

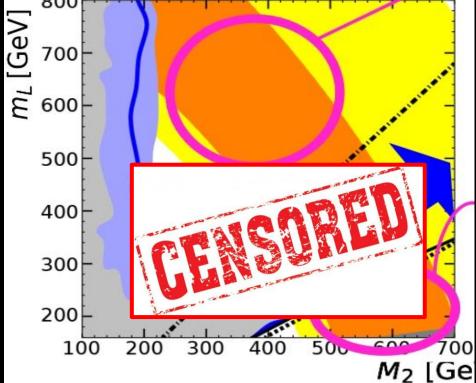
Acceleration, Then & Now

Inflation & Dark Energy

after Planck

Context: naturalness principles

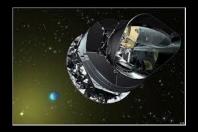
- Light scalars are unnatural
 - The LHC will see lots of new SUSY particles
 - Inflation will be complex

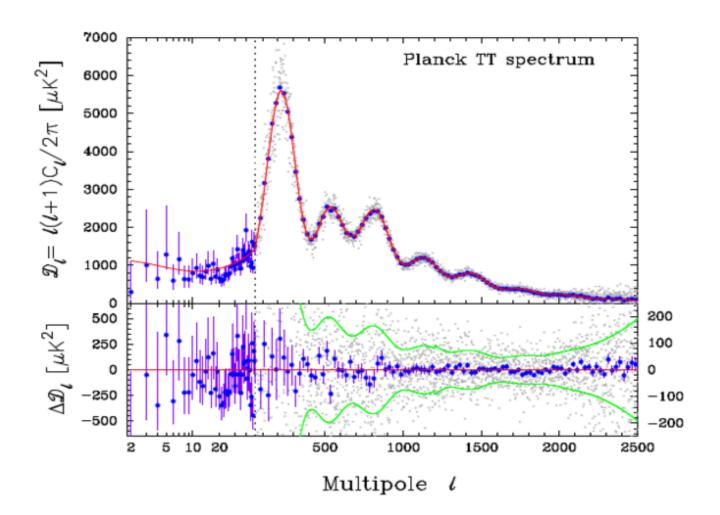

Patron Saint of All Things Natural Return of de Sitter II

Context: naturalness

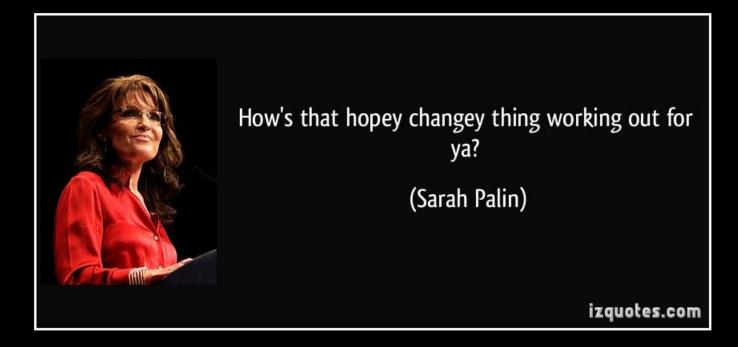
• SUSY exclusion plot

Sho Iwamoto @ SUSY 2013




Context: naturalness

Context: naturalness



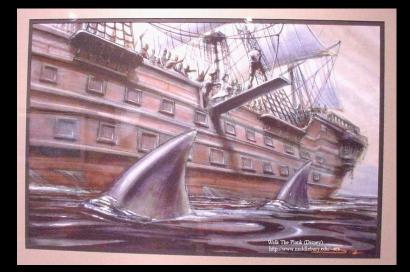
The Cosmological Constant?

Context: naturalness?

• Is Naturalness Dead?

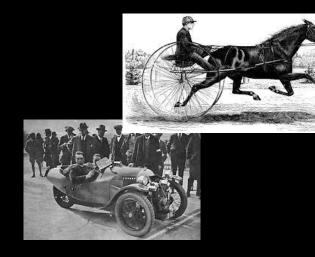
Context: naturalness!

• Is Naturalness Dead?


• Long Live Naturalness!

