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1 Friedmann-Lemâıtre cosmological models

1.1 The coordinate system and the metric

I assume that the Universe can be described on large scales by a homogeneous and isotropic
Friedmann-Lemâıtre universe (Friedmann 1922, 1924; Lemâıtre 1927).1 In order to label spacetime
points, I choose a coordinate system (t, β1, β2, χ) based on physical time t, two angular coordinates
β = (β1, β2), and line-of-sight comoving distance χ (see Fig. 1.1). The spacetime metric of the
model is then given by a Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric (Friedmann 1922,
1924; Lemâıtre 1927; Robertson 1933, 1935; Walker 1935):

g = −c2dt2 + a2
{

dχ2 + f2
K(χ)

[
dβ2

1 + cos2(β1)dβ2
2

]}
. (1.1)

Here, c denotes the speed of light, and a = a(t) the scale factor. The comoving angular diameter
distance

fK(χ) =


1/
√
K sin

(√
Kχ
)

for K > 0,

χ for K = 0, and

1/
√
−K sinh

(√
−Kχ

)
for K < 0,

(1.2)

where K is the external curvature of space. Note that the choice for the angular coordinates
β = (β1, β2) differs from the usual one for spherical coordinates. The choice will be more convenient
for the small-angle approximation.

1.2 The scale factor and the Hubble parameter

The scale factor a is chosen such that a(t0) = 1 at the present time t0. The relative time variation
of the scale factor defines the Hubble parameter

H(t) =
1

a(t)

da(t)

dt
. (1.3)

Its present-time value H0 = H(t0) is called the Hubble constant. The present-time value is often
quantified by the dimensionless value

h =
H0

H100
, (1.4)

with H100 = 100 kms−1Mpc−1.
The Hubble parameter determines the critical density

ρph
crit(t) =

3H(t)2

8πG
, (1.5)

1 See Bartelmann and Schneider (2001) or Schneider et al. (2006) for a review of cosmology for lensing.
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Friedmann-Lemâıtre cosmological models

χ

β
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β1

Figure 1.1: Illustration of the spatial part of the used spacetime coordinate system: a spherical coordinate
system (β1, β2, χ) based on two angular coordinates β = (β1, β2) and line-of-sight comoving distance χ.

where G denotes Newton’s gravitational constant. Its present-day value is denoted by ρph
crit,0 =

ρph
crit(t0).
Here, I assume that the average stress-energy density of the universe determines the time evo-

lution of the metric (1.1) and the scale factor a(t) via Einstein’s field equations. I only consider

contributions from a pressureless matter fluid with mean physical density ρ̄ph
m = a−3(t)ρ̄ph

m,0 and

a cosmological constant Λ.2 Einstein’s GR field equations for the metric (1.1) then reduce to the
following equations for the scale factor:

1

a(t)2

(
da(t)

dt

)2

=
8πG

3
ρ̄ph

m (t) +
Kc2

a(t)2
+

Λ

3
, (1.6)

1

a(t)

d2a(t)

dt2
= −4πG

3
ρ̄ph

m (t) +
Kc2

a(t)2
+

Λ

3
. (1.7)

As is commonly done, I define the density parameters

Ωm =
ρ̄ph

m,0

ρph
crit,0

, ΩK = −Kc2

H2
0

, and ΩΛ =
Λ

3H2
0

. (1.8)

The time evolution of the scale factor is then given by the ordinary differential equation:

H(t) = H0

√
a(t)−3Ωm + a(t)−2ΩK + ΩΛ. (1.9)

The equation implies that
1 = Ωm + ΩK + ΩΛ. (1.10)

In particular, 1 = Ωm + ΩΛ for flat universes (i.e. universes with K = 0). Furthermore,

ρph
crit(t) =

3h2H2
100

8πG

[
a(t)−3Ωm + a(t)−2ΩK + ΩΛ

]
= ρcrit

[
a(t)−3Ωm + a(t)−2ΩK + ΩΛ

]
,

(1.11)

2Other contributions are (most likely) not relevant for the evolution epoch of interest for gravitational-lensing
studies.
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Friedmann-Lemâıtre cosmological models

with the comoving critical density

ρcrit =
3h2H2

100

8πG

= 1.83137× 10−26h2 kg

m3

= 2.70509× 1011h2 M�

Mpc3 .

(1.12)

If, as assumed here, matter is not created nor destroyed over time, the comoving mean mat-
ter density ρ̄m = Ωmρcrit,0 stays constant. A combination of constants involving ρ̄m frequently
encountered later is

4πGρ̄m

c2
=

3H2
0 Ωm

2c2
=

3H2
100

2c2
h2Ωm. (1.13)

1.3 Cosmological redshift

The definitions of the cosmological redshift and the various cosmological distances are based on
the light propagation in FLRW cosmological models. Here, I will give a brief introduction to this,
and postpone a more detailed discussion to Chapter 2, which deals with the light propagation in
both plain and perturbed FLRW models.

Consider a source at fixed comoving coordinates (β, χ). Consider photons emitted from the
source at times tS, i.e. at spacetime positions (tS,β, χ), reaching a comoving observer at spacetime
positions

(
tO,β, 0

)
. Since the path of such a photon, qα(t) = (t,β, χ(t)), is a null geodesic,

0 = gµν
(
qα(t)

)dqµ(t)

dt

dqν(t)

dt
. (1.14)

Hence,
dχ(t)

dt
= −ca(t)−1. (1.15)

For fixed comoving distance χ, the emission time tS and observation time tO are related by:

χ =

∫ χ

0
dχ =

∫ tS

tO(tS)

dχ(t)

dt
dt = c

∫ tO(tS)

tS

a(t)−1dt

⇒ 0 =
1

c

dχ

dtS
= a

(
tO(tS)

)−1 dtO(tS)

dtS
− a(tS)−1

⇒ dtO(tS)

dtS
=
a
(
tO(tS)

)
a(tS)

.

(1.16)

For emission received today, i.e. tO(tS) = t0 and a
(
tO(tS)

)
= 1,

dtO(tS)

dtS
= a(tS)−1. (1.17)

This implies that the emitted and observed period of the photons differ by a factor a(tS), which
results in a redshift of the observed wavelength with respect to the emitted wavelength of photon
by

z(tS) = a(tS)−1 − 1. (1.18)
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Friedmann-Lemâıtre cosmological models

1.4 Cosmological distances

Consider a comoving source emitting photons from spacetime position
(
t,β, χ

)
that reach the

observer at position (t0,β, 0). According to Eq. 1.18, the scale factor a at the time of emission t
is then related to the redshift z the photon experiences between source and observer by:

a = (z + 1)−1. (1.19)

Furthermore, the emission time t of the photon, its redshift z, and the line-of-sight comoving
coordinate χ of the source are related by (also see Hogg 1999, for a brief discussion of distances):

χ =

∫ χ

0
dχ′ =

∫ t

t0

a(t′)−1cdt′ = c

∫ z

0
a(z′)−1

∣∣∣∣ dtdz

∣∣∣∣dz′
= c

∫ z

0
a(z′)−1 a(z′)

H(z′)
dz′ = c

∫ z

0
H(z′)−1dz′.

(1.20)

Hence, the line-of-sight comoving distance χ(z) of a source at redshift z is given by:

χ = χ(z) = χH0

∫ z

0

[
(1 + z′)3Ωm + (1 + z′)2ΩK + ΩΛ

]−1/2
dz′ (1.21)

whith the Hubble distance
χH0 =

c

H0
. (1.22)

For universes with a monotonous expansion between t = 0 and t = t0, there is a one-to-one
correspondence between the time t, the scale factor a(t), the redshift z, and line-of-sight comoving
distance χ for spacetime points in the backward light cone of an observer at spacetime position
(t0,0, 0). Hence, either of t, a, z, or χ can be used as temporal coordinate.

