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In	 the	 beginning,	 a	 sound	 wave	 …

• Each initial overdensity is an over-
pressure that launches a spherical 
sound wave. 

• This sound wave travel at 57% 
speed of light. 

• Pressure providing photons 
decouple at recombination. We see 
these photons as the CMB

• Wave stalls at a radius of ~150Mpc

• Overdensity in shell and center 
both seed formation of galaxies. 
Preferred separation of 150Mpc



What can you do with imaging data? 
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Figure 1. The angular power spectrum in the four redshift slices of LRGs. Open circles with (1�)
error bars represent data points that are excluded due to large unknown systematics, as determined
using the cross-power spectra. Filled circles, on the other hand, are data points that are not dominated
with unknown systematics. Note that in each redshift slice there are some bins that would not appear
contaminated but are still dropped as their cross-power with another redshift slice is significantly
contaminated and one cannot tell a priori which redshift slice is responsible for the contamination.
The vertical dotted line shows `

max

; we only use filled data points in 10  `  `
max

for our analysis.
The curves are the theoretical angular power spectra at the best-fit and 68% confidence values of f

NL

for LRGs + quasars — f
NL

= 2 (solid black), f
NL

= �64 (dashed red), and f
NL

= 67 (long-dashed
blue). We also add the non-linear fitting parameter a to the theoretical C`s, which causes the upturn
at large `.

expected to be weak [22], it is still useful to look at constraints from LRGs + quasars. The
results of these studies are given in table 4.
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Cosmological Constraints from the overall shape

WMAP7+HST+SN+DR8

SH, Cuesta, Seo, Ross, DePutter et al. (2012) 

WMAP7+HST+SN+DR8

Combining with WMAP7+SN+HST,  
Dark Energy equation of state is 

constrained to 7% (1-sigma) 



Cosmological Constraints from the overall shape

WMAP7+HST+SN+DR8

WMAP7+HST+SN+DR8

By including DR8 angular 
clustering (+WMAP+HST), 
we improve the constraint 
on flatness of the Universe 
by 40% over WMAP7+HST

 

SH, Cuesta, Seo, Ross, DePutter et al. (2012) 



Cosmological Constraints from the overall shape

WMAP7+HST+SN+DR8

WMAP7+HST+SN+DR8

The sum of 
neutrino masses 
is constrained to 
less than 0.26eV

DePutter, Mena, Guisarma, SH, Seo et al. (2012) 
SH, Cuesta, Seo, Ross, DePutter et al. (2012) 
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Testing initial conditions of the Universe 



What else can you do with imaging data? 
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Figure 15. The magenta line shows the marginalized distribution of f
NL

when we combine
WMAP9+SN with QSO clustering over ` bins in the range 30  `  `

max

, using a “typical” choice to
remove systematics in the angular power spectrum of quasars—a hard cut of `  30. The green line
shows the marginalized distribution of f

NL

when we instead remove contaminated bins as determined
by cross-correlating di↵erent redshift slices as described in [74]. There is a decrease in constraining
power when we remove more `-bins using the new method. The blue line combines WMAP9+SN
with QSOs and LRGs, again removing contaminated bins as determined by cross-correlating redshift
slices [74]. The LRG and quasar samples become consistent when we remove contaminated bins using
our new method instead of the “typical” choice.
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1
R

Figure 16. The magenta line shows the marginalized distribution of ⌦
⇤

with a similar color coding
to Fig. 15.
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Testing initial conditions of the Universe 
Dalal et al., 2008, Slosar et al. 2008... 

SH,  Agarwal, Myers et al. 2013 ( under SDSS3 review)

Marginalized Probability Distribution 
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Testing initial conditions of the Universe 
Dalal et al., 2008, Slosar et al. 2008... 

Marginalized Probability Distribution 

SH,  Agarwal, Myers et al. 2013 ( under SDSS3 review)

The chronicle of a broken physicist dream.... 
with 1.6 million quasars over 80 (Gpc/h)^3
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Testing initial conditions of the Universe 
Dalal et al., 2008, Slosar et al. 2008... 

Marginalized Probability Distribution 

With Angular Clustering of 
Quasars: Project out all known 

systematics + starting from l >30

SH,  Agarwal, Myers et al. 2013 ( under SDSS3 review)
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Testing initial conditions of the Universe 
Dalal et al., 2008, Slosar et al. 2008... 

