CMB: part one on the South Pole Telescope

Now open in 2014!

Christian Reichardt UC Berkeley

Outline

The three cameras of the South Pole

Telescope

- SPT-SZ, SPTpol, SPT-3G
- CMB power spectrum
 - What caused Inflation?
- CMB lensing
 - 1st B-mode detection from SPTpol
 - What are the neutrino masses?

Cosmic Timeline

Large-Scale Structure, accelerated expansion

Small-scale CMB touches all these epochs

CMB power spectrum:

etc.

- What caused inflation?
- How many neutrino species are there?

Sunyaev-Zel'dovich (SZ) signal

(next talk)

Gravitational lensing:

- What are the neutrino masses?
- etc.

The South Pole Telescope (SPT)

Funded by NSF

Site:

Best known mm-wavelength observing conditions

Telescope:

- 10 meter telescope (1.1' FWHM beam)
- Fast scanning (up to 2 deg/sec in az)
- 2" pointing accuracy

Receivers

SPT-SZ (2007-2011) S

SPTpol (2012-2015)

SPT-3G (2016-)

- 960 bolometers
- Surveyed 2500 deg²
- Final map depths of

40 μK-arcmin @ 95 GHz 18 μK-arcmin @ 150 GHz 70 μK-arcmin @ 220 GHz

- 1536 polarizationsensitive bolometers
- Conducting 600 deg² survey
- Exp. map depths of
- 8 μK-arcmin @ 95 GHz 5 μK-arcmin @ 150 GHz

- 15,234 polarizationsensitive bolometers
- Plan 2500 deg² survey
- Exp. map depths of
- 4.2 µK-arcmin @ 95 GHz
- 2.5 µK-arcmin @ 150 GHz
- 4.0 µK-arcmin @ 220 GHz

Deepest large-area CMB map

Zoom in on an SPT map ~50 deg² from 2500 deg² survey

Radio and dusty galaxies show up as bright spots

Galaxy cluster show up as "shadows" against the CMB!

Zoom in on an SPT map ~50 deg² from 2500 deg² survey

Cosmic microwave background (CMB)

SPT-SZ 2500 deg² survey

Non-exhaustive list of awesomeness:

Objects

- SZ-selected galaxy cluster catalog (~600 clusters, 85% new discoveries) out to high redshift (for Dark Energy)
 - Discovery of a population of strongly lensed, highredshift, star-forming galaxies.
- Most sensitive pre-Planck measurement of CMB power spectrum at ell>~600 (and still most sensitive at ell>~1850).
 - Constraints on duration of epoch of reionization from kinetic SZ.
- >30 σ detection of bispectrum due to SZ & galaxies
 - 2500 deg² CMB-lensing-derived map of projected mass between z=0 and z=1100.

2-point

3-point

4-point

Outline

- The three cameras of the South Pole
 - Telescope
 - SPT-SZ; SPTpol; SPT-3G
- CMB power spectrum
 - What caused Inflation?
- CMB lensing
 - 1st B-mode detection from SPTpol
 - What are the neutrino masses?

Strong experimental progress

Strong experimental progress

First results from full survey!

Strong experimental progress

Strong experimental progress

First results from full survey!

with Planck

Comparing SPT & Planck

- Cross-spectrum is **consistent** within calibration and beam errors.
- No evidence for scale-dependent differences.

Re-scale:1.8%SPT cal uncertainty:2.6%

[units of Power]

What caused inflation?

What were the initial conditions of the Universe?

+SPT/ACT+BAO = 0.961 \pm 0.0054

Tensor perturbations and temperature anisotropy

Role of small-scale data

Tensors only affect large scales, but their impact is partially degenerate with the scalar power law slope (n_s) and other parameters.

Small-scale data help disentangle the two.

Hitting TT sample variance limit

Planck - same limits internally

Implications for inflation

PLANCK (plus upcoming small-scale polarization experiments) will be 3X better on n_s : -> $\sigma^{PLANCK+SPT3g}(n_s) \sim 0.0046$ 22, 2013 0.2 Future polarization experiments $^{0.1}$ (SPT-3G, Simons Array, BICEP3, Adv. ACTPol) will be >10X better on r: $-> \sigma^{SPT3G}(r) \sim 0.005$ 0.0 1.00 n_{s}

(Scalar index)

Outline

The three cameras of the South Pole
 Telescope
 SPT-SZ; SPTpol; SPT-3G
 CMB power spectrum
 What caused Inflation?

- CMB lensing
 - 1st B-mode detection from SPTpol
 - What are the neutrino masses?

CMB Lensing

Small-scale wiggles are correlated with large-scale gradient.

from Oliver Zahn

15°

from Oliver Zahn

15°

from Oliver Zahn

15°

Difference

CMB is a unique lensing source

1. Low systematic uncertainties:

- Gaussian, well-understood power spectrum
- Known, unique redshift

2. High redshift

No higher-z source

Weighing the Hubble Volume

work being led by O. Zahn

SPT map of 6% of matter in observable Universe

- S/N > 1 per mode on large scales
- Less sky than Planck

Lensing detection:

~20 σ in SPT ~30 σ in Planck

Correlation with the Cosmic Infrared Background (CIB)

Smith+, 2007

Herschel/SPIRE 250, 350, 500 um

SPIRE 500 um

May 2012: Map deepest 100 deg² of SPT survey to the confusion limit.