From Eq. (1.21) follows that

dχ

dz
=

c

hH100

[
(1 + z)3Ωm + (1 + z)2ΩK + ΩΛ

]−1/2
. (1.23)

The comoving line-of-sight distance and comoving angular-diameter distance (1.2) can be related
to a number of other distances. For example, the physical angular-diameter distance

DA(z) = a(z)fK
(
χ(z)

)
, (1.24)

the luminosity distance
DL(z) = a(z)−1fK

(
χ(z)

)
, (1.25)

and the distance modulus

DM(z) = 5 log10

[
DL(z)

10 pc

]
. (1.26)
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2 Light propagation in an inhomogeneous
universe

2.1 The weakly perturbed FLRW metric

As stated above I assume that the Universe can be approximated on large scales by a Friedmann-
Lemâıtre universe. That means that I approximate the scale factor a, redshifts z, cosmological
distances etc. by their expressions in the homogeneous Friedmann-Lemâıtre universe. On some-
what smaller scales relevant for gravitational light deflection, I assume that the Universe can be
described by a weakly perturbed Friedmann-Lemâıtre universe. As in the homogeneous universe
model, I label spacetime points using a coordinate system (t, β1, β2, χ) based on physical time
t, two angular coordinates β = (β1, β2), and line-of-sight comoving distance χ (see Fig. 1.1). I
furthermore assume that the spacetime metric of the model is given by a weakly perturbed FLRW
metric:

g = −
(

1 +
2Φ

c2

)
c2dt2 +

(
1− 2Φ

c2

)
a2
{

dχ2 + f2
K(χ)

[
dβ2

1 + cos2(β1)dβ2
2

]}
. (2.1)

Here, Φ = Φ(t,β, χ) denotes the peculiar gravitational potential. Whereas the cosmological con-

stant Λ, the curvature K, and the mean matter density ρ̄ph
m determine the evolution of the scale a

factor [via Eq.(1.9)], local deviations from the mean density determine the peculiar gravitational
potential Φ. The relative matter density contrast δm is defined by:

δm(t,β, χ) =
ρm(t,β, χ)− ρ̄m(t)

ρ̄m(t)
, (2.2)

where ρm(t,β, χ) denotes the comoving matter density at spacetime point (t,β, χ), and ρ̄m(t) =

a3(t)ρ̄ph
m (t) the mean comoving matter density at cosmic time t. The potential Φ and the density

contrast δm then satisfy the Poisson equation

4com
(β,χ)Φ(t,β, χ) =

4πGρ̄m(t)

a(t)
δm(t,β, χ) +curvature? +gauge terms? , (2.3)

where

4com
(β,χ) =

1

f2
K(χ) cos(β1)

∂

∂β1
cos(β1)

∂

∂β1
+

1

f2
K(χ) cos(β1)2

∂2

∂β2
2

+
1

f2
K(χ)

∂

∂χ
f2
K(χ)

∂

∂χ

=
∂2

∂β2
1

− tan(β1)
∂

∂β1
+

1

cos(β1)2

∂2

∂β2
2

+
∂2

∂χ2
+

2

fK(χ)

dfK(χ)

dχ

∂

∂χ

(2.4)

denotes the 3D Laplace operator with respect to comoving coordinates. This operator can also be
expressed as:

4com
(β,χ) =

1

f2
K(χ)

[
4S2
β +

∂

∂χ
f2
K(χ)

∂

∂χ

]
, (2.5)
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Light propagation in an inhomogeneous universe

where

4S2
β =

1

cos(β1)

∂

∂β1
cos(β1)

∂

∂β1
+

1

cos(β1)2

∂2

∂β2
2

(2.6)

denotes the Laplace Beltrami operator on the two-sphere S2 (see Chapter 3 for applications).
If one restricts the discussion to matter in form of a pressureless fluid of non-relativistic particles

with conserved particle number, then

ρ̄m(t) = ρ̄m =
3H2

0 Ωm

8πG
(2.7)

and hence,

4com
(β,χ)Φ(t,β, χ) =

3H2
0 Ωm

2a(t)
δm(t,β, χ). (2.8)

A formal solution to this equation is given by:

Φ(t,β, χ) = −Gρ̄m(t)

a(t)

∫
R+

dχ′f2
K(χ′)

∫
S2

d2β′
δm(t,β′, χ′)

gK
{
dK
[
(β, χ), (β′, χ′)

]} . (2.9)

Here, dK
[
(β, χ), (β′, χ′)

]
denotes the comoving distance between (β, χ) and (β′, χ′), and

gK(χ) =


1/
√
K tan

(√
Kχ
)

for K > 0,

χ for K = 0, and

1/
√
−K tanh

(√
−Kχ

)
for K < 0.

(2.10)

2.2 Metric tensor components and Christoffel symbols

Here, I list the components of the metric (2.1) and the resulting Levi-Civita connection coefficients,
a.k.a. Christoffel symbols. The only non-zero components of the metric tensor are the diagonal
elements (setting c = 1):

gtt = [−1− 2Φ(t,β, χ)] ,

gχχ = [1− 2Φ(t,β, χ)] a(t)2,

gβ1β1 = [1− 2Φ(t,β, χ)] a(t)2fK(χ)2,

gβ2β2 = [1− 2Φ(t,β, χ)] a(t)2fK(χ)2 cos(β1)2.

(2.11)

The non-zero covariant components are given by:

gtt = [−1− 2Φ(t,β, χ)]−1 ,

gχχ = [1− 2Φ(t,β, χ)]−1 a(t)−2,

gβ1β1 = [1− 2Φ(t,β, χ)]−1 a(t)−2fK(χ)−2,

gβ2β2 = [1− 2Φ(t,β, χ)]−1 a(t)−2fK(χ)−2 cos(β1)−2.

(2.12)

The Christoffel symbols are calculated from a metric g by:

Γµαβ =
1

2
gµν (gνβ,α + gαν,β − gαβ,ν) . (2.13)

6
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Here, indices after the comma denote (partial) derivatives, i.e.: ◦,α = (∂ ◦ /∂qα). For a diagonal
metric, the only non-zero Christoffel symbols are:

Γµµα =
1

2
g−1
µµ gµµ,α ∀α, µ, and (2.14)

Γµαα = −1

2
g−1
µµ gαα,µ ∀α, µ : α 6= µ. (2.15)

The non-zero Christoffel symbols of the metric (2.1) to linear order in the Newton potential Φ
read:

Γttt = Φ,t , Γχχχ = −Φ,χ ,

Γttβ1 = Φ,β1 , Γχχβ1 = −Φ,β1 ,

Γttβ2 = Φ,β2 , Γχχβ2 = −Φ,β2 ,

Γttχ = Φ,χ , Γχχt =
a,t
a
− Φ,t ,

Γtβ1β1 = a2f2
K

(a,t
a
− Φ,t − 4

a,t
a

Φ
)
, Γχβ1β1 = f2

K

(
Φ,χ −

fK,χ
fK

)
,

Γtβ2β2 = a2f2
K cos(β1)2

(a,t
a
− Φ,t − 4

a,t
a

Φ
)
, Γχβ2β2 = f2

K cos(β1)2

(
Φ,χ −

fK,χ
fK

)
,

Γtχχ = a2
(a,t
a
− Φ,t − 4

a,t
a

Φ
)
, Γχtt =

Φ,χ

a2
,

Γβ1β1t =
a,t
a
− Φ,t , Γβ2β2t =

a,t
a
− Φ,t ,

Γβ1β1β1 = −Φ,β1 , Γβ2β2β2 = −Φ,β2 ,

Γβ1β1β2 = −Φ,β2 , Γβ2β2β1 = − tan(β1)− Φ,β1 ,

Γβ1β1χ =
fK,χ
fK
− Φ,χ , Γβ2β2χ =

fK,χ
fK
− Φ,χ ,

Γβ1tt =
Φ,β1

f2
Ka

2
, Γβ2tt =

Φ,β2

f2
Ka

2 cos(β1)2
,

Γβ1β2β2 = cos(β1)2 (Φ,β1 + tan(β1)) , Γβ2β1β1 =
Φ,β2

cos(β1)2
,

Γβ1χχ =
Φ,β1

f2
K

, Γβ2χχ =
Φ,β2

f2
K cos(β1)2

.

2.3 The geodesic equations

In Einstein’s General Relativity, photon paths are null geodesics of the spacetime metric. Using
an affine parameter λ to parametrise the light path {qµ},

qµ(λ) =
(
t(λ), β1(λ), β2(λ), χ(λ)

)
, (2.16)

the null equation reads (e.g. Weinberg 1972):

0 =
∑
αβ

gαβ
dqα

dλ

dqβ

dλ
. (2.17)
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The geodesic equation for the light path reads:

d2qµ

dλ2
= −

∑
αβ

Γµαβ
dqα

dλ

dqβ

dλ
, (2.18)

If the light path is parametrised by a non-affine parameter σ = σ(λ), the geodesic equation
becomes:

d2qµ

dσ2
=

d2qµ

dλ2

(
dλ

dσ

)2

+
dqµ

dλ

d2λ

dσ2

= −
∑
αβ

Γµαβ
dqα

dλ

dqβ

dλ

(
dλ

dσ

)2

+
dqµ

dλ

dλ

dσ

(
dλ

dσ

)−1d2λ

dσ2

= −
∑
αβ

Γµαβ
dqα

dσ

dqβ

dσ
+ h(σ)

dqµ

dσ

(2.19)

with

h(σ) =

(
dλ

dσ

)−1 d2λ

dσ2
. (2.20)

Often it is (possible and) convenient to choose a coordinate qσ as parameter. Then, the geodesic
equation for qσ,

0 =
d2qσ

d(qσ)2 = −
∑
αβ

Γσαβ
dqα

dqσ
dqβ

dqσ
+ h(σ), (2.21)

can be used to calculate the function f(qσ):

h(qσ) =
∑
αβ

Γσαβ
dqα

dqσ
dqβ

dqσ
. (2.22)

This yields:
d2qµ

d(qσ)2 = −
∑
αβ

(
Γµαβ − Γσαβ

dqµ

dqσ

)
dqα

dqσ
dqβ

dqσ
. (2.23)

2.4 Ordinary differential equations

Calculating the photon path by solving the geodesic equation (2.18) or (2.23) requires solving
a nonlinear system of ordinary differential equations (ODEs). For a homogeneous universe, the
problem is sufficiently symmetric to allow one to solve the nonlinear system exactly, but there is
little hope to find an explicit and exact solution in a general inhomogeneous universe. However, one
can formally transform the problem into an inhomogeneous linear system of ordinary differential
equations with all non-linearities hidden in the inhomogeneity or source term. Approximations
like those discussed in Sec. 2.5 can then be used to justify this approach.