Marginalized Probability Distribution 

With Angular Clustering of 
Quasars:  Project out all 

known systematics + 
Removing angular scales with 

unknown systematic 
contaminations

SH,  Agarwal, Myers et al. 2013 ( under SDSS3 review)
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Marginalized Probability Distribution 

Adding both cleaned 
QSOs + LRGs

SH,  Agarwal, Myers et al. 2013 ( under SDSS3 review)



the most generic or natural bispectra in those cases are not yet fully understood. Previous
constraints and forecasts based on LSS and CMB data, for various subsets of these models,
can be found in [11, 22, 73–77].

Any non-Gaussianity that can be detected using the halo bias also has interesting ram-
ifications for how we use observations to constrain inflation theory [78–81]. Properties of
the primordial fluctuations within our observed volume of the Universe may themselves be
biased with respect to the mean statistics predicted by any inflationary model. Since we
have no way of knowing whether or not our observed Universe has typical, mean, or highly
biased statistics, local type non-Gaussianity introduces a new source of cosmic variance un-
certainty in relating observations to theory. Tighter observational constraints, especially on
small scales [82], are required to eliminate this cosmic variance as relevant for our cosmology.

Since inflation model building continues and there is so far no hard theory limit on the
range of ↵ allowed by any conceivable model of inflation, we adopt the parameterization of
eq. (1.9) to study observational constraints on A

NL

and ↵ using data from LRGs and quasars
in the SDSS-III Data Release Eight (DR8) sample [8, 83–85]. We use these constraints to
infer what current LSS observations tell us about the initial conditions in the very early
Universe, and inflationary mechanisms for generating them.

With current LSS data, especially in the absence of a complete understanding of various
systematics in the data, it appears di�cult to probe the mass-dependence of the amplitude of
non-Gaussianity. As a pointer for future surveys, we present analytic results on the expected
scaling of the amplitude A

NL

with bias (b
1

� p), for di↵erent forms of the bispectrum. We
further perform a Fisher matrix analysis to assess how much better could a survey of a similar
volume as DR8 do, in the absence of any systematic uncertainties in the data.

The paper is organized as follows. In section 2 we describe the data that we use and the
method that we adopt. We obtain constraints on the scale-dependence of the bias in section
3. In section 4 we discuss the analytic method to determine the non-Gaussian correction to
the bias and use it to obtain the scaling of A

NL

with b
1

� p. We present Fisher forecasts in
section 5 and conclude with a discussion in section 6.

2 Method and data

We begin by describing the general method we adopt to constrain models of inflation using
LSS data. We would like to use a generalized version of eq. (1.8) given by

�b (M,k, z,A
NL

,↵) = 3A
NL

(b
1

(M, z))[b
1

(M, z)� p]
⌦mH2

0

k2(k/kp)↵�2T (k)D(z)
, (2.1)

in the halo power spectrum,

P
halo

(M,k, z,A
NL

,↵) = [b
1

(M, z) +�b (M,k, z,A
NL

,↵)]2 P
matter

(k, z), (2.2)

and fit the corresponding angular power spectrum (rather than the full three-dimensional
power spectrum above which is relatively di�cult to measure) to LSS data, to constrain A

NL

and ↵. For this purpose, we use a Markov-Chain Monte-Carlo (MCMC) approach to explore
the available parameter space using a modified version of the widely used package CosmoMC

[86]. We calculate the linear matter power spectrum using the CAMB code [87] included
in the CosmoMC package, and apply the HaloFit prescription [88] to account for non-linear
e↵ects on the matter power spectrum. In eq. (2.1) we have included �c in our definition of
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• Therefore, we can parameterize the bias 
correction as 
 

 
 

• Exact local ansatz: ߙ = 2 
    General initial states: ߙ  3 
    Multiple fields: 0  ߙ د 2 + ࣩ(߳) (S. Shandera, N. Dalal,  
      and D. Huterer, 2011; E. Sefusatti, J. R. Fergusson, X. Chen, and E.  
      Shellard, 2012; M. Dias, R. Ribeiro, and D. Seery, 2013) 
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Fixed parameter Data set Constraints
(↵ or A