- Redshift kernel of lensing peaks z~2
- Well-matched to CIB (80% correlation)

Correlation between lensing and CIB

Holder et al., arXiv:1112:5435

- Colors: SPT's CMB lensing map
- Greys: Herschel 500 µm map, smoothed to 100 Mpc scales
- Correlation detected at ~10 σ
- Galaxy bias: 1.3 < b <
 1.8, model dependent
- CMB lensing is wellcalibrated in mass and probes how CIB traces dark matter

Lensing Power Spectrum

Zahn et al., In prep.

The Next Frontier: Polarization

Smith et al 2008

- Any polarization pattern can be decomposed into "E" (grad) and "B" (curl) modes
- Quadrupole anisotropy introduces polarization at surface of last scattering
- Density fluctuations do not produce "B" modes!
- "B" modes are created by:
 - On large scales: primordial gravity waves from Inflation
 - On small scales: lensing of the CMB from large scale structure

Effect of Lensing on the CMB Power Spectrum: B-modes from Lensing

SPTpol: a new *polarization*-sensitive camera for SPT *First light Jan. 2012*

Measure "B-mode" polarization to constrain **neutrino mass** and **energy scale of inflation**.

σ(∑m_ν)~**0.1 eV**

 $r \lesssim 0.04 \ (95\%)$

Investigate dark energy using galaxy cluster abundances deeper cluster survey

> 360 - 100 GHz 1176 - 150 GHz 🗸

1st year: SPTpol survey

Currently observing ~600 deg²

SPTpol 1-year Q/U maps

Map noise 10 µK-arcmin

• Lens reconstruction in polarization can be thought of as a process of template fitting.

$$B^{\text{lens}}(\vec{l}_B) = \int d^2 \vec{l}_E \int d^2 \vec{l}_\phi W^\phi(\vec{l}_E, \vec{l}_B, \vec{l}_\phi) E(\vec{l}_E) \phi(\vec{l}_\phi)$$

$$E^{\text{und}} = \frac{\phi}{\phi} = \frac{\phi}{B^{\text{lens}}}$$

Detection of *B*-mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope

Duncan Hanson et al. arXiv:1307:5830

First detection of lensing B modes (7.7 σ)

Uses three-point EB ϕ from SPTpol + Herschel-SPIRE maps of the cosmic infrared background.

Lensing amplitude: $A_L=1.092 \pm 0.141$

Consistent results using:

- ▶ 90GHz E-modes.
- Temperature-derived E-modes.
- ▶ TT, TE, EE, EB lensing estimators.

No signal seen using:

- Curl-mode null test.
- E-modes from diff. map.
- B-modes from diff. map.

Cover x4 the area to twice the depth as SPTpol

- 15,234 polarizationsensitive bolometers
- Plan 2500 deg² survey
- Exp. map depths of

4.2 μK-arcmin @ 95 GHz
2.5 μK-arcmin @ 150 GHz
4.0 μK-arcmin @ 220 GHz

SPT-3G: Lensing power spectrum

CMB Lensing Detection
Significance

- SPT-SZ = 20σ
- Planck = 30σ
- SPTpol = 45σ
- **-** SPT-3G = 150 σ 🛛

 SPT-3G will measure individual lensing modes out to ell~800 (Planck will go ell~60)

• Cross-correlating with DES will measure galaxy bias to <1%

Credit: G. Holder

Neutrinos as seen by LSS

0.1 eV changes BB power by 5%

Predictions for neutrino masses

In conclusion

SPT-SZ survey complete with broad science impact:

- High-redshift galaxies: Early star and galaxy formation
- Distant, massive clusters: Dark energy, neutrinos, cluster evolution
- Primordial CMB anisotropy: Inflation, early universe physics
- CMB lensing: "weighing" the universe, neutrinos
- SPTpol: 1.4 years into 4 year survey
 - First detection of Lensing "B"-modes: Improve neutrino constraints
 - Inflationary "B"-modes: Improve constraints on inflation's energy scale
- SPT-3G: Development underway
 - Observations begin in 2016
 - Inflation, Lensing (neutrino masses), Clusters (see next talk), kSZ/tSZ
- Initial polarized power spectra coming soon!

Other extensions similar, e.g., N_{eff}

	SPT+WMAP7	Planck+WP
CMB only	3.62 ± 0.48	3.51 ± 0.38
CMB+BAO	3.50 ± 0.47	3.40 ± 0.29
CMB+BAO+H ₀	3.71 ± 0.35	-

Tighter, but no shift

(Note, Planck errors quoted here as half the 95% confidence interval, symmetrized)