SZ science: from APEX-SZ to CCAT-prime and beyond

Bullet cluster in WL, X-ray, and SZ (SZ from APEX)

Kaustuv Basu (Universität Bonn)

With inputs from J. Erler, M. Ramos-Ceja, A. Mikler, and members of the APEX-SZ and CCAT-prime collaborations

Kaustuv Basu (Uni Bonn)

CMB in Germany, Jan 2018

MPA, Garching

Galaxy cluster cosmology

Planck SZ cluster catalog from 2015

Galaxy clusters provide precise knowledge of several cosmological parameters in many independent ways, for example:

number counts and angular clustering
velocity measurements (direct and pairwise)
baryon fraction, D_A from XSZ, triaxiality, etc
high-res CMB power spectrum/bispectrum

Review by Allen, Evrard & Mantz (2011)

Current constraints mainly come from cluster number counts, where the errors are dominated by **mass** calibration uncertainties

Institut

Galaxy clusters for astrophysics

Marcowith et al. (2012)

Institut Kaustuv Basu (Uni Bonn)

Argelar

für

CMB in Germany, Jan 2018

MPA, Garching

Our toolbox: 3 favours of the SZ effect

kSZ effect to measure the cluster peculiar motion (pairwise or individually) NNN Image: ACT collaboration

Kaustuv Basu (Uni Bonn)

für

×Ω

CMB in Germany, Jan 2018

Outline: from APEX-SZ to CMB-S4

APEX-SZ: past result highlights and what's new?

High-resolution SZ: astrophysics from ALMA to AtLAST

Our current focus: CCAT-prime and its **unique** SZ science

Kaustuv Basu (Uni Bonn)

Institut

für

×Ω

MPA, Garching

The APEX-SZ camera and its results

Targeted observation of 40+ clusters and some ~1 deg² fields

~200 element TES array with roughly 0.5° FoV (operational between 2007-2010)

See: Halverson et al. (2009), Nord et al. (2009), Reichardt et al. (2009), Basu et al. (2010), **Bender et al. (2016)**

Kaustuv Basu (Uni Bonn)

CMB in Germany, Jan 2018

Multi-frequency SZ imaging from APEX

Measurements on Abell 2163 (Nord, Basu, et al. 2009)

für

ΣΩ 🗎

APEX-SZ new: Y-M scaling relations

+ A *complete* (30 clusters) sample from ROSAT

+ WL masses from WFI data (Klein et al. in prep.)

(Positive) correlation in the intrinsic scatter of L_X and Y_{SZ}

σ_{in γ} 0.2 0.4 0.6 B₁₀ 1.1 1.6 2.1 r -0.5 0.0 0.5 σ_{in1} 0.5 0.8 1.1 B₉₇ A₀₇ 0.5 0.8 1.1 0.9 1.4 1.9 0,6 0.4 A_{LM} 0.2 2.1 1.6 B_{LM} Y_{sz} (10⁻⁴ MPc²) $0.8 \ \sigma_{\rm int}$ 1.0 0.5 1.1 0.8 A_{SZ} 0.5 1.9 1.4 B_{EZ} 10⁻³ 1.0 0.9 0.6 E^{-2.3}(z) D² [Mpc²] $0.4 \, \sigma_{\rm hr Y}$ 02 10* V₈₂ [10⁻⁴ MPc²] Ysph500 1.0 r: free r=0 $0.47^{+0.24}_{-0.35}$ From APEX-SZ data alone: r = 10.6 10¹⁴ 10¹⁵ Ignoring r can shift cluster counts based $M_{500} [M_{\odot}]$ 1.0 on Y-M scaling from 5000 to 21000

A. Nagarajan,.. KB.. et al. (submitted, in arXiv soon!)

Institut Kaustuv Basu (Uni Bonn)

für

CMB in Germany, Jan 2018

MPA, Garching

APEX-SZ new: *Pressure profiles*

A. Mikler et al. (in preparation)

Constraining the shape of the outer pressure profile

Institut

für

×Ω

High-resolution SZ: shocks & cool-cores

- ALMA and other instruments are opening up the highresolution frontier of SZ (see Tony's talk).
- We measured with ALMA a shock in the outskirts as well as gas cuspiness at the central region for high-z clusters.