NL

)
LRGs A

NL

= �32+177

�180

↵ = 1.7 Quasars A
NL

= 217+411

�410

LRGs + quasars A
NL

= �1+171

�171

LRGs A
NL

= �3.5+10.8
�10.6

↵ = 3 Quasars A
NL

= 1.8+12.3
�14.5

LRGs + quasars A
NL

= 0.5+2.5
�2.5

— LRGs + quasars See fig. 3

Table 4. Constraints on A
NL

�
kp = 0.1 Mpc�1

�
and ↵, with 68% confidence limits, using di↵erent

data sets.

at much larger scales, which are eventually limited by systematics.
Next we consider the case where we vary over both ↵ and A

NL

. Fig. 3 shows the
posterior probability distribution in the (↵,A

NL

) parameter space using LRGs + quasars.
Note that there is an infinite degeneracy in ↵ in the A

NL

= 0 direction. The full marginalized
upper limit on ↵ is 2.0 at the 95% confidence level. This is in agreement with the CMB-
galaxy cross-correlation constraints of [11] (also see [77] for CMB constraints on the running
of non-Gaussianity).

-400 -200 0 200 400
-4

-2

0

2

4

ANL

a

Figure 3. The 68% (dark blue) and 95% (light blue) confidence regions in the (↵,A
NL

) parameter
space using LRGs + quasars.
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Giannantonio et al. (2013)
Agarwal, SH & Shadera (2013)



Testing initial state of inflation !
Why I shouldn’t despair yet...

Agarwal, SH & Shadera (2013)

This is what would have happened if we have no systematics!
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SDSS III 
Data Release 9-12 Spectroscopy

• Public data release: 

• July 2012: 700,000 spectra, 1/3 
footprint; + 1.5 million spectra 
from SDSS 1+2 and 14,000 
square degrees of imaging

• Our first BAO analysis uses 
only the higher redshift 
portion of the sample (called 
CMASS)

• 264k galaxies over 3275 sqdeg 
at median z=0.57



Anderson et al. 2012

Extremely clear BAO detection at z=0.57; 
measure the distance to z=0.57 with a 1.7% precision 

SDSS III 
DR9- All Spectroscopy



BAO Hubble Diagram 

pre-reconstruction,  Percival et al. 2010
post-reconstruction

post-reconstruction



BAO Hubble Diagram 

pre-reconstruction,  Percival et al. 2010
post-reconstruction

post-reconstruction



• =

highL = ACT (148,218)+ SPT (95,150,220)
WP= WMAP polarization

BAO= 6dF+SDSS(R)+BOSS



• =



31

Detected BAO using Lyman alpha forest at z=2.3

with NO CMB at all!!

• See Anze Slosar’s talk! 

• BAO in Lyman-alpha forest

• First BAO analysis at z>2



SDSS III 
What about after DR9 ? 

2 Aardwolf et al.

quite large and the acoustic feature is thus quite insensitive to astro-
physical processing that typically occurs on much smaller scales.
This makes experiments using the BAO signal relatively free of
systematic errors.

A review of recent BAO measurements was provided in the
introduction of Anderson et al. (2012), which described recent ex-
periments culminating in the first set of analyses of the galaxies
in Data Release 9 of the Baryon Oscillation Spectroscopic Survey
(BOSS;Dawson et al. 2012), part of the Sloan Digital Sky Survey
(SDSS; Eisenstein et al. 2011). A number of experiments have used
the BAO technique to measure the distance-redshift relationship,
leading to measurements over a wide range of redshifts (Beutler
et al. 2011; Blake et al. 2011a; Padmanabhan et al. 2012a, e.g.).
Recently, these measurements have benefitted from a simple “re-
construction” procedure, that uses the phase information within the
density field to reconstruct linear behaviour, and sharpens the BAO
(Eisenstein et al. 2007a). In Anderson et al. (2012), we used “recon-
struction” to provide a 1.7% distance measurement from the BOSS
DR9 galaxies, the most precise measurement ever obtained from
a galaxy survey. In ? we fitted moments of the anisotropic corre-
lation function measured from the same data, providing distance
constraints split into radial and anisotropic directions. We now ex-
tend, and update these results to the latest dataset from the ongoing
BOSS.

