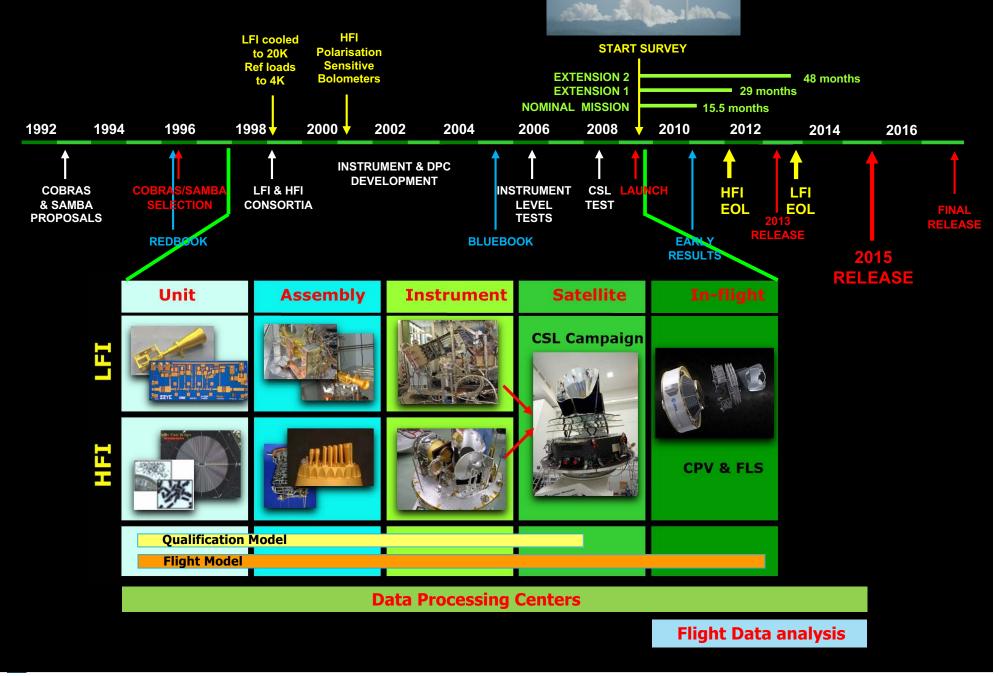

TOWARDS A EUROPEAN COORDINATION FOR CMB EXPERIMENTS

Nicola Vittorio

The 'Planck era'


The Planck Legacy release is imminent

The ESA/Planck mission has created

- world-class CMB community in Europe,
- unique, world-leading expertise in space-based CMB research.

Planck Ground & in-flight calibration plan

Kourou, French Guyana, 14 May 2009, h 10:12

The 'after-Planck era'

Data from future CMB satellite missions

- in more than a decade from now.

European coordinated effort on

- ground-based infrastructure
- sub-orbital technology
- to fully exploit
 - the expertise acquired with Planck

The 'Florence process'

'Towards the European Coordination of the CMB programme'

- Villa Finaly: September 2015, 2016, 2017
- Coordinating group
 - Francois Bouchet & Ken Ganga
 - Eiichiro Komatsu & Joe Mohr
 - Marco Bersanelli & Nicola Vittorio
 - Enrique Martinez-Gonzalez & Jose-Alberto Rubiño-Martin
 - > Michael Brown & Anthony Challinor
 - ▶ ...: & ...

H2020/European Research Infrastructures

- Design Study for 4th Generation European Ground-Based CMB Research
 - WP:
 - > Proposal and Study Management:
 - **Requirements & Analysis:**
 - Site Evaluation, Construction & Operation:
 - > Telescope & Optics:
 - Focal Plane & Detectors: KIDs; TESs; HEMTs
 - > Cryogenics: i
 - System Calibration and Characterization:

> Governance:

- Nodes and people in charge:
 - > CNRS: Ken Ganga
 - Milan: Marco Bersanelli
 - Roma-I: Paolo de Bernardis
 - INFN: Giovanni Signorelli
 - > IAC: Jose-Alberto Rubino-Martin
 - > CSIC: Enrique Martinez-Gonzalez
 - > UC: Eduardo Artal
 - > Cardiff: Peter Hargrave
 - > MPA: Eiichiro Komatsu
 - > NUIM: Creidhe O'Sullivan
 - > NOA: Manolis Plionis

