The First Flight of SPIDER
Hunting B-Modes from the Edge of Space

Jeff Filippini

ILLINOIS
B-Mode From Space
18Dec2019
Outline

Instrument Overview

2015 In-Flight Performance
Data, Calibration, Systematics

The View From Above
Sky maps and current status

Up Next: SPIDER-2
B-modes: Goals and Challenges

PRECISION
Approach photon noise limit
Few photons, many detectors

ACCURACY
Rigid control of polarized systematics
Instrument symmetry

CLARITY
Isolation of CMB from polarized foregrounds (dust, synchrotron…)

Density perturbations

Quantum Fluctuations

Primordial gravitational waves

Tensor-to-Scalar Ratio

Planck DUST polarization

Planck 2015 polarization

Half-wave plate

Density perturbations

Inflation
The SPIDER Program

A balloon-borne payload to identify primordial B-modes on degree angular scales in the presence of foregrounds

1. Verify angular power spectrum
 Observe many modes
 High fidelity from $\sim 10 < l < 300$

2. Verify statistical isotropy
 Large ($\sim 10\%$) sky coverage

3. Verify frequency spectrum
 Multiple colors, (esp. 200+ GHz)

Rahlin+ Proc. SPIE (2014)
Fraisse+ JCAP 04 (2013) 047
… and more …
Antarctic Ballooning

The Good

• **High sensitivity** to approach CMB photon noise limit
• Access to **higher frequencies** obscured from the ground
• Retain **larger angular scales** due to reduced atmospheric fluctuations (*less aggressive filtering*)
• **Technology pathfinder** for orbital missions

The Bad

• Limited **integration time** (~weeks)
• Stringent **mass, power** constraints
• Very limited bandwidth demands **nearly autonomous operations**
• Elevated cosmic ray flux

Excellent proxy for space operations!
Payload Overview

- Large shared LHe cryostat
 - 1284L main tank (4K)
 - 16L vented, capillary-fed superfluid tank (1.6K)
- 6 monochromatic refractors
 - SPIDER 2015: 3x95 GHz, 3x150 GHz
- Lightweight carbon fiber gondola
 - Azimuthal scanning: reaction wheel
 - Stepped elevation: linear drives
- 24h solar power: 2200/1440W peak/avg
- Launch mass: ~6500 lbs (3000 kg)
SPIDER Receivers

- Monochromatic 2-lens refractors
 Cold HDPE lenses, 264mm stop
- Emphasis on **low internal loading**
- Predominantly reflective filter stack
 Metal-mesh + one 4K nylon
- Inter-lens 1.6K absorptive baffling
- Thin vacuum window (3/32” **UHMWPE**)
- Reflective wide-angle fore baffle
- Polarization modulation with **stepped cryogenic HWP** *(AR-coated sapphire)*
- Dedicated 3He sorption coolers (0.3K)
Bolometer Arrays

- **JPL antenna-coupled TES arrays**
 Also used in BICEP2 / 3 / Keck Array
 SPIDER-2: NIST platelet horn arrays

- Planar antenna synthesized via microstrip network
- Lumped element band-defining filter
- Meandered isolation legs (G~12-20 pW/K)
- Dual TES: science (Ti, 0.5K) and lab (Al, 1.3K)
- Time-division SQUID multiplexer
 NIST cold electronics, warm UBC MCE

<table>
<thead>
<tr>
<th>Band center</th>
<th>Optical eff.</th>
<th>N_{TES}</th>
</tr>
</thead>
<tbody>
<tr>
<td>94 GHz</td>
<td>30-45%</td>
<td>864</td>
</tr>
<tr>
<td>150 GHz</td>
<td>30-45%</td>
<td>1536</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2400 TESs</td>
</tr>
</tbody>
</table>
Half-Wave Plate

- Birefringent single-crystal sapphire, anti-reflection coated at 4K in each receiver