Four companion papers present extensions to the methodol-
ogy, testing, or data sets beyond those applied previously to the
DR9 data:

(i) ? split the DR10 CMASS sample into red and blue galaxies,
showing that consistent cosmological measurements result from
both data sets.

(ii) ? describes the production of mock catalogues, used here to
determine errors and test our analysis methods.

(iii) Percival et al. (2013) presents a method to propagate errors
in the covariance matrices determined from the mocks through to
errors on the final measurements.

(iv) We now include measurements made at z = 0.32 from the
low-redshift “LOWZ” BOSS sample of galaxies. An analysis of
the clustering of these data is presented in Tojeiro et al. (2013),
showing that the measurements are not contaminated by systematic
fluctuations.

We also have produced a series of companion papers present-
ing complimentary cosmological measurements from the DR10
and DR11 data:

(i) ? presents a fit to the CMASS power spectrum monopole and
quadrupole, measuring Redshift-Space Distortions (RSD).

(ii) ? fits the CMASS correlation function monopole and
quadrupole, measuring Redshift-Space Distortions (RSD) using a
streaming model.

(iii) ? fits CMASS correlation function moments with a renor-
malised perturbation theory model, providing a joint fit to multiple
cosmological parameters

The layout of this paper is as follows. We introduce the data
and the catalogue in the next section. The catalogue construction
is similar to that described in Anderson et al. (2012) for DR9, and
so we focus primarily on the differences and improvements. The
analysis techniques are described in Section 3, with the primary
results presented in Section ??. Our final distance measurements
are presented in Section X and these measurements are placed in
a cosmological context in Sections Y and Z. Throughout the paper
we assume a fiducial ⇤CDM+GR, flat cosmological model with

⌦m = 0.274, h = 0.7, ⌦bh
2 = 0.0224, ns = 0.95 and �

8

= 0.8,
matching that used in Anderson et al. (2012); ?. These parameters
allow us to translate angles and redshifts into distances and pro-
vide a reference against which we measure distances. The BAO
measurement allows us to constrain changes in the distance scale
relative to that predicted by this fiducial model. Unlike in Anderson
et al. (2012) we define the acoustic scale as the sound horizon, rs,
at the drag epoch [⌧

drag

(z
drag

) = 1] and use the numerical cal-
culation of this quantity from CAMB rather than the older fitting
function of Eisenstein & Hu (1998). For our fiducial cosmology,
this gives rs = XXX Mpc.

2 THE DATA

2.1 SDSS-III BOSS

We use data included in data releases 10 (DR10) and 11 (DR11)
of the Sloan Digital Sky Survey (SDSS; York et al. 2000). To-
gether, SDSS I, II (Abazajian et al. 2009), and III (Eisenstein et
al. 2011) used a drift-scanning mosaic CCD camera (Gunn et al.
1998) to image over one third of the sky (14 055 square degrees)
in five photometric bandpasses (Fukugita et al. 1996; Smith et al.
2002; Doi et al. 2010) to a limiting magnitude of r ' 22.5 us-
ing the dedicated 2.5-m Sloan Telescope (Gunn et al. 2006) located
at Apache Point Observatory in New Mexico. The imaging data
were processed through a series of pipelines that perform astromet-
ric calibration (Pier et al. 2003), photometric reduction (Lupton et
al. 2001), and photometric calibration. All of the imaging was re-
processed as part of SDSS Data Release 8 (Aihara et al. 2011).

BOSS is designed to obtain spectra and redshifts for 1.35 mil-
lion galaxies over an extragalactic footprint covering 10 000 square
degrees. These galaxies are selected from the SDSS DR8 imaging
and are being observed together with 160 000 quasars and approxi-
mately 100 000 ancillary targets. The targets are assigned to tiles of
diameter 3� using a tiling algorithm that is adaptive to the density
of targets on the sky (Blanton et al. 2003). Spectra are obtained us-
ing the double-armed BOSS spectrographs (Smee et al. 2012). Each
observation is performed in a series of 900-second exposures, in-
tegrating until a minimum signal-to-noise ratio is achieved for the
faint galaxy targets. This ensures a homogeneous data set with a
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Figure 2. Histograms of the galaxy number density as a function of redshift
for LOWZ (red) and CMASS (green) samples we analyze. We also display
the number density of the SDSS-II DR7 LRG sample in order to illustrate
the increase in sample size for BOSS at z < 0.43.

c� 2011 RAS, MNRAS 000, 1–33
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Figure 1. Evolution of the BOSS sky coverage from DR9 to DR11.

high redshift completeness of > 97 per cent over the full survey
footprint. Redshifts are extracted from the spectra using the meth-
ods described in Bolton et al. (2012). A summary of the survey
design appears in Eisenstein et al. (2011), and a full description is
provided in Dawson et al. (2012).