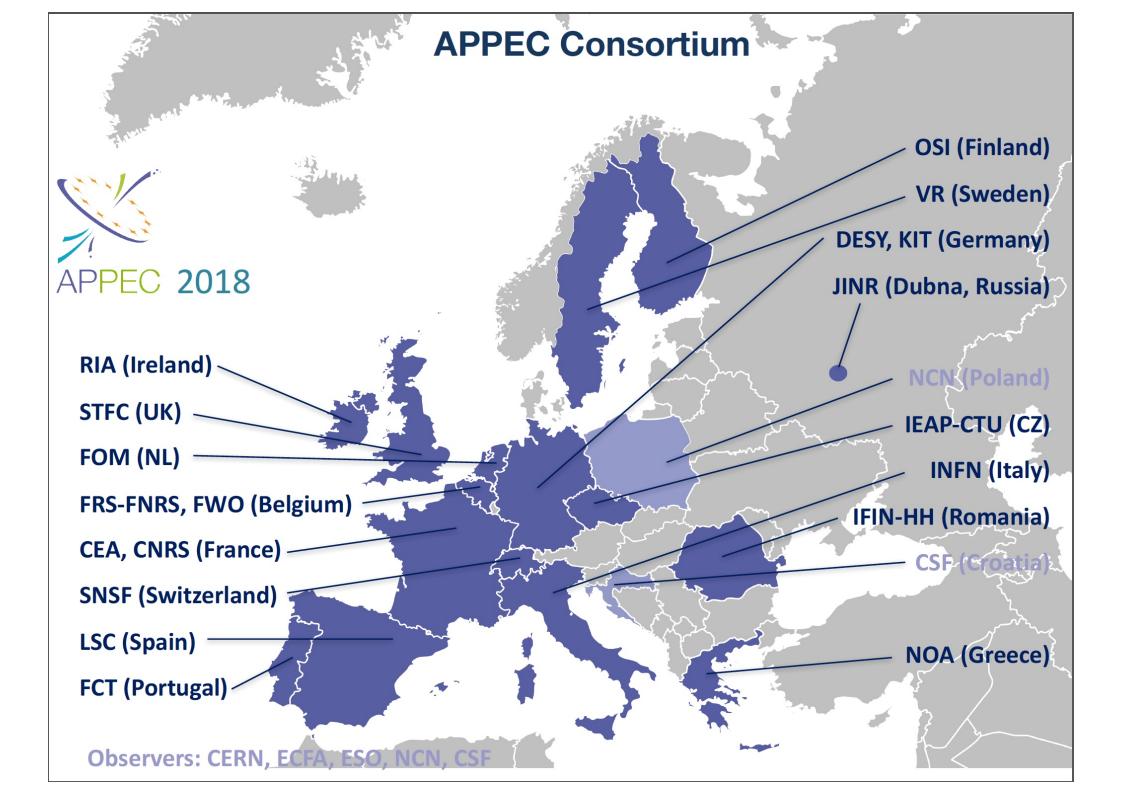
47 institutes and 150 people interested

- ASDC-ASI
- Athens Nat. Obs.
- Bonn
- Cantabria
- Cambridge
- Cardiff
- CNRS
- UGC-Granada
- ICC-Barcelona
- INFN
- Imperial College
- Instituto Argentino de Radioastronomía

- Manchester
- Maynooth
- Milan
- Milano-Bicocca
- MPA
- Oviedo
- Oxford
- RCAAM
- Roma I
- USAL-Salamanca
- Sissa
- Stockholm University
- UCL
- UPV/EHU

E4/ESFRI design study proposal

We did OK


- ...but not 'enough OK'

Remarks:

- The European community was very responsive
- The size of the effort and the financial support are much larger than what can be done in any single country
- To continue to do cutting-edge CMB science, we need a European-wide effort.