The general task is to find a sufficiently smooth function

x : R→ Rd : t 7→ x(t) (2.24)

8
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that satisfies the 1st-order ODE (higher-order ODEs can be recast into a 1st-order ODE by a
simple trick):

0 = F

(
t,x(t),

dx(t)

dt

)
. (2.25)

Here,
F : R× Rd × Rd → Rd : (t,x, ) 7→ F (t,x,x′) (2.26)

is a possibly nonlinear function of the parameter t, the function x(t), and its derivative ẋ(t) =
dx/dt. Furthermore, the function x(t) is required to satisfy the initial conditions

dix(t)

dt

∣∣∣∣
t=t0

= x0,i i = 0, 1. (2.27)

The approach taken here treats the non-linear parts of the function F as a perturbation to a
linear function. The function F is split into parts that are linear in x and ẋ, and the rest:

0 = c1(t)ẋ(t) + c0(t)x(t) + F (6=1)
(
t,x(t), ẋ(t)

)
(2.28)

If c1(t) is invertible, the differential equation can be rearranged to read:

dx(t)

dt
= A(t)x(t) + Φ

(
t,x(t), ẋ(t)

)
, (2.29)

where A = −c−1
1 c0, and Φ = −c−1

1 F (6=1).
The standard way to obtain a solution is to first find U(t, t0) with

dU(t, t0)

dt
= A(t)U(t, t0) and U(t0, t0) = 1. (2.30)

If, for example, A(t) = A = const.,

U(t, t0) = U(t− t0) = exp [(t− t0)A] . (2.31)

Then, the solution to the ODE can be expressed as:

x(t) = U(t, t0)x(t0) + U(t, t0)

∫ t

t0

U(t′, t0)−1Φ
(
t′,x(t′), ẋ(t′)

)
dt′. (2.32)

This is indeed a solution, since

dx(t)

dt
=

d

dt
U(t, t0)x(t0) +

d

dt
U(t, t0)

∫ t

t0

U(t′, t0)−1Φ
(
t′,x(t′), ẋ(t′)

)
dt′

= A(t)U(t, t0)x(t0) + A(t)U(t, t0)

∫ t

t0

U(t′, t0)−1Φ
(
t′,x(t′), ẋ(t′)

)
dt′

+ U(t, t0)U(t, t0)−1Φ
(
t,x(t), ẋ(t)

)
= A(t)x(t) + Φ

(
t,x(t), ẋ(t)

)
.

(2.33)

The first term of the full solution (2.32) is provided by the solution to the homogeneous linear
ODE with the suitable initial conditions. The second term is a solution to the full inhomogeneous
ODE with vanishing initial conditions.

9
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The general solution (2.32) can also be written as

y(t) = U(t, t0)y(t0) +

∫ ∞
−∞

G(t, t′, t0)Φ
(
t′,y(t′), ẏ(t′)

)
dt′, (2.34)

with the Green’s function

G(t, t′, t0) = Θ(t− t′)Θ(t′ − t0)U(t, t0)U(t′, t0)−1

−Θ(t0 − t′)Θ(t′ − t)U(t, t0)U(t′, t0)−1.
(2.35)

In the special case of constant A,

G(t, t′, t0) = Θ(t− t′)Θ(t′ − t0) exp
[
(t− t′)A

]
−Θ(t0 − t′)Θ(t′ − t) exp

[
(t− t′)A

]
.

(2.36)

2.4.1 Example: Comoving transverse distance

As shown later, the comoving transverse distance x = (x1, x2) as a function of comoving line-of-
sight distance χ obeys

d2xi(χ)

dχ2
+Kxi(χ) = −2

c
Φ,xi

(
x(χ), χ

)
, (2.37)

where K denotes the global curvature of space and Φ denotes the peculiar Newtownian potential
of the weakly perturbed FLRW metric.

Consider the initial value problem with ODE (2.37) and

xi(0) = 0 and
dxi(χ)

dχ

∣∣∣∣
0

= θi. (2.38)

Let us write Eq. (2.37) in the vector form (2.29),

d

dχ

(
xi(χ)
xi,χ(χ)

)
=

(
0 1
−K 0

)(
xi(χ)
xi,χ(χ)

)
− 2

c

(
0

Φ,xi

(
x(χ), χ

)) , (2.39)

and identify terms in Eq. (2.37) with terms in Eq. (2.29). Then,

A =

(
0 1
−K 0

)
, (2.40)

U(χ, χ00) = exp [(χ− χ0)A] =

(
cos
[√
K(χ− χ0)

]
fK(χ− χ0)

KfK(χ− χ0) cos
[√
K(χ− χ0)

]) , and (2.41)

U(χ, χ0)U(χ′, χ0)−1 = U(χ, χ′) =

(
cos
[√
K(χ− χ′)

]
fK(χ− χ′)

KfK(χ− χ′) cos
[√
K(χ− χ′)

]) . (2.42)

Hence,(
xi(χ)
xi,χ(χ)

)
=

(
cos
[√
K(χ− χ0)

]
fK(χ− χ0)

KfK(χ− χ0) cos
[√
K(χ− χ0)

])( xi(χ0)
xi,χ(χ0)

)
− 2

c

∫ χ

χ0

dχ′
(

cos
[√
K(χ− χ′)

]
fK(χ− χ′)

KfK(χ− χ′) cos
[√
K(χ− χ′)

])( 0
Φ,xi

(
x(χ′), χ′

)) . (2.43)

Using the initial values χ0 = 0, xi(0) = 0, and xi,χ(0) = θi,

xi(θ, χ) = fK(χ)θi −
2

c

∫ χ

0
fK(χ− χ′)Φ,xi

(
x(θ, χ′), χ′

)
dχ′. (2.44)
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2.5 The weak-deflection approximation

Now let us return to discuss the light propagation in an inhomogeneous universe. If a light ray
reaching the observer at (t0, 0, 0, 0) in the global coordinate system qµ = (t, β1, β2, χ) is never
strongly deflected, its direction (dqµ/dλ) is always almost ‘radial’. This means that the comoving
radial coordinate χ can be used to parametrise the light ray. In the following, This is equivalent
to the “small deflection angle” approximation (see, e.g., Seljak 1994) for light paths reaching the
observer. To be precise, I neglect

• all terms of second and higher order in the peculiar potential Φ,

• all terms of second and higher order in the angular velocities (dβ/dχ), and

• all terms of first and higher order in both the peculiar potential Φ and angular velocities
(dβ/dχ)

in the calculation of the angular coordinates of the light path (see Dodelson et al. 2005, for a
discussion of the importance of additional contributions neglected by these approximations). The
first approximation accounts for the fact that the metric (2.1) is valid only in the weak-field
limit Φ/c2 � 1. The second approximation ignores that even in absence of a varying gravita-
tional potential Φ , global curvature K, or time-dependent scale factor a, the equations of motion
for photons with non-radial direction look very complicated in spherical coordinates. The third
approximation ignores that for photons travelling not exactly in the radial direction, there is a
non-zero χ-component contributing to the deflection of the photon in the angular direction. The
first approximation is justified if the peculiar gravitational field strength is small. The second and
third approximations are justified if the photon direction has only very small angular components.

2.5.1 The t-component

The null-equation for the light path reads:

0 = gαβ
dqα

dχ

dqβ

dχ

= [−1− 2Φ(t,β, χ)]

(
dt

dχ

)2

+ [1− 2Φ(t,β, χ)] a(t)2

[
1 + fK(χ)2

(
dβ1

dχ

)2

+ fK(χ)2 cos(β1)2

(
dβ2

dχ

)2
]
.

(2.45)

Hence, (
dt

dχ

)
= ± [1− 2Φ(t,β, χ)] a(t)

×

√√√√1 + fK(χ)2

[(
dβ1

dχ

)2

+ cos(β1)2

(
dβ2

dχ

)2
]

+ O
[
Φ2
]
.