2.2 Galaxy Catalogues

BOSS selects two classes of galaxies to be targeted for spec-
troscopy using SDSS DR8 imaging. The ‘LOWZ’ algorithm is de-
signed to select red galaxies at z < 0.4 from the SDSS DR8 imag-
ing data via

rcmod < 13.5 + ck/0.3 (1)
|c?| < 0.2 (2)

16 < rcmod < 19.6 (3)
rpsf � rmod > 0.3 (4)

where all magnitudes are corrected for Galactic extinction (via the
Schlegel, Finkbeiner & Davis 1998 dust maps), ifib2 is the i-band
magnitude within a 200 aperture, the subscript mod denotes ‘model’
magnitudes (Stoughton et al. 2002), the subscript cmod denotes
‘cmodel’ magnitudes (Abazajian et al. 2004), and

ck = 0.7(gmod � rmod) + 1.2(rmod � imod � 0.18) (5)

and

c? = rmod � imod � (gmod � rmod)/4.0� 0.18. (6)

The resulting LOWZ galaxy sample has three times the spatial den-
sity of the SDSS-II LRGs, as is shown in Fig. 2, with a similar
clustering amplitude to the CMASS sample (Parejko et al. 2013).
The effective redshift is z = 0.32, slightly lower than that of the
SDSS-II LRGs as we place a redshift cut z < 0.43 to ensure no
overlap with the CMASS sample, and independent measurements.
Further details can be found in Parejko et al. (2013) and Tojeiro et
al. (2013).

The CMASS sample is designed to be approximately stellar
mass limited above z = 0.45. These galaxies are selected from the

SDSS DR8 (Aihara et al. 2011) imaging via

17.5 < icmod < 19.9 (7)
rmod � imod < 2 (8)

d? > 0.55 (9)
ifib2 < 21.5 (10)

icmod < 19.86 + 1.6(d? � 0.8) (11)

where

d? = rmod � imod � (gmod � rmod)/8.0. (12)

For CMASS targets, stars are further separated from galaxies by
only keeping objects with

ipsf � imod > 0.2 + 0.2(20.0� imod) (13)
zpsf � zmod > 9.125� 0.46zmod, (14)

unless the target also passes the LOWZ cuts listed above.
The CMASS selection yields a sample with a median redshift

z = 0.57 and a stellar mass that peaks at log
10

(M/M�) = 11.3
(Maraston et al. 2012). See Tojeiro et al. (2012a) for a detailed
description of the CMASS population of galaxies.

Target lists are produced using these algorithms and are then
“tiled” to produce lists of galaxies to be observed with a single
pointing of the Sloan telescope. Not all targets can be assigned
fibers, and not all that are result in a good redshift measurement.
In fact, there are three reasons why a targeted galaxy may not ob-
tain a BOSS spectrum:

(i) SDSS-II already obtained a good redshift for the object; these
are known.

(ii) A higher priority target of different type is within 62001;
these are missed.

(iii) another target of the same type is within 6200; these are de-
noted cp for close-pair.

There are two reasons why a spectrum might not result in a good
redshift measurement:

1 this is a hardware constraint corresponding to the closest that two fibers
can be placed

c� 2011 RAS, MNRAS 000, 1–33

SDSS III 
Data Release 9-12 Spectroscopy

SDSS Collaboration (in prep)

1million~60K~30K high-z galaxy spectra



10 Aardwolf et al.

we can transform Equation (39) to the observed space ⇠(r, µ)
obs

.
This can then be re-decomposed into models for the multipole mo-
ments in observed space.