- **Stepped** by 22.5° twice daily
 Full Q/U coverage every 2 days

- Inevitable non-idealities yield sensitivity to **circular** (V) polarization

![Diagram of Half-Wave Plate](image)

Graph:

VV Limit Comparison (95% C.L.,)

- MIPOI Limit: 33 GHz
- SPIDER Limit: 95 GHz
- SPIDER Limit: 150 GHz

*J.M. Nagy+
Antarctica 2014-15
• January 1-18, 2015
• ~36 km altitude
• All systems functional (except dGPS, no science impact)
• All HWPs turned reliably
• Full hardware and data recovery with help of British Antarctic Survey personnel
Scanning the Sky

- **Sky coverage**: ~12% (geometric), 6.3% hit-weighted
- Full map each sidereal day
- Complete Q/U map for each bolometer every 2 days

- Back-and-forth **sinusoidal** azimuth scan (max ~3.6 dps) stepped in elevation
- Scan tracks map center, width limited by sun/galaxy, elevation by balloon/earth
- HWPs stepped by 22.5° every 0.5 sidereal day (timed to minimum sky rotation)

Pointing reconstruction

In-flight (~1’ accuracy)
- Magnetometer
- Pinhole sun sensors

Post-flight (~6” accuracy)
- 3-axis gyroscopes
- Orthogonal star cameras on deck
- Fixed boresight star camera
Autonomous Detector Operations

SQUID tuning
- Retuned (~5 min) after every fridge cycle
- Compares to pre-flight examples, adjusts parameters as needed

Detector responsivity
- Electrical bias step response used as proxy for optical gain variation
- 2s bias step every few turnarounds gives ~0.1% uncertainty
- Monitor loop adjusts TES biases occasionally if needed

Fully automated
- Downlinks minimal statistics to verify functionality

A.S. Rahlin
Detector Performance

- 1.56 TB data set
- Very low internal loading!
- Substantial flagging due to RFI
 - Transmitter handshake every ~1 minute
 - ~10% data loss in good channels
- Negligible flagging due to cosmic rays

See poster for more on cosmic rays in SPIDER!

<table>
<thead>
<tr>
<th>Band center</th>
<th>Absorbed power</th>
<th>Optical eff.</th>
<th>N_{TES}</th>
<th>N_{TES} (w/cuts)</th>
<th>NET</th>
</tr>
</thead>
<tbody>
<tr>
<td>94 GHz</td>
<td>≤0.25 pW</td>
<td>30-45%</td>
<td>864</td>
<td>675</td>
<td>~7.1 μK-√s</td>
</tr>
<tr>
<td>150 GHz</td>
<td>≤0.35 pW</td>
<td>30-50%</td>
<td>1536</td>
<td>1184</td>
<td>~5.3 μK-√s</td>
</tr>
</tbody>
</table>
Gain Stability Revisited

Problem: bias steps stopped on some receivers about halfway through flight!

 - TES bias adjustments not performed
 - Bias step results were not downlinked during flight, so we didn’t notice

Careful use of DC signal level as an alternate proxy for TES bias state

Conclusion: No evidence that we needed to re-bias so often after all!

Anne Gambrel
RFI Challenges

DC level losses ("flux slips") during RFI glitches as SQUID loses lock

Difficult to recover, may include small crosstalk to other channels

"**Reaction wheel noise**": signal seen in some detectors synchronized with reaction wheel angle (*not* payload orientation)
Scan-Synchronous Noise

Comparable to CMB dipole
Complex dependence on detector, boresight elevation, time, ...