(2.46)

To zeroth order in Φ, the coordinate t = t(χ) along the path of a photon reaching the observer
is given by:

dt

dχ
= −a(t). (2.47)

11
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Hence,

t(χ) = t0 −
∫ χ

0
a(t(χ′))dχ′. (2.48)

This approximation for t = t(χ) is sufficiently accurate for calculating the cosmological emission
time of a photon received by an observer. However, within this approximation, all photons that
are simultaneously emitted by a source reach the observer simultaneously. Hence, there is no time
delay between multiple images of a strongly lensed source (contrary to observations). To calculate
the time delay with the required accuracy, one not only has to include terms to first order in the
potential Φ (the ’potential time delay’), but also terms of second order in the angular velocities
(the ‘geometric time delay’). The result is an almost exact travel-time equation (terms of higher
order in Φ are neglected):

t(χ) = t0 −
∫ χ

0
a
(
t(χ′)

)
n(χ′)dχ′ (2.49a)

with radial refractive index

n(χ) =
[
1− 2Φ

(
t(χ),β(χ), χ)

)]√√√√1 + f2
K(χ)

[(
dβ1

dχ

)2

+ cos2(β1)

(
dβ2

dχ

)2
]
, (2.49b)

which can be expanded as:

n(χ) = 1− 2Φ
(
t(χ),β(χ), χ)

)
+
f2
K(χ)

2

[(
dβ1

dχ

)2

+ cos2(β1)

(
dβ2

dχ

)2
]

+ . . . (2.49c)

Time delays are discussed in Chapter 6.

2.5.2 The β1-component (short derivation)

The geodesic equation for the coordinate β1 = β1(χ) reads:

d2β1

dχ2
=

dβ1

dχ

∑
αβ

Γχαβ
dqα

dχ

dqβ

dχ
−
∑
αβ

Γβ1αβ
dqα

dχ

dqβ

dχ

=
dβ1

dχ

[
−2Γχwta+ Γχχχ + Γχtta

2 + 2Γβ1β1ta− 2Γβ1β1χ

]
− Γβ1tt a

2 − Γβ1χχ + O
[
Φ2
]

+ O

[(
dβ

dχ

)2
]

=
dβ1

dχ

[
−2
(a,t
a
− Φ,t

)
a− Φ,χ +

Φ,χ

a2
a2

+2
(a,t
a
− Φ,t

)
a− 2

(
fK,χ
fK
− Φ,χ

)]
−

Φ,β1

f2
Ka

2
a2 −

Φ,β1

f2
K

+ O
[
Φ2
]

+ O

[(
dβ

dχ

)2
]

= −2
dβ1

dχ

fK,χ
fK
− 2

[
Φ,β1

f2
K

+ Φ,χ
dβ1

dχ

]
+ O

[
Φ2
]

+ O

[(
dβ

dχ

)2
]

= −2
dβ1

dχ

fK,χ
fK
− 2

Φ,β1

f2
K

+ O
[
Φ2
]

+ O

[
Φ

dβ

dχ

]
+ O

[(
dβ

dχ

)2
]
.

(2.50)
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Now it’s time for a change of variables:

β1 7→ x1 = fK(χ)β1. (2.51)

The geodesic equation for the new coordinate x1 is then given by:

d2x1

dχ2
+Kx1 = Kx1 +

d2[fK(χ)β1(χ)]

dχ2

= Kx1 + fK,χχβ1 + 2fK,χ
dβ1

dχ
+ fK

d2β1

dχ2

= Kx1 −KfKβ1 + 2fK,χ
dβ1

dχ
− 2

dβ1

dχ
fK,χ

− 2
Φ,β1

fK
+ O

[
Φ2
]

+ O

[
Φ

dβ

dχ

]
+ O

[(
dβ

dχ

)2
]

= −2Φ,x1 + O
[
Φ2
]

+ O

[
Φ

dβ

dχ

]
+ O

[(
dβ

dχ

)2
]
.

(2.52)

Neglecting the terms of second and higher order, one obtains the (familiar) linear differential
equation (with c put back in):(

d2

dχ2
+K

)
x1(χ) = − 2

c2
Φ,x1

(
t(χ),x(χ), χ

)
. (2.53)

The solution of Eq.(2.53) with initial conditions

x1(χ)|χ=0 = 0 and (2.54a)

dx1(χ)

dχ

∣∣∣∣
χ=0

= θ1 (2.54b)

reads:

x1(χ) = fK(χ)θ1 −
2

c2

∫ χ

0
fK(χ− χ′)Φ,x1

(
t(χ),x(χ), χ

)
dχ′. (2.55)

A transformation back to angular coordinates yields:

β1(χ) = θ1 −
2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

Φ,β1

(
t(χ),β(χ), χ

)
dχ′. (2.56)

2.5.3 The β2-component

In the radial approximation, the geodesic equation for the coordinate β2 = β2(χ) has exactly the
same form as the geodesic equation for β1. Its solution is thus:

β2(χ) = θ2 −
2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

Φ,β2

(
t(χ),β(χ), χ

)
dχ′. (2.57)
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2.6 The lens equation

Combining the results of the preceding sections, one obtains the following: Assume an observer
at spacetime point (t0,0, 0) in a universe with a weakly perturbed FLRW metric (2.1) receiving a
photon with incident direction β from a source at redshift z. The position (t,β, χ) of the source
is then found by tracing back the photon along the light path (t(χ),β(β, χ), χ), where

βi(θ, χ) = θi −
2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

Φ,βi(t(χ
′),β(θ, χ′), χ′)dχ′. (2.58)

For a given mass distribution ρ(t,β, χ) generating a gravitational potential Φ(t,β, χ), this equation
can be integrated numerically.

The relative position of nearby light rays is quantified by:

Aij(θ, χ) =
∂βi(θ, χ)

∂θj

= δij −
2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

Φ,βiβk(t(χ′),β(θ, χ′), χ′)Akj(θ, χ
′) dχ′.

(2.59)

The image distortions of small light sources can be described by the distortion matrix A(θ, χ) =(
Aij(θ, χ)

)
, which will be discussed in more detail in Chap. 4.

For the transverse comoving coordinates

x(θ, χ) = fK(χ)β(θ, χ), (2.60)

the lens equation yields:

xi(θ, χ) = fK(χ)θi −
2

c2

∫ χ

0
fK(χ− χ′)Φ,xi(t(χ

′),x(θ, χ′), χ′)dχ′, (2.61)

and

∂xi(θ, χ)

∂θj
= fK(χ)δij

− 2

c2

∫ χ

0
fK(χ− χ′)Φ,xixk(t(χ′),x(θ, χ′), χ′)

∂xk(θ, χ
′)

∂θj
dχ′. (2.62)

2.7 The lens map

2.7.1 Definition

The lens equation (2.58) can be interpreted as a map:

L : S2 × I→ S2 : (θ, χ) 7→ β = β(θ, χ), (2.63)

where S2 denotes the 2-sphere, and I = [0, χmax) ∈ R the half-open interval between zero and the
largest comoving distance χmax from which light has reached the observer so far from all directions.
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2.7.2 Deflection angle

The lens map (2.63) can be written as:

L : S2 × I→ S2 : (θ, χ) 7→ β = θ +α(θ, χ). (2.64)

The (scaled) deflection angle

αi(θ, χ) = − 2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

Φ,βi(t(χ
′),β(θ, χ′), χ′)dχ′ (2.65)

encodes the deviation of the angular photon positions caused by a given gravitational field Φ.

2.7.3 Cosmological constant and light deflection

If Eq. (2.8) holds, the potential Φ depends only on the matter distribution and the scale factor,
but not on the cosmological constant Λ. As a consequence, there is no effect of the cosmological
constant Λ on the light deflection. Only the involved distances along the l.o.s. may be affected by
Λ.

2.7.4 Mass-sheet degeneracy

Consider an affine linear transformation D(β0,D), parametrized by a shift vector β0 and a distortion
matrix D, of the source position β in a region U ⊂ S2 to a new source position β(β0,D):

D(β0,D) : U→ S2 : β 7→ β(β0,D) = Dβ + β0. (2.66)

Define a new lens map

L(β0,D) = D(β0,D) ◦ L : U→ S2 : (θ, χ) 7→ β(β0,D) = Dβ(θ, χ) + β0. (2.67)

Then

β(β0,D) = D
[
θ +α(θ, χ)

]
+ β0

= θ + Dα(θ, χ) + (D− 1)θ + β0

= θ +α(β0,D)(θ, χ),

(2.68)

with
α(β0,D)(θ, χ) = Dα(θ, χ) + (D− 1)θ + β0. (2.69)

Complete information on the lens map and hence the underlying matter distribution can be
obtained from known image and source positions. However, often only the positions and shapes
of objects in the image plane can be inferred from the data but not their source positions, shapes,
or sizes. Thus, for every lens map satisfying the observational constraints on image positions and
shapes, there is a whole family of lens maps that all yield the same observed images, but for
different source positions and shapes. If one restricts attention to simple scale transformations
D(β0,D) with β0 = 0, and D = (1− λ)1, this is known as mass sheet degeneracy.
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3 Approximations to the lens equation

3.1 Plane-sky approximation

The plane-sky approximation approximates the angular part of the geometry on a small part on
the sphere by the geometry of a plane. For the part on the sphere with |β| � 1, this implies:

g ≈ −c2dt2 + a2
{

dχ2 + f2
K(χ)

[
dβ2

1 + dβ2
2

]}
. (3.1)

The plane-sky approximation is not useful by itself, but often simplifies calculations involving
approximations to the lens equation discussed in the following.

