P_{hysics} C-Band All-Sky Survey (C-BASS)

CCCCC

Mike Jones (for Angela Taylor) University of Oxford

Part C-Band All-Sky Survey (C-BASS

University of Oxford, UK

Angela Taylor, Mike Jones, Jamie Leech, Richard Grummit,

Hochschule München, Germany

Christian Holler

University of Manchester, UK

Clive Dickinson, Paddy Leahy, Mike Peel, Adam Barr, Roke Cepeda-Arroita

Caltech, USA

Tim Pearson, Tony Readhead,

South Africa

Justin Jonas (Rhodes/SKASA), Cynthia Chiang, Heiko Heligendorff, Moumita Aitch (UKZN)

KACST, Saudi Arabia

Yasser Hafez

Moved on...

Oliver King, Matthew Stevenson, Mel Irfan, Stephen Muchovej, Joe Zuntz, Charles Copley, Luke Jew, Jaz Hill-Valler

The C-BASS Survey

C-BASS - Overview

Sky-coverage	All-sky
Angular resolution	0.75 deg (45 arcmin)
Sensitivity	< 0.1mK r.m.s in 1 deg beam (confusion limited in I)
	6000 μK-arcmin @ 5GHz == 0.75 μK- arcmin @ 100 GHz, β = -3
Stokes coverage	I, Q, U, (V)
Frequency	1 (0.5) GHz bandwidth, centered at 5 GHz
Northern site	OVRO, California Latitude, 37.2 deg
Southern site	MeerKAT/SKA site, Karoo, South Africa Latitude -30.7 deg
See Jones et al 2018 MNRAS 480, 32224	

C-BASS North Telescope

- 6.1-m dish, with Gregorian optics
- Secondary supported on foam cone
- Receiver sat forward of the dish
- Very clean, circularly-symmetric optics
- Absorbing baffles to minimize spillover

C-BASS South Telescope

A LANDARY CALL

- CBASS South at Klerefontein, Karoo desert, South Africa (SKA support site)
- 7.6m ex-telecoms dish
- Cassegrain optics

kford

hysics

 Similar receiver to north – but frequency resolution (128 ch)

C-BASS Receiver

Both receivers use correlation polarimeter and continuous comparison radiometer:

- Correlate RCP & LCP \rightarrow Q, U
- Difference RCP & LCP separately against internal load \rightarrow I, V

C-BASS North Receiver

Analogue polarimeter/radiometer – all done with hybrids and diodes...

Sky and load signals separated post-amplification, squared and differenced – gives *I* relative to loads

RCP and LCP complex multiplied – gives Q + iU

C-BASS South Receiver

Digital system in two bands:

Downconversion to 0 - 0.5, 0.5 - 1 GHz

Sample at 1 GHz, channelise to 64 channels each, calibrate gains Square and difference sky and load $\rightarrow I$; correlate RCP, LCP $\rightarrow Q$, U

Scan Strategy

- 360 deg azimuth scans at elevation of poles + 10, 20, 30...
- Scan as fast as possible: ~4 deg/s
- One scan ~ 90 s

xford

hysics

• Use 5 slightly different scan speeds so fixed frequency ≠ same sky modes

CBASS-N data: Null tests

xford

hysics

Alternate observations; I, Q, U weighted difference maps and power spectra

Cumulative S/N

Taylor et al in prep

408 MHz - 5 GHz - 23 GHz

Jew et al in prep

408 MHz - 5 GHz - 23 GHz

Freefree AME Steep synch

3-colour zoom-ins

NCP

NPS

3-colour zoom-ins

Cygnus A

Perseus molecular cloud

Point sources

- Spherical Mexicanhat wavelet filter plus blob detection algorithm
- 1729 sources

xford

hysics

- Calibration correlates with GB6 to < 3%
- Grumitt et al submitted
- Also map made with GB6+ sources removed down to GB6 flux limit

Template fitting

Multi-frequency template-fitting analysis of NCP region (Dickinson et al 2018)

xford

hysics

- AME-dust coeffs • unchanged when using C-BASS rather than Haslam
- Rules out hard • synchrotron as source of AME
- Follow-up on whole survey area in progress (Harper et al in prep)

Planck 28.4 GHz

(0.0, 90.0) Equatorial

IRIS 100 micror

(0.0, 90.0) Equatorial

0.019 0. (0.0, 90.0) Equatorial

τ₃₅₃×10^e

0 19 mk

WMAP 33.0 GHz

(0.0, 90.0) Equatoria Planck 44.1 GHz

23.0 ml

Smoothed C-BASS mar

Sources > 200 mJy marked

(0.0, 90.0) Equatorial Planck 545 GHz

WMAP 22.8 GHz

0 098 ml (0.0, 90.0) Equatorial

Ha (DDD)

0.60 4.6 MJy/ (0.0, 90.0) Equatorial

Hα (F03

AME - λ Orionis

- Detection of spectral variations in AME in photodissociation region
- AME emissivity controlled by local radiation field
- AME peak frequency proportional to dust temperature
- First collaborative paper between C-BASS and QUIJOTE!
- Cepeda-Arroita et al imminient...