Kaustuv Basu (Uni Bonn)

CMB in Germany, Jan 2018

SZ shocks by ALMA and others

Kaustuv Basu (Uni Bonn)

CMB in Germany, Jan 2018

MPA, Garching

SZ shock in El Gordo (z=0.9)

für

 $\Sigma \Omega$

SZ shock in El Gordo (z=0.9)

Basu et al. (2016)

Large aperture single dish: CCAT (25 m) AtLAST

für

tSZ power spectrum

10000

Ramos-Ceja, Basu et al. (2015)

Need accurate modeling and

Different AGN feedback models

Institut

ΣΩ 🖀 für Astr

tSZ power spectrum

Dolag, Komatsu & Sunyaev (2016)

Ramos-Ceja, Basu et al. (2015)

Kaustuv Basu (Uni Bonn)

Institut

für

CMB in Germany, Jan 2018

MPA, Garching

CCAT-prime

- 6 m diameter sub-mm telescope
- Wavelength range 3 mm up to 0.2 mm
- FoV at 3 mm *up to 8 degrees*
- Key cosmology/LSS science: wide area cluster SZ survey + a deep C+ IM survey

VERTEX ANTENNENTECHNIK

8.8°×8.8° sky area simulation (Credit: K.Dolag/Magneticum sims)

CMB in Germany, Jan 2018

CCAT-prime tSZ survey predictions

Figures from N. Gupta, Masters thesis (Gupta, Basu & Porciani, in prep.)

- CCAT-p survey, without Planck CMB priors, will constrain σ_8 to 0.6% and 0.7% accuracy for constant and varying DE. ω_0 is constrained with 7% accuracy.
- Even for a 1000 deg² survey, some cosmological parameters will be better constrained than by eROSITA thanks to the low scatter *Y-M* scaling.

Experiment	$\Delta \Omega_{\rm M}$	$\Delta \sigma_8$	Δw_0
Fiducial survey			
$Counts(Y_{500}, z)$	0.021	0.017	0.08
Clustering(z)	+0.078 -0.063	+0.045 -0.049	0.21
$Counts(Y_{500}, z) + Clustering(z)$	0.021	0.016	0.08
CCAT + Planck + other	0.008	0.009	0.03

Institut

für

×Ω

Requirement for SZ spectral analysis

CCAT-p sensitivity is on average 5 to 15 times better than Planck (angular resolution ~6 times better)

Kaustuv Basu (Uni Bonn)

CMB in Germany, Jan 2018

rSZ: State-of-the-art and CCAT-prime

Erler, Basu et al. (arXiv:1709.01187)

With current *Planck* data, roughly 2.3 significance detection of cluster temperature is obtained after stacking 772 clusters.

With CCAT-p the temperature of a single massive cluster can be measured at 5–10 σ .

 $\Sigma \Omega$

More to consider: dust in galaxy clusters

More on *cluster dust*

Kaustuv Basu (Uni Bonn)

Applying X-ray temperature priors

Temperature prior from eROSITA (at 30%-40% level)

Figure from Mittal, de Bernardis & Niemack (2017)

X-ray temperature priors will significantly improve the velocity and tau constraints (though mostly effective for lower-redshift systems, until *Athena* arrives)

kSZ: cluster au and pairwise momentum

Kaustuv Basu (Uni Bonn)

Institut

für

kSZ: fgas and feedback in clusters/groups/galaxies

Lim et al. (2018), kSZ stacking on catalogs based on SDSS data

Kaustuv Basu (Uni Bonn)

Institut

Combined **tSZ + kSZ + optical**

A German contribution for the CCAT-p CMB science?

The original 7-frequency SZ camera design

Kaustuv Basu (Uni Bonn)

A German contribution for the CCAT-p CMB science?

Science $cases^a$	$Type^{b}$	$\mathbf{Frequencies}^{c}$	Resolution	Detectors		Survey Areas ^{d} (deg ²)	
		(GHz)	(arcsec)	type	#	pilot	full
SZ, CMB, SF	bb, pol	230, 270, 350, 410	60, 50, 40, 35	TES	9000	1 00	$12,000^{c}$
EoR, SZ	\mathbf{sp}	230, 270, 350, 410	60, 50, 40, 35	TES	6000	4	16
SZ, SF	bb	860	15	KID	18,000	both	both

Unknown systematics from cross-telescope data combination (and possibly reduced sensitivity) **Ideal to have in-built mm bands**

Take home points

A broad-spectrum of SZ science leading to our work on the CCAT-prime

CCAT-prime's unique ability is accurate modelling of multiple SZ components in presence of foregrounds – particularly cluster dust

Losing the 2 & 3 mm bands from the survey camera may not be the best option – German contribution?

Kaustuv Basu (Uni Bonn)

Institut

Σ[Ω] **Δ**