■ Plan:

- Resubmit the proposal, with a better definition of the proposed infrastructure

APPEC Recommendation

The European Astroparticle Physics Strategy by APPEC

- presented the 9th of January, 2018, in Bruxelles.
- Among the APPEC Recommendations for the 2017-26 there is the recognition that
 - "The future CMB program sets the stage for a range of opportunities to link key themes together and provides a potential stepping-stone towards further fundamental discoveries".

European Astroparticle Physics Strategy APPEC 2017-2026

Ground-based CMB polarization

- The CMB field is advancing rapidly!
- "Stage 3" experiments have ~10,000 detectors
- CMB-S4 Science Book (arXiv://1610.02743)

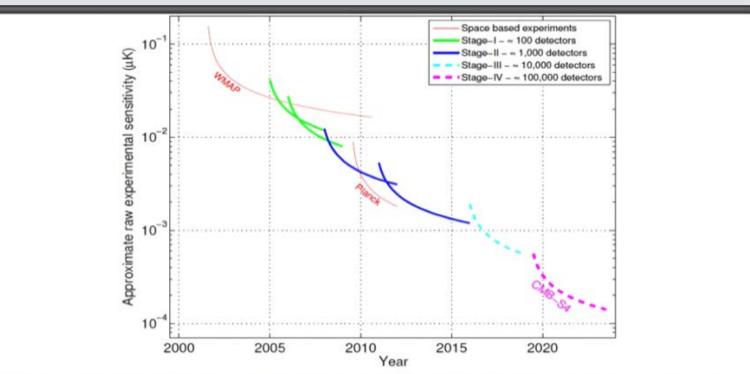


Figure 2. Plot illustrating the evolution of the raw sensitivity of CMB experiments, which scales as the total number of bolometers. Ground-based CMB experiments are classified into Stages with Stage II experiments having O(1000) detectors, Stage III experiments having O(10,000) detectors, and a Stage IV experiment (such as CMB-S4) having O(100,000) detectors. Figure from Snowmass CF5 Neutrino planning locument.

Ground-based CMB polarization

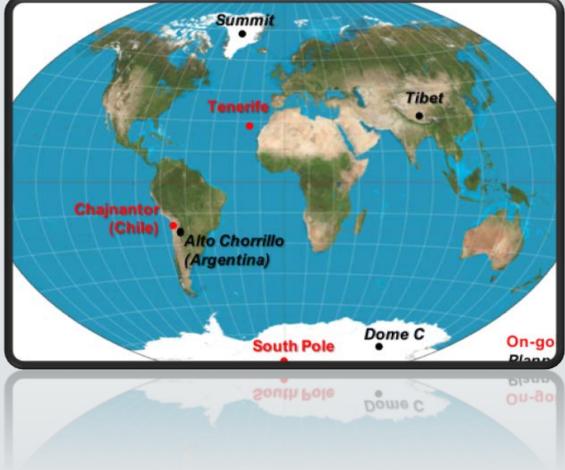

- CMB Stage 4 experiments should be able to set unprecedented limits on the neutrino sector, the dark sector, and Inflation
- CMB-S4 Science Book (arXiv://1610.02743)

Figure 3. Schematic timeline showing the expected increase in sensitivity (μK^2) and the corresponding improvement for a few of the key cosmological parameters for Stage-3, along with the threshold-crossing aspirational goals targeted for CMB-S4.

Ground-based CMB polarization

- Clear tendency to concentrate in few, high-quality sites
 - Excellent atmosphere
 - Sharing of infrastructure
- S4: South Pole and Atacama, Chile;
 - Small and large telescopes for
 - B-mode, de-lensing, high-l cosmic structure science;
 - 500,000 detectors
 - > 300k on 3 large telescopes;
 - > 200k on 14 small telescopes)

A European 'Whitepaper'