The final models we fit to our observed multipoles ⇠
0

(r) and
⇠
2

(r) are

⇠
0

(r) = B2

0

⇠
0,obs

(r) + A
0

(r)

⇠
2

(r) = ⇠
2,obs

(r) + A
2

(r) (42)

where

A`(r) =
a`,1

r2

+
a`,2

r
+ a`,3; ` = 0, 2,?, k . (43)

These A`(r) terms are used to marginalize out broadband (shape)
information such as scale-dependent bias and redshift-space distor-
tions through the a`,1 . . . a`,3 nuisance parameters (?). The param-
eter B2

0

acts like a bias term that modulates the amplitude of the
monopole. Before performing the fit, we normalize the model to
the data at r = 50 h�1 Mpc and hence B2

0

should be⇠ 1. A Gaus-
sian prior on B2

0

centered at 1 with standard deviation 0.4 is applied
to ensure it is not negative. As mentioned previously, we allow � to
vary in our fits so as to modulate the amplitude of the quadrupole.
We use a fitting range of 50 < r < 200 h�1 Mpc which totals
80 data points between the monopole and the quadrupole. Since
there are 10 parameters in our fitting model, this gives 70 degrees
of freedom in the fit.

In order to find the best-fit values of ↵ and ✏, we minimize the
�2 function

�2 = (~m�

~d)T C�1(~m�

~d) (44)

where ~m is the model and ~d is the data. We scale the inverse sample
covariance matrix, C�1

s , using

C�1 = C�1

s
N

mocks

�N
bins

� 2

N
mocks

� 1
(45)

to correct for the fact that it is a biased estimate of the true inverse
covariance matrix C�1. In addition, we have applied corrections
described in Percival et al. (2013) as summarized in Sec 3.3.

Error estimates for ↵ and ✏ are obtained by walking a grid
what size is the grid now? in these 2 parameters to map out the
likelihood surface. Assuming the likelihood surface is Gaussian al-
lows us to estimate �↵ and �✏ as the standard deviations of the
marginalized 1D likelihoods of ↵ and ✏ respectively. Unphysical
downturns in the �2 distribution at small ↵ (which corresponds to
the BAO feature being shifted to scales beyond the fitting range) are
suppressed by introducing a 15% prior on log(↵) centered at 0. If
the BAO is well-detected, this prior has little affect on the measured
distance scale compared to the statistical error (?).

5.2 Clustering Wedges

(Waiting for Ariel’s tex from Anderson et al. 2013)

5.3 Testing the method on mocks

We plot the fractional error of DA and H pre and post reconstruc-
tion for DR11 in Figure 7.

Even though the current method has already been tested in
?, we put the method to test again using DR10 and DR11 mocks,
especially given the increased survey volume.

We test the anisotropic fitting method using mocks generated
by ? as described in Sec 3.2 extensively in Vargas-Magana et al.
2013. We only highlight specific findings here that are pertinent to

Figure 7. The fractional error pre and post reconstruction for DA and H in
both DR10 and DR11 mocks.

this analysis. In particular, we find the following interesting obser-
vations:

• The bias of measured ↵? and ↵|| is 0.2%(0.2%)
and0.9%(1.1%)pre-reconstruction in DR10 (DR11) respectively
when we use the fiducial model in multipole fitting as described
in ?. Theoretically, we expect a small shift away from 1 due to non-
linear structure growth pre-reconstruction on the order of 0.5%.

• We further find that changing the De-Wiggled Template
to RPT template can reduce the bias significantly in pre-
reconstruction, while the difference in biases between using De-
Wiggled and RPT template post-reconstruction.

• The bias of measured ↵? and ↵|| is 0.2 (0.3%) and 0.0%
(0.1%) post-reconstruction in DR10 (DR11) respectively.

• Pre-reconstruction: we find that change in fitting ranges, ⌃? ,
⌃|| also change the bias of the measurement,

We also refer the reader to the following table that summarizes
the findings in Table ?? and Table ??. More details can be found
in Vargas-Magana et al. 2013.

5.4 Comparing Methodologies

c� 2011 RAS, MNRAS 000, 1–33

Magana-Vargas, Ho, Xu et al.  (in prep) 
SDSS Collaboration (in prep)

• In DR9, reconstruction didn’t 
improve our signal-to-noise of 
BAO. This is probably due to 
poor survey window (too much 
area near a boundary). 

• DR11 has a filled geometry. 
Reconstruction improves mocks 
dramatically. 