• Acceleration Then (inflation) (1306.3512)

• Occam vs Wilson

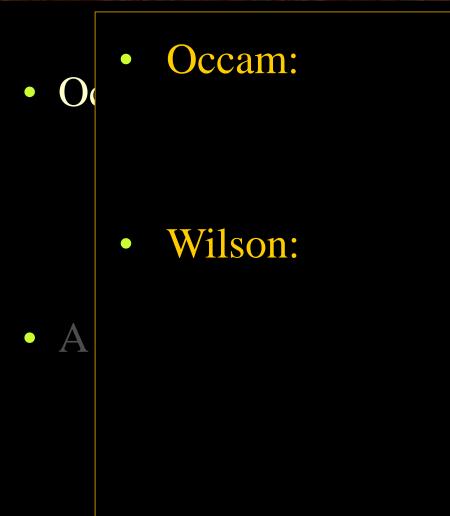

• Acceleration Then (inflation) (1306.3512)

- Occam vs Wilson
- String inflation: a scorecard

- Acceleration Then (inflation) (1306.3512)
 - Occam vs Wilson
 - String inflation: a scorecard
- Acceleration Now (dark energy) (1309.4133)
 - Novel form of SUSY breaking

with M. Cicoli & F. Quevedo arXiv:1306.3512

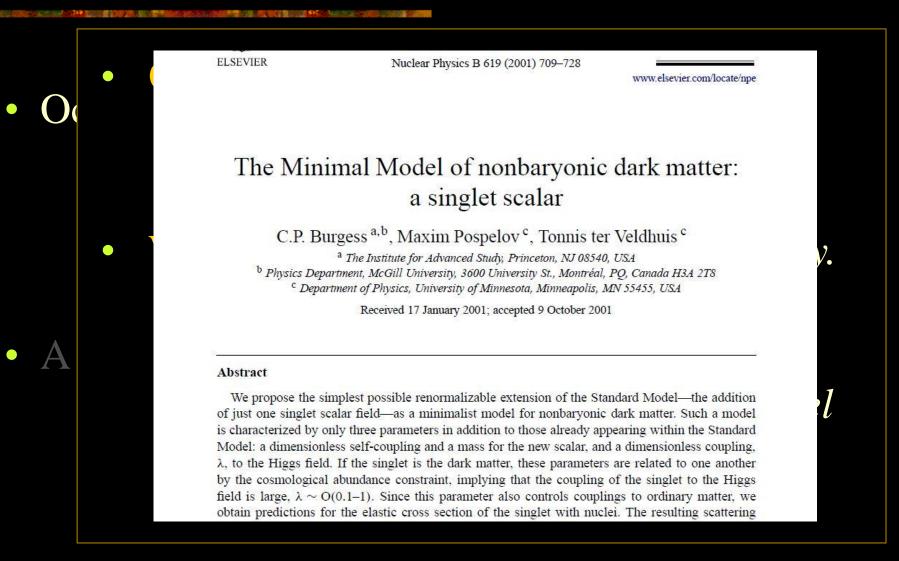
Occam vs Wilson


• A scorecard

• Occam vs

• A scorecar

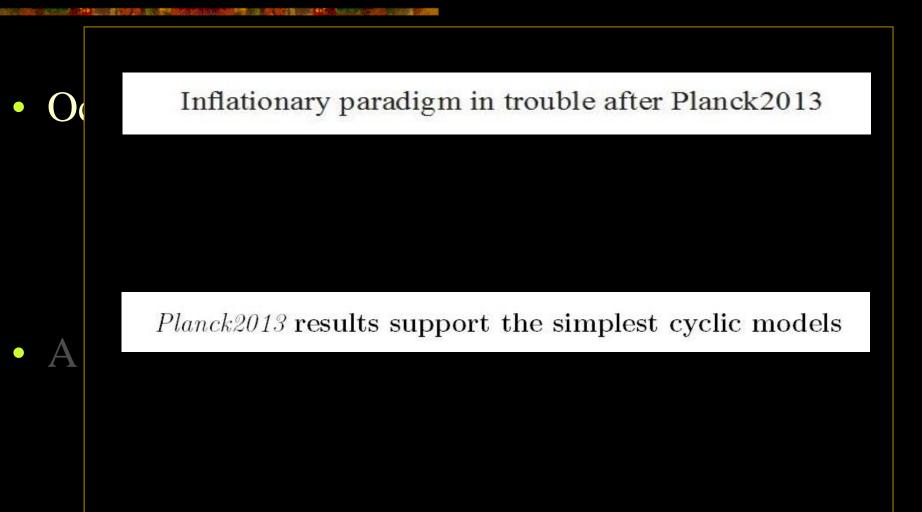
Divided by a common language


• Occam: What is the simplest possible model that the data requires?