Table of contents – TBC

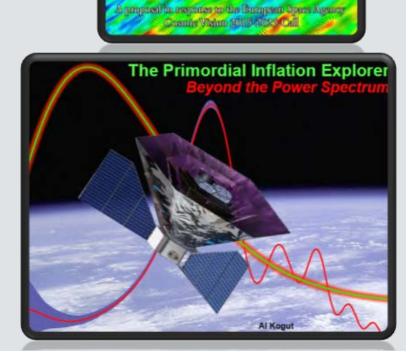
- > Introduction
- > The Scientific Questions:
 - Neutrino Sector, Dark Sector, Inflation, ...
- > The Requirements to answer these questions
- > What do we need to do?
- > The Community
- > The State of the Art Today
- > The Scientific Landscape for the Coming Years
- ➢ Mid- and long-Term Roadmap

Important questions to be asked

- What contribution should Europe be making to

- > ground-based CMB experiments and/or to existing S3/S4 plans?
- invest on the synergy building up at the Tenerife site between Spain and Italy, with UK participation and, possibly Japan involvement?
- balloon-borne CMB experiments?
- > CMB space missions?
- > spectral distortion measures and if so, what is the process?

UNDER CONSTRUCTION


CMB Space mission

The ESA/Core mission proposal

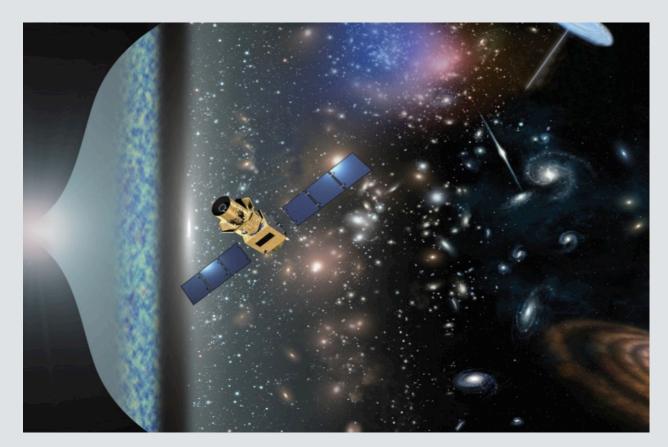
 - 'incompatible with the boundary conditions for the M5 Call"

The NASA/PIXIE proposal

- not selected...
- no other space mission to measure CMB spectral distortions

CORE

Cosmic ORigins Explorer

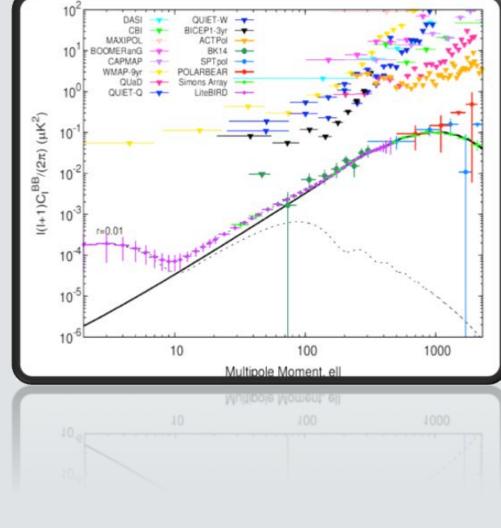

A satellite mission for probing cosmic origins, neutrinos masses and the origin of stars and magnetic fields

through a high sensitivy survey of

the microwave polarisation of the entire sky

 JAXA/LiteBIRD satellite
Lite (Light) Satellite for the Studies of B-mode Polarization and Inflation from Cosmic Background Radiation Detection

