion of time delays

Time-delay lenses are excellent complements to other probes

Summary

- Time-delay distances $D_{\Delta t}$ of each lens can be measured with uncertainties of ~5-8% including systematics
- Blind analysis of RXJ1131-1231 demonstrated robustness of method
- w and flatness constraints from lenses are comparable in precision to BAO and SN when each is combined with WMAP
- Lenses highly complement other probes
- Stay tuned for results from H0LiCOW
- Robot development is underway to find new lenses in HSC
- Work is in progress to test whether AO is viable for follow up
- Current and future surveys will find at least hundreds of timedelay lenses, providing an independent and competitive probe of cosmology