• Wilson:

Occam: What is the simplest possible model that the data requires?

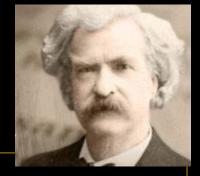
• Wilson: Low energy limit is often messy. What is generic and stable?


eg SUSY vs simple dark matter model

Occam: What is the simplest possible model that the data requires?

• Wilson: Low energy limit is often messy. What is generic and stable?

Why embed into UV theory? Is inflation a good theory of primordial fluctuations? Are there others?....



Inflationary paradigm in trouble after Planck2013

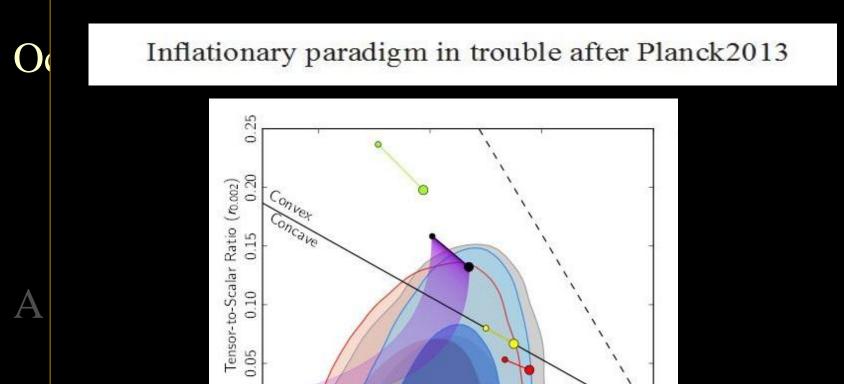
Mark Twain -

"The report of my death was an exaggeration."

Planck2013 results support the simplest cyclic models

Inflationary paradigm in trouble after Planck2013

Mark Twain -


"The report of my death was an exaggeration."

Planck2013 results support the simplest cyclic models

"I didn't attend the funeral, but sent a nice letter saying that I approved of it."

00.00

0.94

0.96

Primordial Tilt (ns)