• Average Constraints (mocks) on 
DA goes from 2.1% to 1.5%. 

• Average Constraints (mocks) on 
H(z) goes from 4.4% to 2.7%

• Expects BAO >8 sigma

• Stay Tuned! 



Outline

• SDSS III- BOSS : 

• Mini-summary and looking forward

• BAO Reconstruction

• Ultra-fast simulations of the Universe?

• BAO in cross-correlations

You can reconstruct to significantly different 
large scale structure, but still get the same/similar  

BAO post-reconstruction! 



• Most of the non-linear degradation is due to large scale flows. These are produced 
by the same large scale structure that we are measuring for the BAO signature.  

• Map of galaxies tells us where the mass is that sources the gravitational forces that 
created the bulk flows

• Can run this backwards and undo most non-linearity

• Restore the statistical precision available per unit volume

Bringing in Reconstruction ... (Going back in time)

Eisenstein, Seo, Sirko, Spergel, 2007 



Reconstruction: general idea

Noh, White & Padmanabhan 2009

Seo, Eisenstein, Sirki & Spergel 2008



Noh, White & Padmanabhan 2009

Seo, Eisenstein, Sirki & Spergel 2008

Reconstruction: general idea



Noh, White & Padmanabhan 2009

Seo, Eisenstein, Sirki & Spergel 2008

Reconstruction: general idea



Noh, White & Padmanabhan 2009

Seo, Eisenstein, Sirki & Spergel 2008

Mariana Vargas, Xiaoying Xu 

contours: density field
white lines: displacement field

Reconstruction: general idea



Noh, White & Padmanabhan 2009

Seo, Eisenstein, Sirki & Spergel 2008

Reconstruction: general idea



Noh, White & Padmanabhan 2009

Seo, Eisenstein, Sirki & Spergel 2008

finalreconstructedinitial 



As simple as the algorithm sounds like... 
three different codes following similar methodology generate 

different displacement field given the same input. 



Just reminding us the coordinate system 



Displacement in r

Method 1
Magana-Vargas, SH , Xu + BOSS Clustering WG  (in prep) 



Displacement in r

Method 2
Magana-Vargas, SH , Xu + BOSS Clustering WG  (in prep) 



Displacement in r

Method 3
Magana-Vargas, SH , Xu + BOSS Clustering WG  (in prep) 



Effects of different reconstruction method choices

Courtesy plots from Angela Burden



How about applying 3 methods 
to the same BOSS dataset?

Final footprint

Completed

July 13, 2013



displacement in r in theta in phi



↵̄ = 1.00289± 0.00161

↵̄ = 1.00169± 0.00172

Test results from two methods on 
50 mocks

• Conclusions? 

• All methods are relatively unbiased. 

• The scatter plots show that they 
correlate with each other very well. 

• But there is a scatter between the 
methods

Courtesy plots from Will Percival



Outline

• SDSS III- BOSS : 

• Mini-summary and looking forward

• BAO isotropic and anisotropic fitting

• BAO Reconstruction

• Ultra-fast simulations of the Universe?

• BAO in cross-correlations?

You can reconstruct to significantly different large scale 
structure, but still get the same/similar  BAO post-

reconstruction! 
Now we need to understand and include the systematic 
errors we are introducing when using reconstruction.



Outline

• SDSS III- BOSS : 

• Mini-summary and looking forward

• BAO isotropic and anisotropic fitting

• BAO Reconstruction

• Ultra-fast simulations of the Universe?

• BAO in cross-correlations?



Aim: Efficiently make lots of mocks relatively 
accurately.  BOSS galaxy clustering working group 

used ~600 mocks using PTHalos method. 
Can we do better? 



Aim: Efficiently make lots of mocks relatively 
accurately.  BOSS galaxy clustering working group 

used ~600 mocks using PTHalos method. 
Can we do better? 

New Direction: Use a non-parametric Machine 
learning algorithm that does distribution-to-

distribution regression to learn the non-linear 
evolution of the Universe. 



What the heck is 
Machine Learning?

• Machine Learning algorithms learns trends 
from the data itself, it does not impose pre-
assumed models on the data. 

• The advantage of ML is that it is fully non-
parametric: 

• The only assumption necessary is that some relationship 
does exist between halo properties (features) and the 
number of galaxies that will reside in it and that this 
relationship is continuous.