3.2 The sudden-deflection approximation

A crucial step in some of the following approximations to the lens equation involves the approxima-
tion of the continuous deflection along the light path by a discrete deflection at the l.o.s. distance
of the deflector, which I call sudden-deflection approximation. In the plane-sky approximation,
the integral form of the sudden-deflection approximation reads:

ψ(β) ≡
∫ χ1

χ0

dχ

gK
{
dK
[
(β, χ), (β′, χ′)

]} ≈ ∫ χ1

χ0

dχ√
f2
K(χ′)|β − β′|2 + |χ− χ′|2

= arsinh

[
χ′ − χ0

fK(χ′) |β − β′|

]
+ arsinh

[
χ1 − χ′

fK(χ′) |β − β′|

]
≈ sign (χ′ − χ0) log

[
2|χ′ − χ0|

fK(χ′)|β − β′|

]
+ sign (χ1 − χ′) log

[
2|χ1 − χ′|

fK(χ′)|β − β′|

]
= sign (χ′ − χ0) log

[
2|χ′ − χ0|
fK(χ′)

]
+ sign (χ1 − χ′) log

[
2|χ1 − χ′|
fK(χ′)

]
− 2

[
Θ(χ′ − χ0)Θ(χ1 − χ′)−Θ(χ0 − χ′)Θ(χ′ − χ1)

]
log |β − β′|.

(3.2)

For χ0 < χ′ < χ1, this simplifies to

ψ(β) =

∫ χ1

χ0

dχ

gK
{
dK
[
(β, χ), (β′, χ′)

]} ≈ ∫ χ1

χ0

dχ√
f2
K(χ′)|β − β′|2 + |χ− χ′|2

= log

χ1 − χ′ +
√
|χ1 − χ′|2 + f2

K(χ′)|β − β′|2

χ0 − χ′ +
√
|χ0 − χ′|2 + f2

K(χ′)|β − β′|2


≈ log

[
2|χ1 − χ′|
fK(χ′)

]
+ log

[
2|χ′ − χ0|
fK(χ′)

]
− 2 log |β − β′|.

(3.3)

The last approximation becomes exact in the limit of χ1 → +∞ and χ1 → −∞.
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The ‘differential’ form of the sudden-deflection approximation, in the plane-sky approximation,
is practically nothing but:

αi(β, χ) ≡ ∂

∂βi

1

gK
{
dK
[
(β, χ), (β′, χ′)

]} ≈ ∂

∂βi

1√
f2
K(χ′)|β − β′|2 + |χ− χ′|2

= −
f2
K(χ′)(βi − β′i)[

f2
K(χ′)|β − β′|2 + |χ− χ′|2

]3/2
≈ −2δD(χ− χ′) βi − β′i

|β − β′|2

= −2δD(χ− χ′) ∂

∂βi
log
∣∣β − β′∣∣ .

(3.4)

The smooth but very “peaky” function αi(χ) is approximated by a Dirac delta “function” with
the same integral.

3.3 The first-order approximation

From the theory of ordinary differential equations follows that the solution β(θ, χ) of the lens
equation (2.58) is an attractive fixed point of the mapping

ζi(θ, χ) 7→ θi −
2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

Φ,ζi(t(χ
′), ζ(θ, χ′), χ′)dχ′ (3.5)

(at least in some interval I = [0, wmax) ∈ R whose extent depends on the properties of Φ, fK , and
a). Thus, one can take a good guess for β(θ, χ) and obtain an even better one by applying the
mapping (3.5). The approximate solution

βi(θ, χ) = θi −
2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

Φ,θi(t(χ
′),θ, χ′)dχ′ (3.6)

obtained by taking the ‘unperturbed’ path
(
t(χ),θ, χ′

)
is input is called the first-order approxi-

mation to the lens equation. Using the first-order lens potential

ψ(θ, χ) =
2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

Φ(t(χ′),θ, χ′) dχ′ (3.7)

and the (scaled) deflection angle
αi(θ, χ) = −ψ,θi(θ, χ), (3.8)

this can be written as:
βi(θ, χ) = θi + αi(θ, χ). (3.9)

The resulting approximation to the distortion reads:

Aij(θ, χ) = δij −
2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

Φ,θiθj (t(χ
′),θ, χ′) dχ′

= δij + Uij(θ, χ),

(3.10)

where the shear matrix
Uij(θ, χ) = −ψ,θiθj (θ, χ). (3.11)
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The shear matrix U, and hence the distortion matrix A are manifestly symmetric, and thus free
of B-modes .

Applying the Laplace operator on the 2-sphere

4S2
β =

1

cos(β1)

∂

∂β1
cos(β1)

∂

∂β1
+

1

cos(β1)2

∂2

∂β2
2

. (3.12)

to the first-order lens potential ψ(θ, χ) yields:

4S2
θ ψ(θ, χ) =

2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

4S2
θ Φ(t(χ′),θ, χ′) dχ′

=
2

c2

∫ χ

0

fK(χ− χ′)fK(χ′)

fK(χ)
4com

(θ,χ′)Φ(t(χ′),θ, χ′) dχ′

− 2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

∂
[
f2
k (χ′)Φ,χ′(t(χ′),θ, χ′)

]
∂χ′

dχ′.

(3.13)

Neglecting the second integral (see, e.g., Jain et al. 2000, for a discussion) and using Eq. (2.3),
one obtains for the first-order lens potential:

4S2
θ ψ(θ, χ) =

2

c2

∫ χ

0

fK(χ− χ′)fK(χ′)

fK(χ)
4com

(θ,χ′)Φ(t(χ′),θ, χ′) dχ′

=
8πG

c2

∫ χ

0

fK(χ− χ′)fK(χ′)

fK(χ)

ρ̄m

a
(
t(χ′)

)δm

(
t(χ′),θ, χ′

)
dχ′

= 2κ(θ, χ),

(3.14)

where κ(θ, χ) denotes the first-order lensing convergence:

κ(θ, χ) =
4πGρ̄m

c2

∫ χ

0

fK(χ− χ′)fK(χ′)

fK(χ)a
(
t(χ′)

) δm

(
t(χ′),θ, χ′

)
dχ′

=
3H2

0 Ωm

2c2

∫ χ

0

fK(χ− χ′)fK(χ′)

fK(χ)a
(
t(χ′)

) δm

(
t(χ′),θ, χ′

)
dχ′.

(3.15)

The lens potential thus satisfies the Poisson equation:

4S2
θ ψ(θ, χ) = 2κ(θ, χ). (3.16)

In the plane-sky approximation, the solution is thus given by:

ψ(θ, χ) ≈ 1

π

∫
S2

d2θ′κ(θ′, χ) log
(
|θ − θ′|

)
, (3.17)

and the source position is given by:

β(θ, χ) ≈ θ +α(θ, χ) (3.18)

with the (scaled) deflection angle

α(θ, χ) = −∇θψ(θ, χ)

= − 1

π

∫
S2

d2θ′κ(θ′, χ)
θ − θ′

|θ − θ′|2

= −4Gρ̄m

c2

∫
S2

d2θ′
∫ χ

0
dχ′

fK(χ− χ′)fK(χ′)

fK(χ)a(t′)

θ − θ′

|θ − θ′|2
δm(t′,θ′, χ′)

= −3H2
0 Ωm

2πc2

∫
S2

d2θ′
∫ χ

0
dχ′

fK(χ− χ′)fK(χ′)

fK(χ)a(t′)

θ − θ′

|θ − θ′|2
δm(t′,θ′, χ′).

(3.19)
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Approximations to the lens equation

Here, the abbreviation t′ = t(χ′) has been used.