- Japanese PI: Masashi Hazumi, US PI: Adrian Lee


LiteBIRD: a focused mission

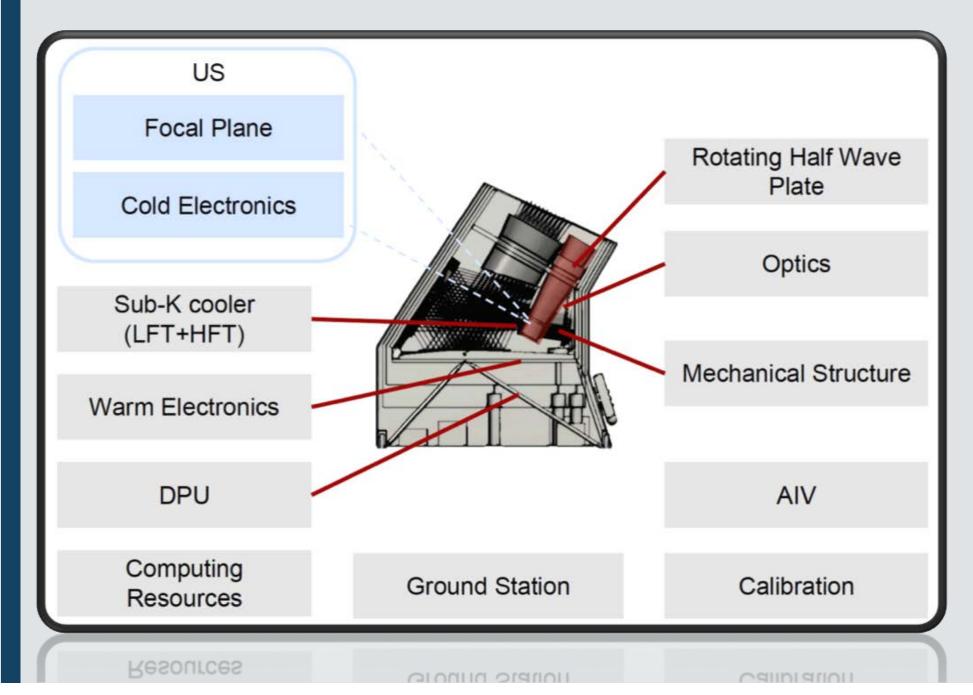
Detect r with σ(r=0)<0.001</p>

■ σ(r) includes

- statistical uncertainties
- instrumental systematic uncertainties
- uncertainties due to residual foregrounds and bias
- uncertainties due to lensing B-mode
- cosmic variance (for r > 0)
- observer bias

The above sensitivity without delensing.

LiteBIRD status and deadlines


CMB polarization all-sky survey

- proposed to ISAS in response to a call for a strategic large mission in 2015.
- One of the two missions selected for Phase-Al study
 - The other is Solar-Power-Sail Trojan mission
- ISAS/JAXA Phase-Al
 - started in September 2016
- Selected by MEXT as one of 7 projects listed in
 - "Roadmap 2017 on promotion of large research projects"
- Final selection
 - end of 2018 beginning of 2019

JAXA's proposed a European role

- Europe should take charge of delivering the High Frequency Telescope (HFT). This include
 - Design Model
 - Engineering Model
 - Flight Model
 - Testing and calibration
 - Possible backup design for warm readout
 - Sub-K cooling system
- The US team should deliver the detector focal plane to Europe
- Europe should deliver to Japan the HFT, integrated and tested

European Contribution

International collaboration for LiteBIRD (by MH)

Provisional task sharing

- Japan: LFT, HWP, precoolers, spacecraft, launch, operation
- US: Focal-plane units for LFT and HFT, cold readout
- Canada: warm readout (DfMUX)
- Europe: HFT, Sub-K cooler
- All: Data analysis and scientific exploitation

Teams and supports from space agencies

- US team (led by A. Lee) is supported by NASA for technology development.
- Canadian Space Agency (CSA) supported warm readout technology development by McGill group. CSA issued (July 17, 2017) a Request for Proposals (RFP) to conduct a (Canadian) contribution study for the LiteBIRD mission.
- European LiteBIRD consortium is being organized. Some of members are already registered as LiteBIRD external collaborators.

Joint Study Group has been formed between LiteBIRD Phase A team and external collaborators. Studies on foreground, systematics, calibration and HFT ongoing.