Intensity spectral indices

A CONTRACTOR

 Divide sky in to regions grouped by position in position, colour-colour space

xford

hysics

- Fit TT scatter plots with unbiassed linefitting with outliers.
- Returns spectral index in each region along with an indication of how complex spectrum actually is (outlier fraction)
- Jew et al in prep

CBASS-Haslam spectra

(a) Maximum posterior estimates of the Haslam/C-BASS spectral index.

(b) Standard deviation of the Haslam/C-BASS spectral index posterior distribution.

(c) Maximum posterior estimates of the Haslam/C-BASS (d) Standard deviation of the Haslam/C-BASS outlier fraction posterior distribution.

CBASS-WMAP K spectra

(e) Maximum posterior estimates of the C-BASS/WMAP spectral index.

(f) Standard deviation of the C-BASS/WMAP spectral index posterior distribution.

(g) Maximum posterior estimates of the C-BASS/WMAP (h) Standard deviation of the C-BASS/WMAP outlier fraction, fraction posterior distribution.

Intensity spectral indicies

Haslam-C-BASS relatively simple story...higher frequencies much more complicated! Currently running COMMANDER analysis with Oslo group. Also working on new component separation method, No-U-Turn sampler and hierarchical fitting – see Richard Grummit poster.

Zero level from Arcade

Need zero level of I map for component fitting (zero level of raw map is arbitrary)

xford

hysics

- Fit power law to Arcade2 data – 3.15,3.41,8.33, 9.72, 10.49 GHz data
- Fit C-BASS offset to match interpolated 4.76 GHz map
- Dipole subtracted gives better fit!
- Minimum brightness of fitted map is 31.8 mK cf integrated source counts ~4mK
- Likely due to diffuse local Galactic emission.

Polarization angles

Pol angle comparison

xford

Spectral index fitting

Fitting in polarized intensity *P* : C-BASS vs WMAP K, WMAP Ka, Planck 30

2-parameter model: $T_{RJ} = A (v/v_0)^{\beta}$, brute-force search of reasonable grid of *A*, β . Likelihood is Rician:

$$f(x \mid
u, \sigma) = rac{x}{\sigma^2} \exp \left(rac{-(x^2 +
u^2)}{2\sigma^2}
ight) I_0 \left(rac{x
u}{\sigma^2}
ight)$$

Prior is Jeffries (see Jew et al 2019):

 $\beta_{\rm s} \qquad \propto \sqrt{\sum_i \left(\frac{1}{\sigma_i} \frac{s_{{\rm s},i}}{A_{\rm s}} \log(\frac{\nu_i}{\nu_0})\right)^2}$

Marginalize over A to get 1–d posterior distribution of β

Caution!! Low signal-to-noise results in skewed/unbounded posteriors – cannot interpret these as $x \pm y$. Posteriors with no peak are undefined in following maps.

Polarized spectral indices 5 - 30 GHz

Distribution of β vs error on β - Dashed lines indicate 1-, 2- σ deviations from mean. Histogram only of points with $\Delta\beta < 0.1$

Downgraded maps of β , σ_{β} – variations >> σ_{β} on large scales

CBASS *E* and *B*

-0.301

CBASS *E* and *B*

C-BASS B, 40x40 deg

C-BASS E, 40x40 deg

4 '/pix, 600x600 pix

CBASS *E* and *B*

C-BASS E, 10x10 deg

C-BASS B, 10x10 deg

600x600 pix 1 '/pix,

E and B power spectra

-0.00275

-0.000689

 More power in *E* than *B*

xford

hysics

- Overall amplitude ratio weak function of Galactic latitude
- Powers converge at high / (and look much more gaussian)

C-BASS E, 10x10 deg

$\Phi_{\rm hysics}^{\rm xford}$ B power spectrum at 100 GHz

• Extrapolate this B spectrum to 100 GHz using $\beta = 3.0...$

Synchrotron B at 100 GHz???

C-BASS B map exptrapolated using C-BASS-WMAP K spectral index map Errors not trivial and not properly worked out...so no power spectrum of this yet!

- Northern data pipeline/mapping complete
- First set of data papers using all Northern data in next few months
- Public data release shortly after papers, but still keen to work directly with other groups with complementary data/analysis tools.
- Southern survey happening now 1-2 yrs data taking expected in south
- Full data release once surveys completed and combine.

- Adding C-BASS data to current experiments can constrain straight synchrotron spectra...but not curved (see Jew et al 2019 MNRAS 490, 2958)
- QUIJOTE will help...but for equivalent sensitivity at ~30 GHz need ~100 pixels...
- ...ideally in north and south on ~6-m telescopes
- Hence ELFS: European Low-Frequency Survey.

See https://indico.in2p3.fr/event/19414/contributions/73920/

P_{hysics} **ERC Synergy Proposal – ELFS-South**

- First/most important step in ELFS: 5-m telescope in South with 100-element array 20-30 GHz, ~10 elements 10-20 GHz, 1 element 5-10 GHz
- Site alongside Simons Observatory for maximum synergy/collaboration in operations and science exploitation
- Budget €14M, proposal Nov 2019, decision October 2020, start Jan 2021, start observations 2024, finish Dec 2026
- Telescope potentially available for CMB-S4 low-frequency after 2026
- ERC project limited to 4 PIs (Mennella, Milan; Baccigalupi, SISSA; Rubino-Martin, IAC; Jones, Oxford) but wider ELFS concept is open

Fig 1: Possible implementation of the ELFS-S 10-30 GHz telescope