

3D mapping of the magnetized ISM with starlight polarization

Gina Panopoulou NASA Hubble Fellow Caltech

B-mode from space MPA, Munich, 2019

Dust varies along line of sight

'The' dust component

How to go from the *simplest* model to a *plausible* model?

A 3D map of dust extinction from stars: Green et al. (2019)

Parametric modeling of ISM dust: a first approximation

Planck: Modified Black-body is a good fit to dust contribution of intensity + polarization 70 100 143 217 44 353 Rms polarization amplitude [µK] 1 foreground, mal dust 100 30 300 10 100 1000 Frequency [GHz] Planck IV (2018)

• Assume uniform population of dust grains in uniform magnetic field

$$Q_{\nu} = A^{P} \cos 2\chi \left(\frac{\nu}{\nu_{0}}\right)^{\beta} B_{\nu}(T) \qquad U_{\nu} = A^{P} \sin 2\chi \left(\frac{\nu}{\nu_{0}}\right)^{\beta} B_{\nu}(T)$$

Frequency dependence only by Modified Black-body

• Solve for all foreground model parameters

Parametric modeling of ISM dust: a first approximation

Planck: Modified Black-body is a good fit to dust contribution of intensity + polarization

• Assume uniform population of dust grains in uniform magnetic field

$$Q_{\nu} = A^{P} \cos 2\chi \left(\frac{\nu}{\nu_{0}}\right)^{\beta} B_{\nu}(T) \qquad U_{\nu} = A^{P} \sin 2\chi \left(\frac{\nu}{\nu_{0}}\right)^{\beta} B_{\nu}(T)$$

Frequency dependence only by Modified Black-body

• Solve for all foreground model parameters

What accuracy can we reach with this approximation?

WANTED: better approximation to dust modeling

Τ₁, Σ₁ Τ₂, Σ₂

Tassis & Pavlidou 2015

When multiple clouds along the line of sight, single blackbody model assumption breaks down

$$I_{\text{tot}} = I_1 + I_2$$
$$Q_{\text{tot}} = Q_1 + Q_2$$
$$U_{\text{tot}} = U_1 + U_2$$

Multiple dust clouds *in principle* need to be taken into account ...

Poh & Doddelson 2015, Ghosh+ 2017, Adak+ 2017, Hensley & Bull 2017, Martinez-Solaeche+ 2019, Clark & Hensley 2019

...but no consensus as to what the importance of the effect is for foreground subtraction

WANTED: better approximation to dust modeling

 T_1, Σ_1 T_2, Σ_2

Tassis & Pavlidou 2015

When multiple clouds along the line of sight, single blackbody model assumption breaks down

$$I_{\text{tot}} = I_1 + I_2$$
$$Q_{\text{tot}} = Q_1 + Q_2$$
$$U_{\text{tot}} = U_1 + U_2$$

Multiple dust clouds *in principle* need to be taken into account ...

Poh & Doddelson 2015, Ghosh+ 2017, Adak+ 2017, Hensley & Bull 2017, Martinez-Solaeche+ 2019, Clark & Hensley 2019

...but no consensus as to what the importance of the effect is for foreground subtraction

Answer depends on ISM properties!

Need to measure ISM properties in 3D

Towards a better approach to dust modeling: starlight polarization

Dust grains aligned perpendicular to magnetic field lines act as a polarizer

Both types of radiation trace component of **B perpendicular to line of sight**

Towards a better approach to dust modeling: starlight polarization

Dust grains aligned perpendicular to magnetic field lines act as a polarizer

Both types of radiation trace component of **B perpendicular to line of sight**

BUT: stelllar polarization traces signal only out to distance of star!

Starlight polarization not well-sampled

Need orders of magnitude more stellar polarization measurements

A high-accuracy optical polarization survey

Tassis+ 2018

Starts in 2020!

