Galaxy Cluster Cosmology with SPT Mass Calibration from Velocity Dispersions and X-ray Y_x's

Sebastian Bocquet – LMU Munich physics

with Joe Mohr, Jiayi Liu, Alex Saro

South Pole Telescope

Overview

- Galaxy Clusters
- South Pole Telescope
- SPT SZ-selected Sample
- Galaxy Cluster Cosmology
- Mass Calibration
- Combining Velocity Dispersions with X-ray Y_x's
- Outlook

Galaxy Clusters

MAXIMILIANS

4

- Most massive collapsed objects in the Universe
- Content:
 - 87% dark matter
 - 11% hot gas, the intra cluster medium (ICM)
 - 2% galaxies
- Infalling gas is heated to O(keV) temperatures and emits X-ray Bremsstrahlung
- Number of member galaxies varies between a few and thousands
- Mass range: $10^{13} 10^{15} M_{solar}$

South Pole Telescope

(Sub) millimeter wavelength telescope

- 10 meter aperture
- 1' FWHM beam at 150 GHz
- 5 arcsec astrometry
- mm-wave receiver
 - 1 deg² FOV
 - 3 bands: 95 GHz, 150 GHz, 220 GHz
 - Depth ~ 15-60 μK-arcmin

Cosmology with SPT Clusters – Sebastian Bocquet

Sunyaev-Zel'dovích effect

- About 1% of CMB photons scatter
- SZ flux proportional to total thermal energy in the electron population
- SZ surface brightness is independent of redshift

Zoom in on an SPT map 50 deg² from 2500 deg² survey

CMB Anisotropy -Primordial and secondary anisotropy in the CMB

Point Sources - High-redshift

dusty star forming galaxies and Active Galactic Nuclei **Clusters** - High signal to noise SZ galaxy cluster detections as "shadows" against the CMB!

Optical / NIR follow-up

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Most massive cluster known at z > 1, Foley et al 2013

SPT SZ-selected Sample

- Clean and nearly redshiftindependent selection
- 2500 deg² sample:
 - ~600 candidates at S/N > 4.5
 - Confirmation underway
 - 85% new discoveries
 - 95% pure at S/N > 5
 - ~450 clusters at S/N > 5
 - Median z = 0.55
 - ~100% complete above 5x10¹⁴ M_{solar}/h

Galaxy Cluster Cosmology

- Start with linear matter power spectrum
- Simulation-calibrated cluster mass function (Tinker et al., 2008)
- Exponential sensitivity
- Probe growth of structure in the late time Universe
- Need accurate knowledge of cluster masses

Cosmology with SPT Clusters – Sebastian Bocquet

LUDWIG-

Cluster Mass Function

Variance of the matter power spectrum

$$\sigma^2 = \frac{1}{2\pi^2} \int P(k) \left| W_k \right|^2 k^2 dk$$

Probability that region of mass M exceeds collapse threshold

$$P(M,z) = erfc(\delta_c / \sqrt{2}\sigma(M,z))$$

Cluster Mass Function (Press & Schechter 1974)

 $n(M,z) = \frac{\rho_M}{M} P(M,z)$

Increase accuracy with numerical simulations

Cluster Mass Functions

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

http://ned.ipac.caltech.edu/level5/Sept12/Kravtsov/Kravtsov3.html

Mass observables

- Mass function provides prediction as a function of cluster mass
- What do we actually observe?
 - Mass
 - SZ flux / SZ significance
 - X-ray luminosity / X-ray Y_x = M_g T_x
 - Velocity dispersion σ_v
 - Scaling relations

$$\begin{aligned} \zeta &= A_{SZ} \left(\frac{M_{500}}{3 \times 10^{14} h^{-1} M_{\circ}} \right)^{B_{SZ}} \left(\frac{E(z)}{E(0.6)} \right)^{C_{SZ}} \\ M_{500c} &= A_X h^{1/2} M_{\circ} \left(\frac{Y_X}{3 \times 10^{14} M_{\circ} keV} \right)^{B_X} E(z)^{C_X} \\ \sigma_v &= A_\sigma \left(\frac{M_{200c}}{10^{15} M_{\circ}} \right)^{B_\sigma} h(z)^{C_\sigma} \end{aligned}$$

- Each comes with an (unknown) intrinsic scatter
- ... and (known) observational uncertainty

Selection and Scatter

MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Let's do cosmology!