3.4 The thin-lens approximation

One is often interested in the lens effect of an isolated and well-confined matter inhomogeneity at a
given redshift zL, corresponding to a distance χL and scale factor aL, which can be approximated
by:

δm

(
t,β, χ

)
=

Σang(β)δD(χ− χL)

f2
K(χL)ρ̄m

, (3.20)

where Σang(β) denotes the angular surface mass density. The gravitational potential of such a
matter distribution is given by:

Φ(t,β, χ) = − G

a(t)

∫
S2

d2β′
Σang(β′)

gK
{
dK
[
(β, χ), (β′, χL)

]}
≈ − G

a(t)

∫
S2

d2β′
Σang(β′)√

f2
K(χL) |β − β′|2 + |χ′ − χL|2

.
(3.21)

The latter expression is the potential for |β| � 1 in the plane-sky approximation. Now this
expression can be put into the lens equation and the results subjected to the sudden-deflection
approximation:

βi(θ, χ) = θi −
2

c2

∫ χ

0
dχ′

fK(χ− χ′)
fK(χ)fK(χ′)

∂

∂βi
Φ(t(χ′),β(θ, χ′), χ′)

≈ θi +
2G

c2

∫ χ

0
dχ′

fK(χ− χ′)
fK(χ)fK(χ′)a

(
t(χ′)

)×
×
∫
S2

d2β′
∂

∂βi

Σang(β′)√
f2
K(χL)|β(θ, χ′)− β′|2 + |χ′ − χL|2

≈ θi −
4G

c2

∫ χ

0
dχ′

fK(χ− χ′)
fK(χ)fK(χ′)a

(
t(χ′)

)×
×
∫
S2

d2β′Σang(β′)
βi(θ, χ

′)− β′i
|β(θ, χ′)− β′|2

δD(χ′ − χL)

= θi −
4G

c2

fK(χ− χL)

fK(χ)fK(χL)aL
Θ(χ− χL)

∫
S2

d2β′Σang(β′)
θi − β′i
|θ − β′|2

= θi − ψ,θi(θ, χ).

(3.22)

Here, the lensing potential

ψ(θ, χ) =
4G

c2

fK(χ− χL)

fK(χ)fK(χL)aL
Θ(χ− χL)

∫
S2

d2β′Σang(β′) log
(
|θ − β′|

)
. (3.23)

The lensing potential satisfies the Poisson equation:

4S2
θ ψ(θ, χ) = 2κ(θ, χ) with (3.24)

κ(θ, χ) =
Σang(θ)

Σang
crit(χ)

and (3.25)

Σang
crit(χ) =

[
4πG

c2

fK(χ− χL)

fK(χ)fK(χL)aL
Θ(χ− χL)−1

]−1

. (3.26)
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Approximations to the lens equation

An alternative derivation leading to the this result employs the first-order approximation.
From Eq. (3.22), one can read off for the source position:

βi(θ, χ) = θ +α(θ, χ) (3.27)

with the scaled deflection angle

α(θ, χ) = −∇θψ(θ, χ)

= − 1

π

∫
S2

d2β′
Σang(β′)

Σang
crit(χ)

θ − β′

|θ − β′|2

= −4G

c2

fK(χ− χL)

fK(χ)fK(χL)aL
Θ(χ− χL)

∫
S2

d2β′Σang(β′)
θ − β′

|θ − β′|2
.

(3.28)

The distortion matrix reads:

Aij(θ, χ) = δij + Uij(θ, χ), with (3.29)

Uij(θ, χ) = −ψ,θiθj (θ, χ). (3.30)

As in the first-order approximation, the distortion matrix A is manifestly symmetric.

3.5 The infinitely-many-lens-planes approximation

The sudden-deflection approximation (3.4) can also be used for general mass distributions:

βi(θ, χ) = θi −
2

c2

∫ χ

0
dχ′

fK(χ− χ′)
fK(χ)fK(χ′)

∂

∂βi
Φ(t(χ′),β(θ, χ′), χ′)

= θi +
2G

c2

∫ χ

0
dχ′

fK(χ− χ′)
fK(χ)fK(χ′)

ρ̄m

a
(
t(χ′)

)×
×
∫
R

dχ′′f2
K(χ′′)

∫
S2

d2β′
∂

∂βi

δm(t,β′, χ′′)

gK
{
dK
[(
β(θ, χ′), χ′

)
,
(
β′, χ′′

)]}
≈ θi −

4G

c2

∫ χ

0
dχ′

fK(χ− χ′)
fK(χ)fK(χ′)

ρ̄m

(
t(χ′)

)
a
(
t(χ′)

) ∫
R

dχ′′f2
K(χ′′)×

×
∫
S2

d2β′δm

(
t(χ′),β′, χ′′

)
δD(χ′ − χ′′) ∂

∂βi
log
∣∣β(θ, χ′)− β′

∣∣
= θi −

4Gρ̄m

c2

∫ χ

0
dχ′

fK(χ− χ′)fK(χ′)

fK(χ)a
(
t(χ′)

) ×
×
∫
S2

d2β′δm

(
t(χ′),β′, χ′

) ∂
∂βi

log
∣∣β(θ, χ′)− β′

∣∣
= θi −

4Gρ̄m

c2

∫ χ

0
dχ′

fK(χ− χ′)fK(χ′)

fK(χ)a
(
t(χ′)

) ×
×
∫
S2

d2β′δm

(
t(χ′),β′, χ′

) βi(θ, χ′)− β′i
|β(θ, χ′)− β′|2

.

(3.31)

This can be written as:

βi(θ, χ) = θi −
∫ χ

0
dχ′

fK(χ− χ′)
fK(χ)

ψ̃,βi
(
β(θ, χ′), χ′

)
, (3.32)
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where the lensing potential

ψ̃(β, χ) =
4Gρ̄m

c2

fK(χ)

a
(
t(χ)

) ∫
S2

d2β′δm

(
t(χ),β′, χ

)
log
∣∣β − β′∣∣ (3.33)

satisfies the Poisson equation (again I make sloppy use of the plane-sky approximation):

4S2
β ψ̃(β, χ) =

8πGρ̄m

c2

fK(χ)

a
(
t(χ)

)δm

(
t(χ),β, χ

)
= 2κ̃(β, χ), with

(3.34)

κ̃(β, χ) =
4πGρ̄m

c2

fK(χ)

a
(
t(χ)

)δm

(
t(χ),β, χ

)
. (3.35)

The lensing potential ψ̃(β, χ) is related to the Newtonian potential

Φ
(
t,β, χ, χ′′

)
= −Gρ̄m

a(t)
f2
K(χ′′)

∫
S2

d2β′′
δm(t,β′′, χ′′)

gK
{
dK
[(
β, χ

)
,
(
β′′, χ′′

)]} (3.36)

generated by the matter at comoving distance χ′′ via:

2

c2

∫ χ

0
dχ′ Φ

(
t(χ′),β(θ, χ′), χ′, χ′′

)
≈ 2

c2

∫ χ

0
dχ′ Φ

(
t(χ′′),β(θ, χ′′), χ′, χ′′

)
≈ −2Gρ̄m

c2

f2
K(χ′′)

a
(
t(χ′′)

) ∫
S2

d2β′′
∫ χ

0
dχ′

δm

(
t(χ′′),β′′, χ′′

)
gK
{
dK
[(
β(θ, χ′′), χ′

)
,
(
β′′, χ′′

)]}
≈ −2Gρ̄m

c2

f2
K(χ′′)

a
(
t(χ′′)

) ∫
S2

d2β′′δm

(
t(χ′′),β′′, χ′′

){
log

[
2

χ′′

fK(χ′′)

]
+ sign (χ− χ′′) log

[
2
|χ− χ′′|
fK(χ′′)

]
− 2Θ(χ− χ′′) log

∣∣β(θ, χ′′)− β′′
∣∣ }

=
4Gρ̄m

c2
Θ(χ− χ′′)

f2
K(χ′′)

a
(
t(χ′′)

) ∫
S2

d2β′′δm

(
t(χ′′),β′′, χ′′

)
log
∣∣β(θ, χ′′)− β′′

∣∣
= Θ(χ− χ′′)fK(χ′′)ψ̃(θ, χ′′).

(3.37)

Equation (3.32) can also be written as

βi(θ, χ) = θi −
∫ χ

0
dχ′

fK(χ− χ′)
fK(χ)

Ψ̃,xi

(
x(θ, χ′), χ′

)
, (3.38)

with the potential

Ψ̃(x, χ) =
4Gρ̄m

a
(
t(χ)

)
c2

∫
d2x′δm

(
t(χ),β(x′, χ), χ

)
log
∣∣x− x′∣∣ . (3.39)

3.6 The multiple-lens-plane approximation

A feasible computational scheme to calculate the photon path is based on a discretization of

Eq. (3.32). Take an ordered partition
{
I(k) | I(k) = [χ

(k)
L , χ

(k)
U ) ⊂ R, k = 1, . . . , Nmax

}
of the
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interval [0, wmax) into Nmax subintervals (wmax being the largest source distance of any interest).