0.98

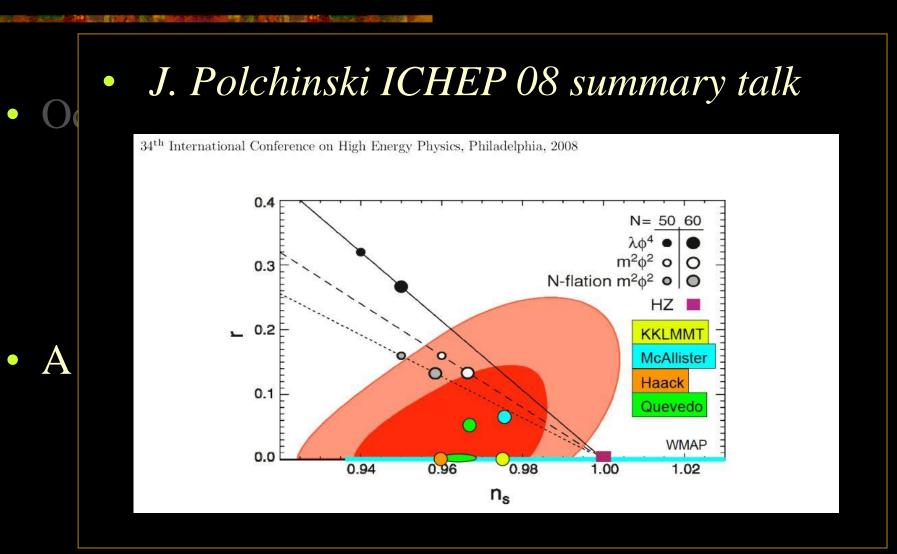
1.00

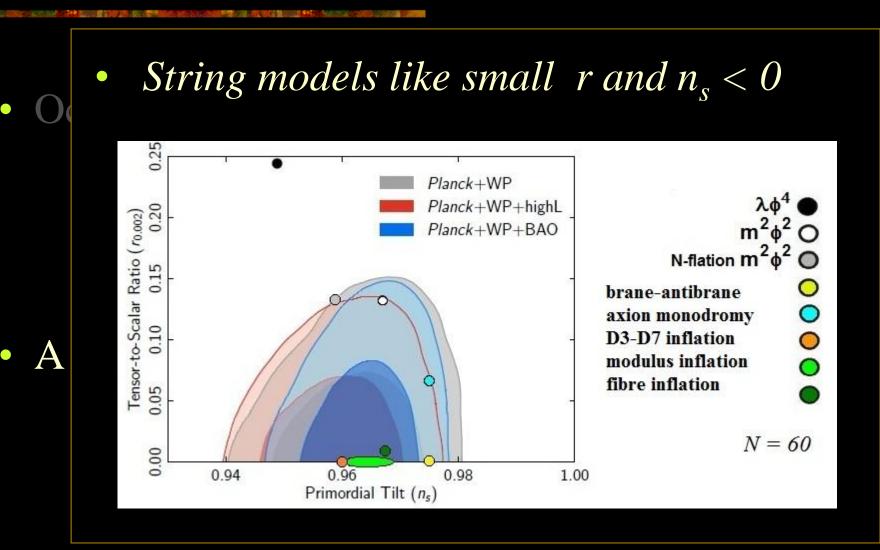
Inflationary paradigm in trouble after Planck2013

Problems with inflation

Often requires special initial conditions Requires scalar not just light, but lighter than H Can fields roll over trans-Planckian distances? Reheating? Trans-Planckian intrusions? Eternal inflation?and so on

Planck2013 results support the simplest cyclic models


Problems with cyclic models *How to control all approximations through the required bounce*


• Occam vs Wilson

• A scorecard

A

• That's all very nice, but it is not predictive: you can get *anything* from string theory.

A

• Large r is hard to get

А

What n_s Usually large r corresponds to
Large r large excursions in field space

 $\Delta \phi > M_p (r/4\pi)^{1/2} (Lyth)$

These turn out to require things like branes rolling further than the extra dimensions are large.

A

- What n_s and r are telling us:
 - Large r is hard to get
 - Exponential potentials are very attractive

What Larg Exp A

Starobinsky inflation with action

$$L = M_p^2 R + \zeta R^2$$

is equivalent to inflation with an exponential potential

 $L = M_p^2 R + (d \phi)^2 + V$ $V = V_0 (1 - A e^{-a \phi})^2$

What Lar Exp A

Starobinsky inflation with action

$$L = M_p^2 R + \zeta R^2$$

is equivalent to inflation with an exponential potential

 $L = M_p^2 R + (d \phi)^2 + V$ $V = V_0 (1 - A e^{-a \phi})^2$

Why aren't R^3 and R^4 important?

CB, Martineau, Quevedo, et al 2001 Conlon & Quevedo 2005 Cicoli, CB & Quevedo 2008

More generally, exponential potentials arise generically when inflaton is a geometrical modulus (eg fibre inflation) $e^{\varphi} = r/\ell_s$

$$V(\varphi) = V_0 \left(1 - \frac{1}{r^p} + \cdots \right)$$
$$= V_0 \left(1 - e^{-k\varphi} + \cdots \right) \text{ since } L = \frac{(\partial r)^2}{r^2}$$

CB, Martineau, Quevedo, et al 2001 Conlon & Quevedo 2005 Cicoli, CB & Quevedo 2008

More generally, exponential potentials arise generically when inflaton is a geometrical modulus (eg fibre inflation) $e^{\varphi} = r/\ell_s$

$$V(\varphi) = V_0 \left(1 - \frac{1}{r^p} + \cdots \right)$$
$$= V_0 \left(1 - e^{-k\varphi} + \cdots \right) \text{ since } L = \frac{(\partial r)^2}{r^2}$$

Progress on slow roll problem: slow roll if φ is large, but φ is large whenever $r \gg \ell_s$

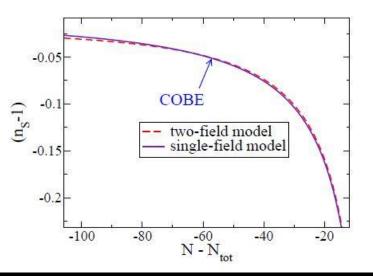
CB, Martineau, Quevedo, et al 2001 Conlon & Quevedo 2005 Cicoli, CB & Quevedo 2008