For now, impose **aggressive filtering** (5th order polynomial per half scan), exploring better options
Optical Characterization

Pre-flight measurements of passband (FTS) and mid-field beams
Characterize beams in-flight by fits to Planck maps (analog of BICEP2 “deprojection”)
Adjust beam centroids; other fitted beam anomalies are inputs to systematic studies
Simulate effects of known non-idealities

- Differential beams, gain drift (deprojected)
- Full physical optics beam convolution
- Beam ghosts, crosstalk above known levels

Known beam and readout systematics should have negligible effect at current sensitivities.
Seeking LCDM

Reobservation: Simulate SPIDER’s beam, scan, filtering on external map for fair comparison to SPIDER

Close agreement with reobserved Planck maps

LCDM E-mode structure dominates polarization maps, clearly visible in stacked (hot-cold) spots in temperature map

…but also plenty of dust!
Power Spectrum Estimators

Empirical noise modeling is hard: data redundancy is limited relative to Pole instruments (though high relative to Planck!)

Noise Spectrum Independent (NSI):
• PolSPICE pseudo-Cl Monte Carlo
• Signal-only simulation library
• Covariances from cross spectra among 14 data subsets (interleaved 3-min chunks)
 91 crosses/band, 378 total crosses
• J.M. Nagy, J. Hartley, …

X Faster: Hybrid maximum-likelihood
• Iterative quadratic estimator in the isotropic, diagonal approximation used by MASTER
• Solves for binned bandpowers using signal and noise simulation library
• Adapted for null tests, foreground sep in progress
• C. Contaldi, D. Mak, A.E. Gambrel, A.S. Rahlin, …
Null Tests

Construct difference maps between (near-) equal data halves

10 data splits, 3 spectra considered
- Left / right-going scans
- 2 mission time splits
- 7 detector splits
 - 6 spatial, hi/lo band center

Estimate power spectra of difference maps

Subtract simulated signal residual

Present status: Most null tests look good
but some work ongoing on stats, 150 GHz
Raw Power Spectra

- Good consistency between distinct power spectrum pipelines
- Good consistency with Planck 100/143 when restricted to common sky patch (with higher S/N!)
- Clear frequency-dependent excess above LCDM -> Dust
Foreground Strategies

How can we effectively **clean** foregrounds from our data while **quantifying the error** on what we’re doing?

- **Spatial template subtraction**
 Decorrelation across frequencies?
 Chance correlations?

- **Harmonic domain** - per-bandpower or multipole model
 Non-gaussian sample variance
 Spatial variation of SED?

- **Spatial / harmonic variants** - SMICA, NILC

- **Per-pixel** joint component estimation - Commander
Spatial Template Removal

- Regress Planck-derived dust templates (P353-P100, P217-P100) out of SPIDER maps (can also be done for synchrotron, S/N low for now)

- 353 GHz: $\alpha = 0.043 \pm 0.004$ (0.015 \pm 0.004) at 150 (95) GHz
 Additional work on 217 GHz template
Harmonic Domain

- **SMICA**: fit components to map auto/crosses
- No multipole model required: fit each band power separately
- Optional SED model: modified blackbody dust
- SPIDER (95/150), Planck pol HFI (100/143/217/353)

Good agreement in SMICA β_D between 95 and 150, and E and B (E/B constrained to match in NSI template work)
SPIDER Mission Goals

TARGET: $r<0.03$ (95% CL) in the presence of foregrounds

Commander foreground estimate

Proposal sensitivity - 2 flights

$C_{\ell}\bigl((\ell+1)/2\bigr)\mu K^2_{\text{equ}}$
SPIDER-2

- Second flight targeting 2018/19, 2019/20, 2020/21 austral summer

- Expanded frequency coverage to resolve foregrounds with post-Planck sensitivities
 3x 280 GHz receivers, new optical design
 Best 95/150 receivers from first flight

Avoid galactic CO lines

FTS measured

NIST platelet horn array
AlMn science TES

Hubmayr+ SPIE 2016
Bergman+ LTD 2017
Conclusions

SPIDER performed well during its first flight

- Successful automation, pointing, detector operations
- Minimal impact from cosmic rays, RFI more significant

95/150 polarization analysis nearing completion

- Ongoing work on foregrounds: rich and interesting!

SPIDER-2 will soon map the sky at 280 GHz