JSG structure and participants

• P.Ade L L L

• P. de Bernardis

- A. Challinor
- P. Hagrave
- S. Masi

• M. de Petris

• C.Tucker

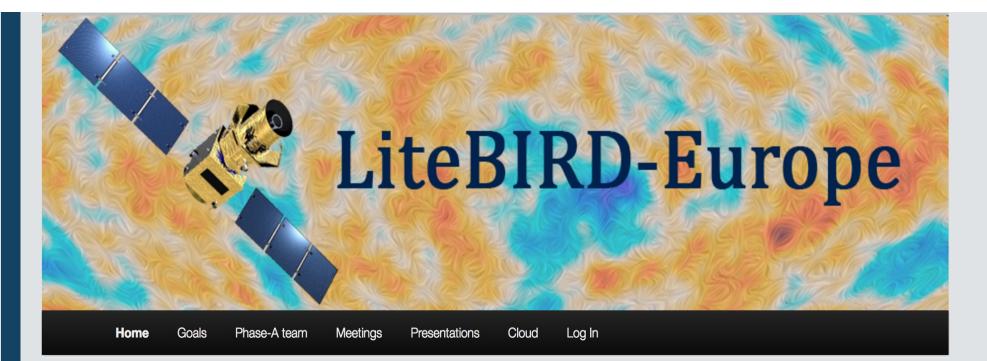
- B. Maffei
- G. Pisano

• P.Ade Testing • P. de Bernardis

- A. Challinor
- and • P. Hagrave
 - S. Masi
 - M. de Petris
 - C.Tucker
- Calibration • M. Bersanelli
 - L. Montier
 - G. Savini

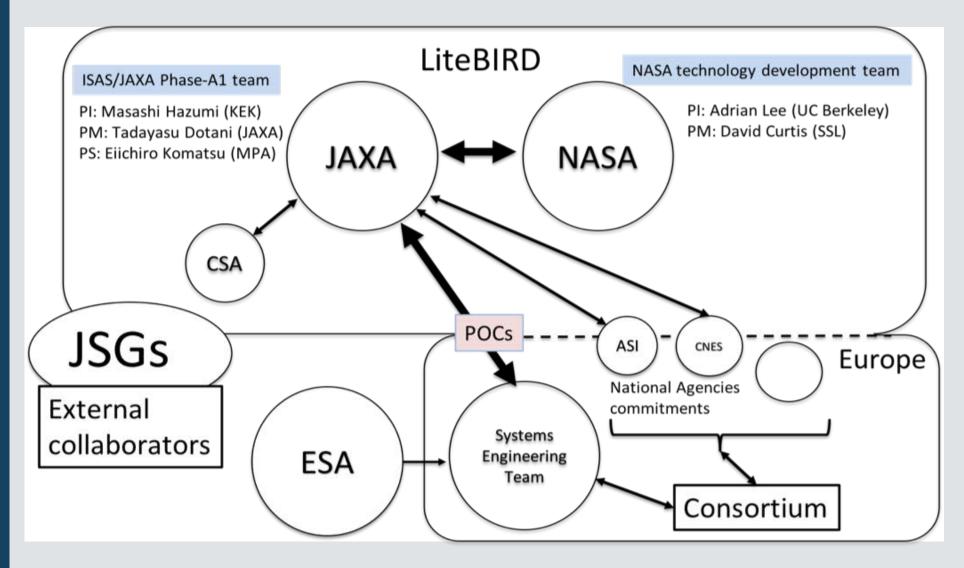
- D.Alonso
- J.Aumont
- C. Baccigalupi
- Foregrounds • F. Boulanger
 - C. Dickinson
 - H. K., Erikson
 - U. Fuskeland
 - J. Grain
 - N. Krachmalnicoff
 - A. Mangilli
 - D.Poletti
 - M. Remazeilles **B. Thome M. Tristram**
 - F. Vansyngel
 - I.Wehus

• M. Brown


- M. Bucher
- Systematics • K. Ganga
 - A.Gruppuso
 - D. Molinari
 - P. Natoli
 - G. Patanchon
 - F. Piacentini **D.**Thomas

Towards a European Coordination

Cardiff: general discussion on the European participation
Paris: general discussion on the European organization



- http://www.litebird-europe.eu/
- No single country has the resources to provide the HFT single- handedly
- European cooperation is essential
- ESA and national agencies
 - interested in having a visible and identifiable role
- Important to organize a consortium
 - strongly advised by ESA
 - to have a credible management structure to deliver the HFT
 - to be inserted in a Project Management Module

