$\mathcal{M} \textit{EGA-SHoES}: \\ \mathcal{H}_{o} \text{ to 2\% and beyond}$

LUCAS MACRI

GEORGE P. & CYNTHIA WOODS MITCHELL INSTITUTE FOR FUNDAMENTAL PHYSICS & ASTRONOMY

DEPARTMENT OF PHYSICS & ASTRONOMY

TEXAS A&M UNIVERSITY

THE TEAM

THE ASTROPHYSICAL JOURNAL, 730:119 (18pp), 2011 April 1 © 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/0004-637X/730/2/119

A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3*

ADAM G. RIESS^{1,2}, LUCAS MACRI³, STEFANO CASERTANO², HUBERT LAMPEITL⁴, HENRY C. FERGUSON², ALEXEI V. FILIPPENKO⁵, SAURABH W. JHA⁶, WEIDONG LI⁵, RYAN CHORNOCK⁷, AND JEFFREY M. SILVERMAN⁵ ¹ Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA ² Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA ³ George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics & Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77843-4242, USA ⁴ Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK ⁵ Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA ⁶ Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854, USA ⁷ Harvard/Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

• New Co-Is in MEGA-SH0ES:

- Jay Anderson (STScI)
- John MacKenty (STScI)
- Peter Nugent (LBNL)
- Mohan Ganeshalingam (Berkeley)
- Fritz Benedict (UT Austin)

SUMMARY

- A precise and accurate measurement of H₀ imposes needed additional constraints on the equation of state of dark energy
- SH₀ES project: calibration of recent SNe Ia using Cepheids in the near-infrared
 H₀=73.8±2.4 km/s Mpc → σ(H₀)=3.3%
- Long-term goal: $\sigma(H_0)=1\%$
 - HST & Gaia parallaxes to Milky Way & LMC Cepheids
 - Calibration of additional local SNe Ia
 - Better characterization of systematic uncertainties

Outline

Introduction & motivation

• The SH0ES project

• Under way: Mega-SH0ES

• The future...

ONE HUNDRED YEARS AGO...

Henrietta Leavitt

Vesto Slipher

Cepheid Period-Luminosity relation (the Leavitt Law)

Harvard College Observatory (1912)

First measurements of galaxy radial velocities

Lowell Observatory (1912)

THE LEAVITT LAW (P-L RELATION)

90 YEARS OF H_0 MEASUREMENTS

FREEDMAN+ (2001) SANDAGE+ (2006)

COMPILATION BY JOHN HUCHRA

COMBINING THE CONSTRAINTS

• Equation of state of dark energy:

$$w = P/\rho c^2$$

$$w(a) = w_0 + w_a(1-a)$$

Coupled with additional priors (such as H₀)

• LSST: $w_0 \pm 0.05; w_a \pm 0.1$

'MOTIVATION FOR FURTHER IMPROVEMENT IN \mathcal{H}_{o}

AFTER WEINBERG+ (2012)

WFPC2 PROJECTS \rightarrow SHOES '09, '11

 $\sigma(H_0) \approx 10\%$

TERM	KP %	'09 %	'11 %
ANCHOR DISTANCE	5.0	3.0	1.3
CEPHEID REDDENING, ZEROPOINTS (ANCHOR-TO-HOSTS)	4.5	0.3	1.4
P-L SLOPE, D LOG P (ANCHOR-TO-HOSTS)	4.0	0.5	0.6
Cepheid metallicity dependence (anchor-to-hosts)	3.0	0.8	1.0
WFPC2 CTE, LONG-VS-SHORT ZEROPOINTS	3.0		
MEAN OF SN IA CALIBRATORS	2.5	2.5	1.9
MEAN OF P-L IN ANCHOR	2.5	1.5	0.7
MEAN OF P-L IN SN HOSTS	1.5	1.5	0.6
SN IA M-Z RELATION	1.0	0.5	0.5
ANALYSIS SYSTEMATICS		1.3	1.0
Готаl	10	4.8	3.3

 $\sigma(H_0) = 3.3\%$

 $\sigma(H_0) = 4.8\%$

RIESS+ (2009, 2011)

Outline

Introduction & motivation

>The SH0ES project

• Under way: Mega-SH0ES

• Next steps

$THE SH_{O}ES PROJECT$

- Started in 2005 by Riess, Macri & collaborators to reduce systematic uncertainty in H_0 :
 - Adopt Messier 106 as anchor
 - D=7.6 Mpc ± 3% (Humphreys+ 2008 & 2013)
 - Cepheids with similar abundance as spirals that host SNe Ia
 - Large sample with P>20d, observable with HST
 - Use <u>only</u> modern & ideal SNe Ia (N = 2 \rightarrow 6)
 - Photoelectric or CCD photometry; low reddening; pre-max
 - Observe whole Cepheid sample with same telescope, cameras
 - Optical: HST, WFPC2+ACS \rightarrow ACS+WFC3
 - NIR (reduce sensitivity to dust, metallicity): HST, NIC2 \rightarrow WFC3 (IR)