Chapter 1 (oans)

Benson et al 2013

18 SZ clusters, of which

14 with X-ray Yx measurement

 Consistent with other cosmological probes

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

Chapter 2 (zwoa)

Reichardt et al 2013

- 100 SZ clusters, of which
- 14 with X-ray Y_x measurement
- Constraints in Ω_m-σ₈ plane improve by 1.8x in area
- Still limited by SZ accuracy of the SZ normalization parameter

Galaxy Velocity Dispersion

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Gemini South, Magellan, VLT: Ruel et al. in prep.

Galaxy Velocity Dispersion

- Include velocity dispersion as a mass calibrator
 - Not affected by gas physics, does not rely on hydrostatic equilibrium
 - Independent cross-check of the X-ray mass calibration
 - Numerical calibration by Saro et al 2013, arXiv 1203.5708

Mass Calibration with Y_X and σ_v , ACDM Cosmology, no CMB data

	Prior	SPT _{CL} +BBN+H ₀ +			LUDWIG-
		Y_X	σ_v	$Y_X + \sigma_v$	MAXIMILIANS- UNIVERSITÄT MÜNCHEN
$A_{\rm SZ}$	6.24 ± 1.872	$5.36^{+1.42}_{-1.20}$	$4.62^{+1.44}_{-1.09}$	$4.60^{+1.09}_{-0.97}$	MONCHEN
$B_{\rm SZ}$	1.33 ± 0.266	1.58 ± 0.13	1.60 ± 0.13	1.60 ± 0.13	Bocquet et al in prep
C_{SZ}	0.83 ± 0.415	0.69 ± 0.35	0.75 ± 0.36	0.74 ± 0.39	
D_{SZ}	0.24 ± 0.16	0.25 ± 0.12	0.22 ± 0.13	0.23 ± 0.12	
A_X	5.77 ± 0.56	5.60 ± 0.54		5.77 ± 0.51	
B_X	0.57 ± 0.03	0.57 ± 0.03	•••	0.57 ± 0.03	
C_X	-0.40 ± 0.20	-0.46 ± 0.20		-0.39 ± 0.18	
D_X	0.12 ± 0.08	0.13 ± 0.07		0.14 ± 0.08	
A_{σ_v}	1048 ± 53		1080 ± 48	1083 ± 44	
B_{σ_v}	0.34 ± 0.01		0.34 ± 0.01	0.34 ± 0.01	
C_{σ_v}	0.32 ± 0.02		0.32 ± 0.02	0.32 ± 0.02	
$D_{\sigma_v 0}$	0.2 ± 0.04		0.20 ± 0.04	0.20 ± 0.04	
$D_{\sigma_v N}$	3 ± 0.6		2.97 ± 0.59	2.97 ± 0.58	
$100\Omega_b$		4.1 ± 0.5	4.0 ± 0.5	4.1 ± 0.5	
Ω_m	•••	$0.34\substack{+0.13\\-0.06}$	$0.37\substack{+0.16 \\ -0.07}$	$0.37^{+0.22}_{-0.07}$	
σ_8		0.73 ± 0.05	0.74 ± 0.06	0.74 ± 0.06)
H_0	73.8 ± 2.4	73.1 ± 2.4	73.5 ± 2.4	73.4 ± 2.4	22