More generally, exponential potentials arise generically when inflaton is a geometrical modulus (eg fibre inflation) $e^{\varphi} = r/\ell_s$

$$V(\varphi) = V_0 \left(1 - \frac{1}{r^p} + \cdots \right)$$
$$= V_0 \left(1 - e^{-k\varphi} + \cdots \right) \text{ since } L = \frac{(\partial r)^2}{r^2}$$

Progress on slow roll problem: slow roll if φ is large, but φ is large whenever $r \gg \ell_s$ **Predictive!** $\epsilon \sim k \eta^2$ and so $r \sim (n_s - 1)^2$

A


Silverstein & Tong CB, Cicoli, Quevedo, Tasinato & Zavala

Nongaussianity: predictions Brane inflation: generically gaussian unless moving in strongly warped region (DBI)

$$\mathcal{L}_{\text{DBI}} = -f(\phi)^{-1} \sqrt{1 - 2f(\phi)g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi} + f(\phi)^{-1} - V(\phi)$$

Multiple fields: generically <u>effectively</u> single field (so gaussian) though local mechanisms (curvaton, modulation) can be implemented.

Although usually complicated multi-field models, these are also usually nonetheless well-described by an effective single-field model

A

Summary: UV complete inflation prefers small r, and this agrees well with the data

Moduli as inflaton naturally gives 'no-scale' 'Starobinsky type' exponential potential

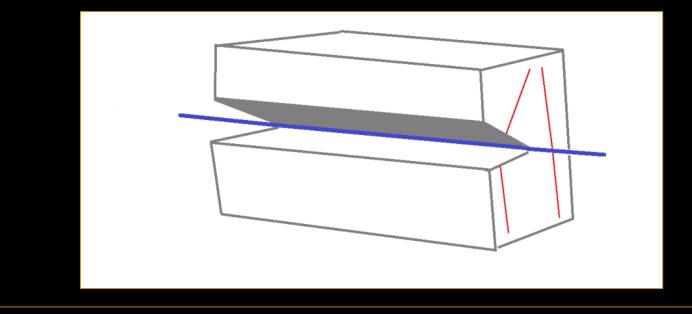
Generically gaussian, but some strongly constrained (like DBI in strong warping)

with L. van Nierop & M. Williams and S. Parameswaran & A. Salvio,

• The cosmological constant

Return of de Sitter II

• The problem: particle of mass m generates Lorentz-invariant vacuum stress-energy:

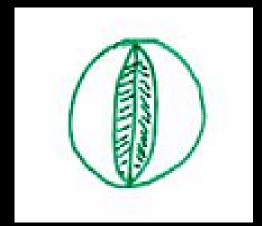

$$T_{\mu\nu} \sim m^4 g_{\mu\nu}$$

which in Einstein's equations obstructs having the small curvature we measure $G_{\mu\nu} = \kappa^2 T_{\mu\nu}$

Vilenkin

Now (dark energy)

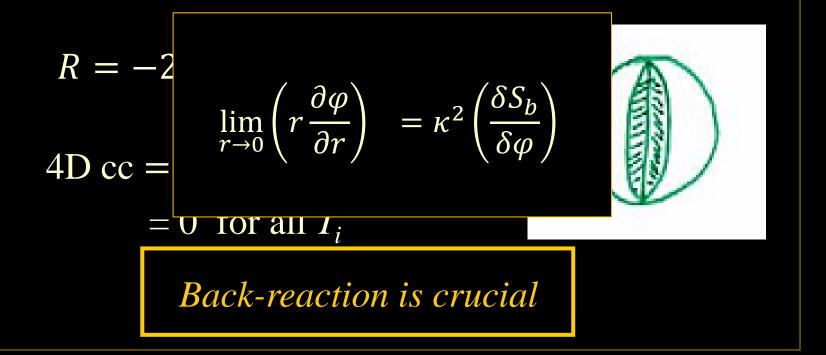
• Towards a solution: higher dimensions can break this link between vacuum energy and curvature (eg cosmic string)