Within each I(k), select a point χ(k) ∈ I(k), e.g. by choosing χ(k) = (χ
(k)
L + χ

(k)
U )/2. Then,

βi(θ, χ) = θi −
∫ χ

0
dχ′

fK(χ− χ′)
fK(χ)

ψ̃,βi
(
β(θ, χ′), χ′

)
= θi −

Nmax∑
k=1

∫ χ
(k)
U

χ
(k)
L

dχ′Θ(χ− χ′)fK(χ− χ′)
fK(χ)

ψ̃,βi
(
β(θ, χ′), χ′

)
≈ θi −

Nmax∑
k=1

∫ χ
(k)
U

χ
(k)
L

dχ′Θ(χ− χ(k))
fK(χ− χ(k))

fK(χ)
ψ̃,βi

(
β(θ, χ(k)), χ′

)
= θi −

N(χ)∑
k=1

fK(χ− χ(k))

fK(χ)
ψ̃

(k)
,βi

(
β(k)(θ)

)
= θi +

N(χ)∑
k=1

fK(χ− χ(k))

fK(χ)
α̃

(k)
i

(
β(k)(θ)

)
,

(3.40)

where N(χ) = sup{i ∈ N, χ(i) < χ},

α̃(k)(β) = −∇βψ̃(k)
(
β
)
, (3.41)

ψ̃(k)(β) =

∫ χ
(k)
U

χ
(k)
L

dχ ψ̃
(
β, χ

)
and (3.42)

β(k)(θ) = β
(
θ, χ(k)

)
(3.43)

= θ +
k−1∑
i=1

f
(k,i)
K

f
(k)
K

α̃(i)
(
β(i)(θ)

)
(3.44)

with f
(k)
K = fK(χ(k)) and f

(k,i)
K = fK(χ(k) − χ(i)). The result of the derivation (3.40) is called

multiple-lens-plane approximation. The derivation exploits the fact that fK(χ) and β(θ, χ) are
continuous, slowly varying functions of χ. In contrast, the lens potential ψ̃(t,β, χ) (unlike the grav-
itational potential Φ) can vary with χ as rapidly as the (possibly very clumpy) matter distribution
δm(t,β, χ).

The lensing potential

ψ̃(k)(β) =

∫ χ
(k)
U

χ
(k)
L

dχ ψ̃
(
β, χ

)
=

∫ χ
(k)
U

χ
(k)
L

dχ
4Gρ̄m

c2

fK(χ)

a
(
t(χ)

) ∫
S2

d2β′ log
∣∣β − β′∣∣ δm

(
t(χ),β′, χ

)
≈ 4Gρ̄m

c2

1

f
(k)
K a(k)

∫
S2

d2β′ log
∣∣β − β′∣∣Σang(k)(β′)

=
4Gρ̄m

c2

f
(k)
K

a(k)

∫
S2

d2β′ log
∣∣β − β′∣∣Σ(k)(f

(k)
K β′)

=
1

π

∫
S2

d2β′ log
∣∣β − β′∣∣ κ̃(k)(β′)

(3.45)
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with the abbreviations t(k) = t(χ(k)) and a(k) = a
(
t(χ(k))

)
, the angular surface mass density

Σang(k)(β) =
(
f

(k)
K

)2 ∫ χ
(k)
U

χ
(k)
L

dχ δm

(
t(χ),β, χ

)
=
(
f

(k)
K

)2
Σ(k)(f

(k)
K β), (3.46)

the comoving surface mass density

Σ(k)(x) =

∫ χ
(k)
U

χ
(k)
L

dχ δm

(
t(χ),x/f

(k)
K , χ

)
, (3.47)

and the convergence

κ̃(k)(β) =
4πGρ̄m

c2

∫ χ
(k)
U

χ
(k)
L

dχ
fK(χ)

a
(
t(χ)

)δm

(
t(χ),β, χ

)
≈ 4πGρ̄m

c2

f
(k)
K

a(k)

∫ χ
(k)
U

χ
(k)
L

dχ δm

(
t(k),β, χ

)
=

3H2
0 Ωm

2c2

f
(k)
K

a(k)

∫ χ
(k)
U

χ
(k)
L

dχ δm

(
t(k),β, χ

)
=

4πGρ̄m

c2

1

f
(k)
K a(k)

Σang(k)(β)

=
4πGρ̄m

c2

f
(k)
K

a(k)
Σ(k)(f

(k)
K β).

(3.48)

The lens potentials (3.42) satisfy the Poisson equation [see Eq. (3.34)]:

4S2
β ψ̃

(k)(β) = 2κ̃(k)(β). (3.49)

The lensing potential ψ̃(k)(β) is related to the Newtonian potential

Φ(k)
(
t,β, χ

)
= −Gρ̄m

a(t)

∫ χ
(k)
U

χ
(k)
L

dχ′′f2
K(χ′′)

∫
S2

d2β′′
δm(t,β′′, χ′′)

gK
{
dK
[(
β, χ

)
,
(
β′′, χ′′

)]} (3.50)

generated by the matter in the k-th slice via:

2

c2

∫ χ

0
dχ′ Φ(k)

(
t(χ′),β(θ, χ′), χ′

)
≈ Θ

(
χ− χ(k)

)
f

(k)
K ψ̃(k)(θ). (3.51)

When working with comoving transverse coordinates on the lens planes, deflection angle can be
computed from

α̃(k)(x) = −∇xΨ̃(k)(x) (3.52)

with the potential

Ψ̃(k)(x) = f
(k)
K ψ̃(k)

(
x/f

(k)
K

)
=

4Gρ̄m

a(k)c2

∫
d2x′ log

∣∣x− x′∣∣Σ(k)(x′). (3.53)

The multiple-lens-plane approximation appears as if the continuous matter distribution has been
approximated by a number of thin lens planes located at distances χ(k) from the observer, and the
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Figure 3.1: Schematic view of the observer’s backward light cone in the multiple-lens-plane approxima-
tion. A light ray (red line) experiences a deflection only when passing through a lens plane (solid blue lines).

The deflection angle α̃(k−1) of a ray passing through the lens plane at distance f
(k−1)
K from the observer

is obtained from the matter distribution between f
(k−1)
K,U and f

(k−1)
K,L projected onto the plane. Using the

deflection angle α̃(k−1) of the light ray at the previous lens plane and the ray’s angular positions β(k−1)

and β(k−2) on the two previous planes, the angular position β(k) on the current plane can be computed.

light deflection by these lens planes is approximated using the sudden-deflection approximation.
Such a procedure obviously leads to the same result.

The errors introduced by the approximations in Eqs. (3.42) and (3.48) decrease with decreasing
size of the intervals I(k) and may be made arbitrarily small by using enough lens planes. However,
the error introduced by the sudden-deflection approximation (3.4) cannot be made arbitrarily
small by increasing the number of lens planes.

Equation (3.43) is not practical for tracing rays through many lens planes. An alternative
expression is obtained as follows (see, e.g., Seitz et al. 1994, for a different derivation): The
angular position β(k) of a light ray on the lens plane k is related to its positions β(k−2) and β(k−1)

on the two previous lens planes by (see Fig. 3.1):

f
(k)
K β(k) = f

(k)
K β(k−2) + f

(k,k−2)
K ε(k−2) + f

(k,k−1)
K α̃(k−1)

(
β(k−1)

)
, (3.54)

where

ε(k−2) =
f

(k−1)
K

f
(k−1,k−2)
K

(
β(k−1) − β(k−2)

)
. (3.55)
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Hence,

β(k)(θ) =

(
1−

f
(k−1)
K

f
(k)
K

f
(k,k−2)
K

f
(k−1,k−2)
K

)
β(k−2)(θ) +

f
(k−1)
K

f
(k)
K

f
(k,k−2)
K

f
(k−1,k−2)
K

β(k−1)(θ)

+
f

(k,k−1)
K

f
(k)
K

α̃(k−1)
(
β(k−1)(θ)

)
= β(k−1)(θ) +

f
(k−2)
K f

(k,k−1)
K

f
(k)
K f

(k−1,k−2)
K

(
β(k−1)(θ)− β(k−2)(θ)

)
+
f

(k,k−1)
K

f
(k)
K

α̃(k−1)
(
β(k−1)(θ)

)
.

(3.56)

For a light ray reaching the observer from angular position β on the first lens plane, one can
compute its angular position on the other lens planes by iterating (3.56) with initial values β(0) =
β(1) = θ.

Differentiating (3.56) with respect to θ, one obtains a recurrence relation for the distortion
matrix A(k)(θ) = A(θ, χ(k)):

A
(k)
ij (θ) =

(
1−

f
(k−1)
K

f
(k)
K

f
(k,k−2)
K

f
(k−1,k−2)
K

)
A

(k−2)
ij (θ) +

f
(k−1)
K

f
(k)
K

f
(k,k−2)
K

f
(k−1,k−2)
K

A
(k−1)
ij (θ)

+
f

(k,k−1)
K

f
(k)
K

Ũ
(k−1)
im

(
β(k−1)(θ)

)
A

(k−1)
mj (θ)

(3.57)

with Ũ
(k)
ij (β) = −

∂2ψ̃(k)
(
β
)

∂βi∂βj
. (3.58)

Unlike in the first-order lensing approximation or the single-plane approximation, the distortion
matrix (3.57) is not symmetric in general.

For the reduced distortion matrix U(k) = A(k) − 1, the recurrence relation reads:

U
(k)
ij (θ) =

(
1−

f
(k−1)
K

f
(k)
K

f
(k,k−2)
K

f
(k−1,k−2)
K

)
U

(k−2)
ij (θ) +

f
(k−1)
K

f
(k)
K

f
(k,k−2)
K

f
(k−1,k−2)
K

U
(k−1)
ij (θ)

+
f

(k,k−1)
K

f
(k)
K

Ũ
(k−1)
im

(
β(k−1)(θ)

) [
U

(k−1)
mj (θ) + δmj

]
.