The LiteBIRD-Europe Phase-A team

- Phase-A activities coordinated by
 - a Steering Committee, represented on outside by a Spokesperson, and a Deputy Spokesperson.
- Spokesperson:
 - Ludovic Montier
- Spokesperson Deputy:
 - Erminia Calabrese
- Systems Engineer:
 - Baptiste Mot
- Steering Committee
 - Erminia Calabrese, Paolo De Bernardis, Jian-Rong Gao, Eiichiro Komatsu, Enrique Martinez-Gonzalez, Ludovic Montier, Giampaolo Pisano, Radek Stompor, Nicola Vittorio, Ingunn Kathrine Wehus
- **SC** Chair:
 - Nicola Vittorio

PROJECT MANAGEMENT MODEL Phase A (By MH)

European Institutions involved in the activities

France APC (Paris) •CEA-DAp (Saclay) •CEA-SBT

(Grenoble) ENS-LERMA (Paris)

IAP (Paris)

IAS (Orsay)

- Institut Néel
- (Grenoble)

IPAG (Grenoble)

IRAP (Toulouse)

•LAL (Orsay)

LPSC (Grenoble)

Italy "Tor Vergata" • Università di

Milano

 Sapienza Università di Roma

• INAF/IASF, Bologna

Università di Roma

INAF/OATS. Trieste

• Università di

Milano-Bicocca

• Università di Genova

 INFN-Sezione di Pisa

• Università di

Ferrara • Università di

Padova

SISSA – Trieste

2 5 Cardiff University N

University of

Cambridge

 Imperial College London

- University of Manchester
- University College London
- University of Oxford
- University of Portsmouth

• University of Sussex

 Max Planck Society Germany (MPA, MPE, MPIfR) Ludwig-Maximilians-Universität München Universität Bonn RWTH Aachen

Universität

Spain • IFCA. IDR/UPM. DICOM/UC • ICCUB. IAC

 Universidad de Oviedo

Universidad

de Salamanca Universidad de Granada

• CEFCA

The Netherlands: SRON RuG Norway: University of Oslo

						All ESA								
						member	υκ	FR	ІТ	DE	NL	NO	ES	Other
						states		FR	••		INL		LS	Other
Scie	nce Exploitation													
HFT	optical design													
	Physical optics & s	tray light	analysis											
	Polarisation modu	lation & s	ystematics											
HFT	mechanical and th	nermal (d	esign, manu	ufact	ure & tests)									
	Thermal and struc	tural desi	gn, manufa	cture	e & tests									
	Thermal filtering s	cheme												
HFT	components deve		design, m	anuf	acture & tests)									
	Metamaterial components (filters, HWP, lenses)													
	HWP continuous r	-	-											
	Cold aperture (2 K													
	Silicon lenses with	-	-	ng										
	Detectors, cold an			_	CS.									
	DPU	awanni												
нет	sub system assem	bly and y	orification											
	Telescope	biy and v	ermcation											
	-													
	HWP system						-							
	Cooling systems						-							
	Detector system													
HFI	system level integ	ration												
	HTF integration	- •												
HFI	testing and calibra													
	Ground calibration													
	Full optical sys		-											
		Main beam, gain, sidelobes and polarisation (cryogenic)					_		_					
	Transfer functi	on, spect	rum, RF & n	nagn	etic pickup									
	Vibrations													
	Cosmic rays													
	In-flight calibration	ns												
	light calibration wi	th dedica	ted satellit	e										
Sub	-K cooler													
	ADR, design, fabri													
	Continuous Sub-K													
LFT	components deve	opments	(design, ma	anufa	acture & tests)									
	Infrared filters													
Colo	d Electronics													
Con	nputing resources													
	Dedicated comput	ting resou	irces											
Gro	und station													
	Complement the s	cience da	ita downlink	tim	e									
Pote	ential additional E	uropean d	ontributior	n as a	an enhanced miss	sion								
	LFT Half-wave plat	o docign	manufactu	co 8.	teet									

Towards a European Coordination

Torino - Feb 8-9th 2018

- INFO and program @ <u>www.LiteBIRD-Europe.eu</u>

to finalize the Governance Structure and coordinate Phase A1 activities