Return of de Sitter II

Chen, Luty & Ponton Carroll & Guica Aghababaie et al

- A higher-dimensional analog:
 - Similar (*classical*) examples also with a 4D brane in two extra dimensions: *e.g. the rugby ball*

$$R = -2\kappa^2 \sum T_i \ \delta^2(x_i)$$


$$4D \operatorname{cc} = \sum T_i + \frac{1}{2\kappa^2} \int d^2 x R$$
$$= 0 \text{ for all } T_i$$

Back-reaction is crucial

CB, van Nierop, Williams

- A higher-dimensional analog:
 - Similar (*classical*) examples also with a 4D brane in two extra dimensions: *e.g. the rugby ball*

Aghababaie, CB, Parameswaran & Quevedo CB & van Nierop

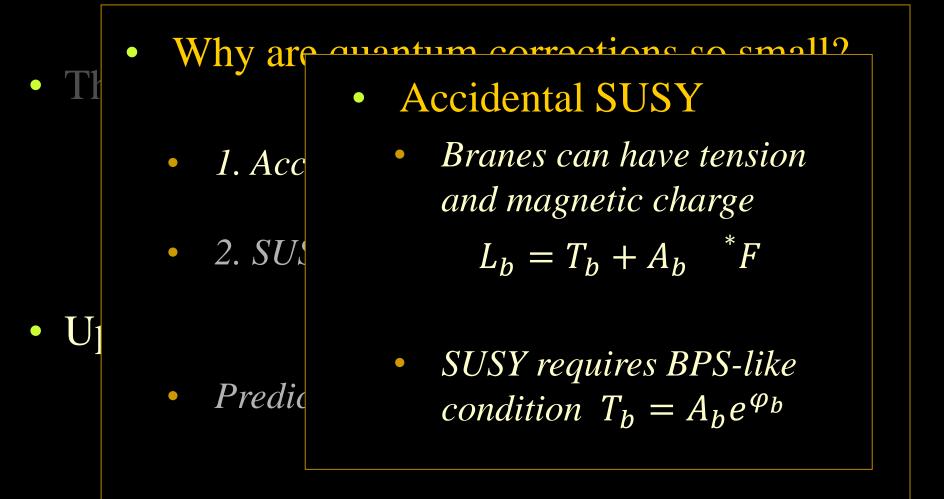
- Must re-ask the cc problem:
 - Stabilize extra dimensions (with fluxes)
 - What choices ensure flat branes?
 - Are these choices stable against UV loops?

Aghababaie, CB, Parameswaran & Quevedo CB & van Nierop

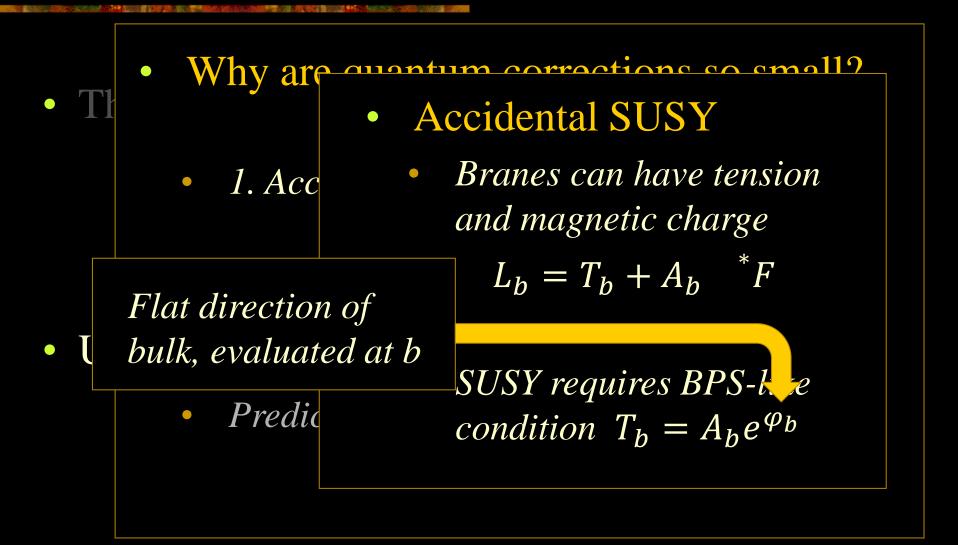
- Must re-ask the cc problem:
 - Stabilize extra dimensions (with fluxes)
 - What choices ensure flat branes?
 - Are these choices stable against UV loops?
- Upshot:
 - Generically: NO
 - BUT, with supersymmetric bulk can have cc ~ KK scale << scale m on branes

• The cosmological constant

Return of de Sitter II


CB, van Nierop, Parameswaran, Salvio & Williams

• Why are quantum corrections so small?