	Parameter	$SPT_{CL}+BBN+H_0$	CMB	$SPT_{CL}+CMB$	
	A_{SZ}	$4.60^{+1.09}_{-0.97}$	•••	$4.33_{-0.71}^{+0.76}$	
	B_{SZ}	1.60 ± 0.13		1.52 ± 0.12	
 ۱ ۱ 8	C_{SZ}	0.74 ± 0.35		0.36 ± 0.24	0.
···· ¹ ····· <u>56.0</u>	D_{SZ}	0.23 ± 0.13		0.23 ± 0.12	······································
- 5.5 5.0	n_s	$0.971 \pm 0.013^{\rm a}$	0.970 ± 0.014	0.969 ± 0.014	5.5 5.5
 O O	Ω_m	$0.37\substack{+0.22 \\ -0.07}$	0.276 ± 0.030	0.262 ± 0.015	4.0 - 4.0 - 4.0
-3.5	σ_8	0.74 ± 0.06	0.818 ± 0.030	0.799 ± 0.019	
	H_0	73.4 ± 2.4	70.1 ± 2.4	71.0 ± 1.6	
-0.9 -0.9 -0.8 	Asz Bsz 111,0 ±0.6 m ¹ 1,112,0 th 5 1,120,0 th 5 1,120,0 th 	All 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CSZ DSZ CSZ	
8	2 1.40 2 61.5 4 Asz Bsz4	8 2.06 285 -1.0 -0.5 1.00.0 SZ	0.51.5 1.0 1250 2.0 2.6 -0. Csz Bsz	-1.0 -0.5 0.0 0.5 1.0 Csz	0 1.5 2.0 11 0.24

Cosmology with SPT Clusters – Sebastian Bocquet

23

Growth Rate of Structure

Parametrized matter power spectrum (Peebles 1980, Wang&Steinhardt 1998)

$$\frac{d^2 \ln \delta}{d \ln a^2} + \left(\frac{d \ln \delta}{d \ln a}\right)^2 + \frac{d \ln \delta}{d \ln a} \left[\frac{1}{2} - \frac{3}{2}w(1 - \Omega)\right] = \frac{3}{2}\Omega$$
$$f \equiv \frac{d \ln \delta}{d \ln a} \equiv \Omega^{\gamma}$$
$$6 - 3(1 + w)$$

$$\gamma \approx \frac{6-3(1+w)}{11-6(1+w)}$$

Parametrized matter power spectrum

$$P_{norm}(k,z) = P(k,z_{ini})D_{z_{ini}}^2(z)$$

Assume standard expansion history

- GR predicts γ=0.55
- Consistency test of the cosmic growth history

Cosmic Growth Index

- GR predicts γ=0.55
- Bocquet et al in prep

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Dataset: STPcl+Y_X+ σ_v +WMAP7+BAO+SNIa+H₀

- - 0.8-	Parameter	Prior	Result			
	$\Omega_c h^2$	•••	0.114 ± 0.003			
	$100\Omega_b h^2$	•••	2.23 ± 0.05			
0.2— 	$10^9 \Delta_R^2$	•••	2.44 ± 0.09			
0.0	n_s	•••	0.966 ± 0.012			
1.0 - J · I	au		0.082 ± 0.13			
	H_0	73.8 ± 2.4	69.1 ± 0.9			
තී 0.8-						
	γ	•••	0.74 ± 0.27			
0.7	Ω_m		0.286 ± 0.011			
0.6	σ_8		0.770.07			
Cosmology with SPT Clusters – Sebastian Bocquet						

25

Outlook: Mass Calibration

- Full SPT-SZ sample coming soon
- X-ray
 - XVP with Chandra to get Y_x s of ~80 high ξ clusters
 - XMM obs of ~30 clusters (Magellan WL and high-z)
- Velocity dispersions
 - ~100 cluster velocity dispersions from ~25 member velocities using Gemini GMOS-S at z<0.8, VLT FORS2 at z>0.8 and MagellanIMACS as available
- Weak Lensing
 - 18 z~0.3-0.4 clusters with Magellan Megacam
 - HST Snapshot observations of ~60 clusters underway

Outlook: SPT-3G

Starting 2016

- 10X more clusters than SPT-SZ
- Expect 4000 clusters
- Purity 99%

Cosmology with SPT Clusters – Sebastian Bocquet

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