THE SH_oES PROJECT

- First result: $\sigma(H_0) = 4.8\%$ (Riess+ 2009)
- Improvements in second iteration:
 - "Basket of anchors"
 - MW parallaxes, LMC DEBs, Maser in Messier 106
 - Increase number of SN hosts (N = $6 \rightarrow 8$)
 - More homogeneous photometry $+ 2.5 \times$ Cepheids
 - ACS+WFC3/UVIS (V, I); WFC3/IR (H)
- Latest result: $\sigma(H_0) = 3.3\%$ (Riess+ 2011)
 - Fully propagated random + systematic uncertainties
 - Only ongoing program with all observations @ same λ s

Milky Way Cepheid P-L in $\mathcal H$

- One of three P-Ls used by SH_0ES project (Riess+ 2011)
 - 10 Cepheids with 8% HST/FGS parallaxes (Benedict+ 2007)
 - 3 of these also have Hipparcos parallaxes (van Leeuwen 2007)
 - Ground-based H-band magnitudes (Groenewegen 1999)
 - Fully-propagated uncertainties: $\sigma(zpt)=2.8\%$

LMC CEPHEIDS+ECLIPSING BINARIES

- LMC Cepheids: H-band observations by Persson+ (2004)
- Detached eclipsing binary distances
 - Photometry + spectroscopy: fluxes, radii & temperatures
 - Calculate luminosities using stellar atmosphere *models*
 - $D=\sqrt{L/4\pi f}$; uncertainties from 3-6% depending on system
 - Pietrzynski+ 2013: D(LMC)=50.0 kpc $\pm 2.2\%$ based on 8 DEBs

PIETRZYNSKI+ (2009)

LMC JHK P-L RELATIONS

- CTIO 1.5-m CPAPIR survey, 49 fields across LMC
 - >1,100 Cepheids & 5.3 million point sources
 - σ (P-L slopes) reduced by 2× relative to Persson+ (2004)

Maser distance to M106

- Distance based on 10+ years of VLBI observations of water masers orbiting central black hole
- D = 7.6 Mpc ± 3% (Humphreys+ 2008, 2013)

MASER DISTANCE TO M106

Angular diameter distance

- V from high-velocity masers
- A from systemic masers
- θ from VLBI map

•
$$A = V^2/R$$

•
$$R = D \theta$$

$$D = V^2 / A\theta$$

HERRNSTEIN+ (1999); HUMPHREYS+ (2008, 2013)

CEPHEIDS IN MESSIER 106

- HST/ACS: ~300 Cepheids with 4d<P<45d (Macri+ '06)
- HST re-visit + 4 years of Gemini observations: longer-period Cepheids (Samantha Hoffmann, Texas A&M PhD Thesis)
- HST H-band imaging as part of SH₀ES project

COLOR MOSAIC BASED ON SDSS IMAGES

NGC 5584: WFC3/UVIS

- Observed in Cycle 15 as part of SH0ES-II
- "Standard" HST search (12 V + 6 I epochs)
- Also tested feasibility of "clear filter" search
 Reduce # orbits for future HST targets
- >300 Cepheids discovered

N5584: HOST OF SN 2007AF

N5584 WFC3 CEPHEID LIGHT CURVES

PHASE

MACRI, RIESS+ (IN PREP.)

MAGNITUDE + OFFSET

N5584: P-L RELATIONS FROM WFC3

MACRI, RIESS+ (IN PREP.)

N5584: P-L RELATIONS FROM WFC3

MACRI, RIESS+ (IN PREP)

RIESS+ (2011)

SHOES WFC3 H-BAND P-L RELATIONS

PERIOD (DAYS)

RIESS+ (2011)

SNE JA

- Modern SNe Ia are excellent standardizable candles (Phillips 1993, Hamuy+ 1996, Riess+ 1996)
 - Hubble flow sample of 250 SNe with distance uncertainties of 8% in optical, 5% in near-IR (Hicken+ 2009, Mandel+ 2011)
 - Local & Hubble-flow samples observed with same telescopes
 - Minimize systematic uncertainties from photometry

SNE IA

- Modern SNe Ia are excellent standardizable candles (Phillips 1993, Hamuy+ 1996, Riess+ 1996)
 - Hubble flow sample of 250 SNe with distance uncertainties of 8% in optical, 5% in near-IR (Hicken+ 2009, Mandel+ 2011)
 - Local & Hubble-flow samples observed with same telescopes
 - Minimize systematic uncertainties from photometry

SHOES CALIBRATION OF SNE IA

Outline

Introduction & motivation

✓ The SH0ES project

>Under way: Mega-SH0ES

• Next steps

- Target 1.9% determination of H_0 based on:
 - HST parallaxes to an additional 18 Cepheids in Milky Way
 - Cepheid distances to 8 additional SNe Ia hosts
 - Use of SNe NIR light curves to reduce per-object error
 - 112 orbits in Cycle 20 + 18 in Cycle 21 + 7 in Cycle 22

• First galaxy: UGC 9391, host of SN 2003du

WFC3/UVIS F350LP

WFC3/IR F160W

- Preliminary reduction of UGC 9391
 - ~30 Cepheids with $10 \le P \le 80$; $\mu_0 \sim 33.2 \text{ mag} (D \sim 53 \text{ Mpc})$
 - Most distant Cepheid P-L relation to date