- 1. Accidental SUSY
- 2. SUSY only breaks nonlocally

• Predict $cc \sim k/(4 \pi r)^4$

Williams, CB, van Nierop & Salvio

Williams, CB, van Nierop & Salvio

1. Acc

2. SU

Predic

Williams, CB, van Nierop & Salvio

Why are quantum corrections so small?
 SUSY Broken Nonlocally

- Normalization of flat direction fixed by flux quantization, which fixes φ_b at all branes
- Resulting φ_b can, but need not, simultaneously preserve SUSY at all branes.

- If you claim to solve the cosmological constant problem, aren't you crazy?
 - Weinberg's no-go theorem?
 - Didn't we see this all before in 5D?
 - What about Nima's argument against x dims
 - What stops proton decay?
 - How is inflation possible?
 - Other effects seen in 4D cosmology?
 - Don't constraints already force $(1/r)^4 > cc$?

- If true, many striking implications:
 - Micron deviations from inverse square law
 - Missing energy at the LHC and in astrophysics: requires $M_g > 10$ TeV
 - Probably a vanilla SM Higgs
 - Excited string states (or QG) *below* 10 TeV
 - Low energy SUSY without the MSSM
 - Modified macroscopic physics & cosmology
 - Sterile neutrinos from the bulk?

- If true, many striking implications:
 - Micron deviations from inverse square law
 - Missing energy at the LHC and in astrophysics: requires $M_g > 10$ TeV
 - Probably a vanilla SM Higgs
 - Excited string states (or QG) *below* 10 TeV
 - Low energy SUSY without the MSSM
 - Modified macroscopic physics & cosmology
 - Sterile neutrinos from the bulk?

• U

- If true, many striking implications:
 - Micron deviations from inverse square law
 - Missing energy at the LHC and in astrophysics: requires $M_g > 10$ TeV
 - Probably a vanilla SM Higgs
 - Excited string states (or QG) below 10 TeV
 - Low energy SUSY without the MSSM
 - Modified macroscopic physics & cosmology
 - Sterile neutrinos from the bulk?

• The cosmological constant problem is telling us that there must be two micron-sized dimensions (plus possibly more smaller ones)

- The cosmological constant problem is telling us that there must be two micron-sized dimensions (plus possibly more smaller ones)
- These dimensions must be supersymmetric (but need *NOT* require the MSSM)

"...when you have eliminated the impossible, whatever remains, however improbable, must be the truth."

A. Conan Doyle

- The cosmological constant problem is telling us that there must be two micron-sized dimensions (plus possibly more smaller ones)
- These dimensions must be supersymmetric (but need *NOT* require the MSSM)
- More generally: back-reaction for higher codimension objects is a very promising, but largely unexplored area

- Inflation @ Planck
 - Data prefers simplicity
 - String models in great shape
 - Many conceptual issues to sort out

- Inflation @ Planck
 - Data prefers simplicity
 - String models in great shape
 - Many conceptual issues to sort out
- Now (dark energy)
 - Dark Energy may be telling us to *double down*
 - Points in a very different direction: no MSSM but *very* supersymmetric gravity sector

Opportunities & Concerns

- If true, many striking implications:
 - Micron deviations from inverse square law
 - Missing energy at the LHC and in astrophysics: requires Mg > 10 TeV
 - Probably a vanilla SM Higgs
 - Excited string states (or QG) below 10 TeV
 - Low energy SUSY without the MSSM
 - Modified cosmology
 - Sterile neutrinos from the bulk?

- If you claim to solve the cosmological constant problem, aren't you crazy?
 - Weinberg's no-go theorem?
 - Didn't we see this all before in 5D?
 - What about Nima's argument against x dims
 - What stops proton decay?
 - How is inflation possible?
 - Modified cosmology?
 - Don't constraints already force $(1/r)^4 > cc$?

Return of de Sitter II