Analyzing millions of images
[Shrivastava 2011]

“Find images that are similar to a query image
(even if not similar in individual pixel values).”

Query image
(snowy day)

Matches

[Doersch 2012]
“Find meaningful visual elements that are 

unique to Paris”

Cool Examples of ML applications  (Courtesy Slide from Kayvon Fatahalian) 



Approximate Simulation of the 
Universe, P0Initial condition of the Universe

Full Simulation of the Universe, 
Q0

Distribution-to-
distribution regression

Approximate 
evolution of Universe

O(10)
sec

Exact evolution of the Universe

O(100,000) CPU seconds

O(10)
sec



How does approximate (2LPT) 
field compares to N-body 

White: 2LPT 
Blue: N-body



White: 2LPT 
Blue: N-body



(2LPT) Distribution to (N-body) Distribution 
Machine Learning algorithms

Model 

Instead we have                                    where:                                                        

Ideally, one would work with a training dataset of input/output distribution pairs.  

Oliver, Poczos, Schneider, 2013, ICML



(2LPT) Distribution to (N-body) Distribution 
Machine Learning algorithms

Model 

Instead we have                                    where:                                                        

However,  it’s  infeasible  to  directly  observe  distributions; instead observe 
samples                                              where:   

Oliver, Poczos, Schneider, 2013, ICML



(2LPT) Distribution to (N-body) Distribution 
Machine Learning algorithms

Model 

Instead we have                                    where:                                                        

Using the samples             , we build nonparametric density estimates  

Oliver, Poczos, Schneider, 2013, ICML



Model 

Instead we have                                    where:                                                        

Using the samples             , we build nonparametric density estimates  

Oliver, Poczos, Schneider, 2013, ICML



Model 

Instead we have                                    where:                                                        

Using the samples             , we build nonparametric density estimates  

Oliver, Poczos, Schneider, 2013, ICML



(2LPT) Distribution to (N-body) Distribution 
Machine Learning algorithms

Model 

Instead we have                                    where:                                                        

Using the samples             , we build nonparametric density estimates  

2LPT (P) ->  N-body(Q)

Very much in prep and speculation



Very preliminary: 
let’s compare the halos statistics



Outline

• SDSS III- BOSS : 

• Mini-summary and looking forward

• BAO Reconstruction

• Ultra-fast simulations of the Universe?

• BAO in cross-correlations?

You can pull out a BAO signal 
even when one of the tracers is really sparse



BAO in QSO x Lyα Cross-Correlations

BOSS at High Redshift

• ~ 100,000 z = 2.15 - 3.5 quasar 
spectra 

• ~ 45 million Lyα pixels

• First anisotropic BAO measurement 
at z > 2 done this year using Lyα 
autocorrelations.

• Quasar autocorrelation not yet 
good enough for BAO, but we can 
cross-correlate with Lyα!



BAO in QSO x Lyα Cross-Correlations

O’Connel, SH , et al. (in prep)
Font-Ribera, Kirkby et al. (in prep)

Our Measurement

• First BAO detection in quasars (via Cross-
correlations).Developed new estimator, 
method for determining covariance matrix, 
systematic corrections for Lyα forest. 

BOSS at High Redshift

• ~ 100,000 z = 2.15 - 3.5 quasar 
spectra 

• ~ 45 million Lyα pixels

• First anisotropic BAO measurement 
at z > 2 done this year using Lyα 
autocorrelations.

• Quasar autocorrelation not yet 
good enough for BAO, but we can 
cross-correlate with Lyα!



• SDSS III- BOSS :  Lots of cosmological constraints and 
other cool things I didn’t get to talk about...

• BAO Reconstruction : Different methods give rise to 
similar (but not the same) BAO. Possible improvement?

• Ultra-fast simulations of the Universe! A way forward 
to make many synthetic Universes quickly? 

• BAO in cross-correlations! We can look for BAO in the 
most unlikely places, such as very sparsely sampled 
quasars.   [Other applications of correlating neutral 
hydrogen and halos?] 

BOSS: What did we learn?



Dark Energy
Exo-planetsMachine Learning

Inflation 

The not-so-new anymore assistant faculty
Shirley Ho

To learn more about me: 
Google : Shirley Ho 


