

Observations of the relativistic SZ effect: from *Planck* to CCAT-prime

Jens Erler

Kaustuv Basu, Jens Chluba & Frank Bertoldi

Relativistic corrections to the tSZ effect

The tSZ rel. corrections allow

- independent measurement of T_e
- direct measurement of n_e
- Measurements at high z

$$T_{\rm SZ} \approx \langle T_{\rm e} \rangle_{P_{\rm e}} = \frac{\int n_{\rm e} T_{\rm e}^2 \,\mathrm{d}l}{\int n_{\rm e} T_{\rm e} \,\mathrm{d}l}$$

The temperature of the ICM is tightly related to the total (hydrostatic) mass of galaxy clusters

The data

Why use *Planck* to study the rSZ effect

- *Planck* covers the entire SZE spectrum
- *Planck* has all-sky coverage
- Good sensitivity
- Drawback: low resolution

Why use *Planck* to study the rSZ effect

- *Planck* covers the entire SZE spectrum
- *Planck* has all-sky coverage
- Good sensitivity
- Drawback: low resolution

Galactic Foregrounds

Credit: ESA Planck Collaboration

Sample Selection

Stacked Cluster Sample

Matched Filtering

Spatially uncorrelated foregrounds are reduced by matched filtering

01/02/2018

Expanding the MF concept

Additional constraints can help to reduce contamination by point sources

Stacked Cluster Sample

Stacked Cluster Sample

FIR emission from galaxy clusters

FIR emission from galaxy clusters

Extracted Spectrum

01/02/2018

Extracted Spectrum

01/02/2018

Extracted Spectrum

01/02/2018

Results

01/02/2018

Results

01/02/2018

Results

01/02/2018

Extracted Spectrum: hottest 100

01/02/2018

Results: hottest 100

01/02/2018

Results: hottest 100

01/02/2018

Results: hottest 100

01/02/2018

How does T_{SZ} compare to T_X ?

Using simple analytical models and $w_X = n_e^2 T_e^{-\frac{3}{4}}$ as well as $w_{SZ} = n_e T_e$ we find that $T_X \gtrsim T_{SZ}$

Cluster FIR em. after foreground removal

Y-bias

01/02/2018

rSZ results from Hurier (2016)

Results for MCXC clusters:

- $T_{SZ} = (1.65 \pm 0.45) T_X$
- $3.7\sigma / 1.4\sigma$ significance

Results for spec. clusters:

- $T_{SZ} = (1.38 \pm 0.26) T_X$
- 5.3 \sigma / 1.5 \sigma significance

rSZ results from Hurier (2016)

- Stacking analysis of two large samples of clusters
- MCXC clusters with T inferred through L-T relation
- Spectroscopic T_X sample taken from multiple catalogs

The problem with subtracting channels

Subtracting channels for foreground removal can bias rSZ measurements

The problem with subtracting channels

Subtracting channels for foreground removal can bias rSZ measurements

ν GHz	FWHM arcmin	∆ <i>T</i> mK _{RJ} -arcmin	ΔT mK _{CMB} -arcmin	∆ <i>I</i> kJy/sr-arcmin
	Plan	uck (all-sky-avera	ge full mission dat	a)
100	9.68	61.4	77.3	18.9
143	7.30	19.8	33.4	12.4
217	5.02	15.5	46.5	22.5
353	4.94	11.7	156	44.9
545	4.83	5.10	806	46.8
857	4.64	1.90	1.92×10^{4}	43.5
	C	CCAT-p (4000 h,	1000 deg ² survey)	
95	2.2	3.9	4.9	1.1
150	1.4	3.7	6.4	2.6
226	0.9	1.5	4.9	2.4
273	0.8	1.2	6.2	2.7
350	0.6	2.1	25	7.9
405	0.5	3.1	72	16
862	0.2	4.7	6.9×10^{4}	109

G. Stacey

ν	FWHM	ΔT	ΔT	ΔI
GHz	arcmin	mK _{RJ} -arcmin	mK _{CMB} -arcmin	kJy/sr-arcmin
	Plan	a <u>ck (all-sky-</u> avera	ge full mission dat	a)
100	9.68	61.4	77.3	18.9
143	7.30	19.8	33.4	12.4
217	5.02	15.5	46.5	22.5
353	4.94	11.7	156	44.9
545	4.83	5.10	806	46.8
857	4.64	1.90	1.92×10^{4}	43.5
	C	CCAT-p (4000 h,	1000 deg² survey)	
95	2.2	3.9	4.9	1.1
150	1.4	3.7	6.4	2.6
226	0.9	1.5	4.9	2.4
273	0.8	1.2	6.2	2.7
350	0.6	2.1	25	7.9
405	0.5	3.1	72	16
862	0.2	4.7	6.9×10^4	109

G. Stacey

01/02/2018

ν	FWHM	ΔT	ΔT	ΔI
GHz	arcmin	mK _{RJ} -arcmin	mK _{CMB} -arcmin	kJy/sr-arcmin
	Plan	ack (all-sky-avera	ge full mission dat	a)
100	9.68	61.4	77.3	18.9
143	7.30	19.8	33.4	12.4
217	5.02	15.5	46.5	22.5
353	4.94	11.7	156	44.9
545	4.83	5.10	806	46.8
857	4.64	1.90	1.92×10^{4}	43.5
	C	CCAT-p (4000 h,	1000 deg ² survey)	
95	2.2	3.9	4.9	1.1
150	1.4	3.7	6.4	2.6
226	0.9	1.5	4.9	2.4
273	0.8	1.2	6.2	2.7
350	0.6	2.1	25	7.9
405	0.5	3.1	72	16
862	0.2	4.7	6.9×10^4	109

G. Stacey

01/02/2018

CCAT-prime simulations

01/02/2018

CCAT-prime simulations

Synergies with eROSITA

Temperature priors from eROSITA will improve CCAT-p constraints

See Mittal et al. (arXiv:1708.06365)

- Rel. corrections to the tSZ allow an independent measure of the ICM temperature
- Galactic foregrounds can be removed efficiently with matched filters
- The ratio T_X/T_{SZ} is a probe of gas clumping
- Neglecting the tSZ rel. corrections will lead to a bias in Y
- CCAT-prime will measure the rSZ and kSZ with high precision