Measuring the polarization of millions of stars to tomographically map the ISM magnetic field

Web: pasiphae.science

White paper arXiv:1810.05652

Partner Institutions

University of Crete (PI: K. Tassis) Caltech University of Oslo Inter-University Center for Astronomy and Astrophysics South African Astronomical Observatory

Key advances of PASIPHAE

Two 1-m telescopes (North + South)

Excellent control of instrument systematics (0.1% systematic uncertainty in p - unprecedented for wide-field stellar polarimetry)

Skalidis+2018, Ramaprakash+2019

Single-shot, wide field polarimeters (WALOPs)

0.5x0.5 deg Field of View

Single-shot principle successfully implemented in precursor instrument

2019

robopol

A first look at PASIPHAE-like data

A path-finding survey for PASIPHAE with the RoboPol polarimeter

Deep optical polarization survey

The target region in HI

-61.7 km/s

Effelsberg-Bonn HI Survey (Winkel+ 2016)

Two very different clouds along the same line of sight

Stellar polarizations in 2D

No indication of difference between regions by looking at polarization angles in 2D

Looking into the line-of-sight dimension with Gaia distances

Decomposing the polarization properties of the clouds

Statement of the problem

We wish to determine:

$$q(x) = \begin{cases} 0, & 0 \le x < d1 \\ q1, & d1 \le x < d2 \\ q1 + q2, & d2 \le x < d3 \\ q1 + q2 + q3, & d3 \le x < \dots \end{cases}$$

Unknowns:

 N_{clouds} Number of clouds d1, d2, d3, ... Location of clouds q1, q2, q3, ... Cloud polarization properties

To locate clouds look for a peak in the derivative of the polarization fraction $p = \sqrt{q^2 + u^2}$

We can detect the effect of the second cloud!

Now we can decompose the polarization from each cloud...

The nearby cloud causes 5-6 times more polarization than the far cloud

The magnetic field orientation in each cloud

The magnetic field orientation in each cloud

Dust temperature too varies along line of sight?

Other IVCs known to have higher dust temperature than local gas (Planck XXIV 2011)

Modeling dust emission from 2 clouds

1. The 2-cloud model:

 $I_{\rm tot} = I_1 + I_2$

$$Q_{\rm tot} = Q_1 + Q_2$$

 $U_{\rm tot} = U_1 + U_2$

2. Stokes parameters for each cloud:

$$I_{\nu}^{C_{i}} \propto c^{C_{i}} (\frac{\nu}{\nu_{0}})^{\beta^{C_{i}}} N_{H}^{C_{i}} B(\nu, T^{C_{i}}),$$

$$Q_{\nu}^{C_{i}} = p_{\nu}^{C_{i}} I_{\nu}^{C_{i}} \cos 2\chi^{C_{i}}, \ U_{\nu}^{C_{i}} = p_{\nu}^{C_{i}} I_{\nu}^{C_{i}} \sin 2\chi^{C_{i}}$$

c: dust-to-gas mass ratio, N_{H} : HI column density, T: temperature, C_{i} : the i-th cloud, χ = polarization angle (emission)

Measured from HI + starlight polarizaton

From educated guesses

Constraining the unknown parameters

Per cloud: $p(v) \sim constant$

But also just from:

$$p = \frac{\sqrt{Q_{\nu}^2 + U_{\nu}^2}}{I_{\nu}} = \frac{\sqrt{(A^Q)^2 + (A^U)^2} \left(\frac{\nu}{\nu_0}\right)^{\beta} B_{\nu}(T)}{A^I \left(\frac{\nu}{\nu_0}\right)^{\beta} B_{\nu}(T)}$$

If we assume $P_{353}^{C_1}/p_V^{C_1} = P_{353}^{C_2}/p_V^{C_2}$ and $p(v) \sim \text{const...}$ the only remaining unknowns are temperature, β

Predicting the polarization angle at different frequencies

Polarization angle with 2-cloud model:
$$\chi_{\nu} = \frac{1}{2} \arctan \frac{r_{\nu} \sin 2\chi^{C_1} + \sin 2\chi^{C_2}}{r_{\nu} \cos 2\chi^{C_1} + \cos 2\chi^{C_2}}$$

 $r_{\nu} = \frac{P_{\nu}^{C_1}}{P_{\nu}^{C_2}} = \frac{p_{\nu}^{C_1} I_{\nu}^{C_1}}{p_{\nu}^{C_2} I_{\nu}^{C_2}}$

Summary

Upcoming optical polarization survey & Gaia enables 3D B-field mapping

1st pathfinding demonstration of tomographic capabilities successful

Exciting future prospects for 3D modeling: starlight polarization, HI, dust extinction, MHD simulations...

Thank you