• Second galaxy: NGC 1015, host of SN 2009ig

F350LP

WFC3/UVIS

PRECISION ASTROMETRY WITH WFC3-UVIS SPATIAL SCANNING

Riess, Casertano, MacKenty & Anderson (STScI)

PRECISION ASTROMETRY WITH WFC3-UVIS SPATIAL SCANNING

Riess, Casertano, MacKenty & Anderson (STScI)

Cepheid SY Aur @ 2.3 kpc

MATERIAL COURTESY OF ADAM RIESS

PRECISION ASTROMETRY WITH WFC3-UVIS SPATIAL SCANNING

Riess, Casertano, MacKenty & Anderson (STScI)

MATERIAL COURTESY OF ADAM RIESS

Outline

Introduction & motivation

✓ The SH0ES project

✓ Under way: Mega-SH0ES

≻The future...

GAIA PARALLAXES TO MW CEPHEIDS BY END OF MISSION (2020)

- Cepheid population of Milky Way:
 N_{TOT}~ 20,000; N_{Gaia}~ 9,000
- Uncertainties in P-L parameters:
 - Slope: 0.1-0.2%
 - Zeropoint: 0.3-0.6%
 - High-end values for $\sigma(A_V)=0.05$ mag

WINDMARK, LINDEGREN & HOBBS (2011)

GAIA CALIBRATION OF P-L RELATION BY END OF MISSION (2020)

• Milky Way: N~9000 Cepheids, <1% uncertainty

- LMC: ensemble parallax with 1% uncertainty
- Avoid systematic uncertainties in photometry
 Observe from space (Spitzer, HST, WFIRST, JWST)
 Approved HST Cycle 21 "snapshot" program: 60 Cepheids with P > 8d & D < 7 kpc

REGARDING PLANCK'S \mathcal{H}_{o}

• From Planck collaboration, Paper XVI:

We find the 2% constraint on H_0 : $H_0 = (67.4 \pm 1.4) \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$ (68%; *Planck*). (13) [...]

Note that these indirect constraints are highly model dependent. The data only measure accurately the acoustic scale, and the relation to underlying expansion parameters (e.g., via the angular-diameter distance) depends on the assumed cosmology, including the shape of the primordial fluctuation spectrum. Even small changes in model assumptions can change H_0 noticeably;

 Highly model dependent – not only on cosmological model but also on <u>foreground subtraction</u>

REGARDING PLANCK'S \mathcal{H}_{o}

• From Planck collaboration, Paper XII, Figure E.3:

• Foreground at l>1500 very significant wrt CMB signal

REGARDING PLANCK'S \mathcal{H}_{o}

• Foreground correction should not bias the inferred value of H₀...

• Expectation from simulations (Planck XII, Fig E.5)

REGARDING PLANCK'S \mathcal{H}_{o}

• But there is a clear correlation between the inferred value of H₀ and the maximum value of 1 considered

• Results of current analysis (Planck XV, Fig 30)

• Or perhaps the Universe is even more puzzling than we thought... w<-1?

• Cosmological parameters (Planck XVI, Fig 21)

SUMMARY

- A precise and accurate measurement of H₀ imposes needed additional constraints on the equation of state of dark energy
- SH₀ES project: calibration of recent SNe Ia using Cepheids in the near-infrared
 H₀=73.8±2.4 km/s Mpc → σ(H₀)=3.3%
- Long-term goal: $\sigma(H_0) = 1\%$
 - HST, Gaia parallaxes to Milky Way & LMC Cepheids
 - Calibration of additional local SNe Ia
 - Better characterization of systematic uncertainties

HOME SCIENTIFIC PROGRAM REGISTRATION PROPOSAL SUBMISSION CONTACT

- Location
- Housing
- Staff
- Committees

Munich Institute for Astro- and Particle Physics

WORKSHOPS

26 May - 20 June 2014

The Extragalactic Distance Scale

Registration

30 June - 25 July 2014

Neutrinos in Astro- and Particle Physics

Registration

28 July - 22 Aug. 2014

Challenges, Innovations and Developments in Precision Calculations for the LHC

Registration

25 Aug. - 19 Sep. 2014

Cosmology after Planck

Registration

ABOUT MIAPP

The **Munich Institute for Astro- and Particle Physics (MIAPP)** hosts several topical workshops in astrophysics, cosmology, nuclear- and particle physics per year. Each workshop lasts up to four weeks and serves as a center for scientific exchange. MIAPP workshops include seminars, organized by the coordinators of the workshop, and provide a stimulating platform for informal discussions, collaborations and creative thinking. For every workshop about 30 international scientists will be invited to attend together with Munich-based researchers. A minimum stay of two weeks is required. External researchers receive financial support to participate in the <u>workshops</u>.

The institute is part of the <u>Excellence Cluster "Universe"</u> and is embedded in the academic environment of the physics departments of both Munich universities, the local Max Planck Institutes and the European Southern Observatory (ESO). It is located at <u>Garching Research</u> <u>Campus</u>.