(3.59)
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4 Image distortions

4.1 Standard decomposition of the distortion field

The position of the light ray with respect to the global coordinate system is given by the lens
equation (2.58), the relative position of nearby light rays is quantified by the distortion matrix
(2.59). The distortion matrix is usually decomposed into a rotation matrix and a symmetric
matrix:

A(θ, χ) =

(
cosω − sinω
sinω cosω

)(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
. (4.1)

The decomposition defines the rotation angle ω = ω(θ, χ), the convergence κ = κ(θ, χ), and the
two components γ1 = γ1(θ, χ) and γ2 = γ2(θ, χ) of the shear, which may be combined into the
complex shear γ = γ1 + iγ2.

The (signed) magnification µ(θ, χ) of an image is given by the inverse determinant of the dis-
tortion matrix:

µ = (det A)−1 . (4.2)

The reduced shear g = γ/(1− κ) determines the major-to-minor axis ratio

r =

∣∣∣∣1 + |g|
1− |g|

∣∣∣∣ (4.3)

of the elliptical images of sufficiently small circular sources.
The determinant and trace of the distortion matrix,

det A = A11A22 −A12A21 and (4.4)

tr A = A11 +A22, resp. (4.5)

may be used to categorise images (Schneider et al. 1992):

• type I: det A > 0 and tr A > 0,

• type II: det A < 0,

• type III: det A > 0 and tr A < 0.

In all situations relevant for gravitational lensing, images of type II and type III belong to sources
that have multiple images.
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Magnification, convergence, shear, etc. can be calculated by:

µ = (det A)−1 = (A11A22 −A12A21)−1 , (4.6)

ω = − arctan

(
A12 −A21

A11 +A22

)
, (4.7)

κ = 1− A11 +A22

2 cosω
= 1− 1

2
(A11 +A22) secω, (4.8)

γ1 = −1

2
[(A11 −A22) cosω + (A12 +A21) sinω] ,

γ2 = −1

2
[(A12 +A21) cosω + (A22 −A11) sinω] .

(4.9)

Using some algebra, one can express the modulus square of the reduced shear by:

|g|2 = 1− 4
A11A22 −A12A21

(A11 +A22)2 + (A12 −A21)2 =
(A11 −A22)2 + (A12 +A21)2

(A11 +A22)2 + (A12 −A21)2 . (4.10)

4.2 Standard decomposition for weak distortion fields

If one considers only weak lensing, one can expect κ, γ1, γ2, and ω to be small compared to unity.
Then, one can expand the distortion matrix (4.1) up to linear order in these quantities:

A(θ, χ) =

(
1− κ− γ1 −γ2 − ω
−γ2 + ω 1− κ+ γ1

)
. (4.11)

One can use this decomposition even in the case when κ, γ1, γ2, and ω are not small, but then
the relations between the quantities defined by the decomposition (4.11) and the lensing observ-
ables become quite complicated. However, the decomposition (4.11) is easier to use in certain
calculations than the decomposition (4.1).

In the case of weak rotation, magnification, convergence, etc. can be calculated by:

µ = (det A)−1 = (A11A22 −A12A21)−1 , (4.12)

κ = 1− 1

2
(A11 +A22) , (4.13)

ω = −1

2
(A12 −A21) , (4.14)

γ1 = −1

2
(A11 −A22) ,

γ2 = −1

2
(A12 +A21) ,

(4.15)

|g|2 =
(A11 −A22)2 + (A12 +A21)2

(A11 +A22)2 . (4.16)

Using the reduced distortion matrix

U = A− 1 =

(
∂α

∂θ

)
=

(
−κ− γ1 −γ2 − ω
−γ2 + ω −κ+ γ1

)
, (4.17)
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one obtains:

µ = [det(1 + U)]−1 = (U11U22 − U12U21 + U11 + U22 + 1)−1 , (4.18)

κ = −1

2
(U11 + U22) , (4.19)

ω = −1

2
(U12 − U21) , (4.20)

γ1 = −1

2
(U11 − U22) ,

γ2 = −1

2
(U12 + U21) ,

(4.21)

|g|2 =
(U11 − U22)2 + (U12 + U21)2

(U11 + U22 + 2)2 . (4.22)

4.3 Flexion

Higher-order image distortions can be quantified by higher derivatives of the lens map. Of partic-
ular interest are the spin-1 flexion

F(θ, z) =
(
∂θ1 − i∂θ2

)
γ(θ, z)

=
(
∂θ1γ1 + ∂θ2γ2

)
+ i
(
∂θ1γ2 − ∂θ2γ1

)
,

(4.23)

and the spin-3 flexion

G(θ, z) =
(
∂θ1 + i∂θ2

)
γ(θ, z)

=
(
∂θ1γ1 − ∂θ2γ2

)
+ i
(
∂θ1γ2 + ∂θ2γ1

)
.

(4.24)

Analogous to the reduced shear, one can define a reduced spin-1 and spin-3 flexion (Schneider
and Er 2008):

F (θ, z) =
(
∂θ1 + i∂θ2

)
g(θ, z) =

F(θ, z) + g(θ, z)F∗(θ, z)

1− κ(θ, z)
, (4.25)

G(θ, z) =
(
∂θ1 − i∂θ2

)
g(θ, z) =

G(θ, z) + g(θ, z)F(θ, z)

1− κ(θ, z)
. (4.26)
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5 Simple models for isolated lenses

In the following, the lensing effects of isolated mass distributions with analytical profiles are
discussed. It is assumed, that the lens mass distributions can be represented by a thin matter
sheet at redshift zL with an analytic surface mass density profile. Any sources are assumed at
redshift zS. Furthermore, I define the following abbreviations:

aL = a(zL), (5.1a)

χS = χ(zS), (5.1b)

χL = χ(zL), (5.1c)

fS = fK(χS), (5.1d)

fL = fK(χL), and (5.1e)

fSL = fK(χS − χL). (5.1f)

Some of these enter the definition of the physical critical surface mass density

Σph
crit(z

L, zS) =

[
4πG

c2

fSLfLaL

fS

]−1

, (5.2)

the comoving critical surface-mass density

Σcrit(z
L, zS) =

[
4πG

c2

fLfSL

aLfS

]−1

, (5.3)

or the angular critical surface-mass density

Σang
crit(z

L, zS) =

[
4πG

c2

fSL

fSfLaL

]−1

(5.4)

for lenses at redshift zL and sources at redshift zS. In physical units, the prefactor

4πG

c2
= 9.33196× 10−27 m

kg

= 6.01556× 10−19 Mpc

M�
.

(5.5)

Distances along the line-of-sight will be usually quantified by χ. Positions and distances trans-
verse to the line-of-sight will be usually quantified by transverse comoving coordinates x = fK(χ)β(θ, χ)
and distances (e.g. to describe the projected mass distribution of the lens).

Deflections will be quantified by the physical deflection angle α̃. In case of a single deflector, α̃
is related to the scaled deflection angle α by:

α(θ, χS) =
fSL

fS
α̃
(
x(θ, χL)

)
. (5.6)
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Figure 5.1: Point-mass lens: source position β as a function of image position θ (left panel), and images
for circular sources (blue, red, and green) at three different source positions (right panel).

Differential deflections are quantified by (∂α̃/∂x). The reduced distortion matrix (∂α/∂θ) for
the case of a single lens can then be computed by:

∂α(θ, χS)

∂θ
=
fLfSL

fS

∂α̃
(
x(θ, χL)

)
∂x

. (5.7)

Lens potentials will be quantified by the comoving lens potential Ψ̃(x), which is related to the
physical deflection angle α̃ by

α̃(x) = −∇xΨ̃(x), (5.8)

and to the differential deflection (∂α/∂θ) by

∂α̃i
(
x(θ, χL)

)
∂xj

=
∂2Ψ̃

(
x(θ, χL)

)
∂xi∂xj

. (5.9)

For a single lens plane, the lens potentials Ψ̃(x), ψ̃(θ), and ψ(θ, χS) are related by:

ψ(θ, χS) =
fSL

fS
ψ̃(θ) =

fSL

fSfL
Ψ̃
(
x(θ)

)
. (5.10)

5.1 The point-mass lens

The deflection angle α̃ for a light ray passing a point mass M at redshift zL with comoving impact
parameter x = (x1, x2) much larger than the mass’s Schwarzschild radius of the mass is given by:

α̃ = (α̃1, α̃2) = −4GM

aLc2

x

r2
. (5.11)

Here, r = |x|. Note the sign convention, which differs from the one commonly used in gravitational
lensing (but follows the one commonly used in most other fields of theoretical physics).
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Figure 5.2: Isothermal lens: source position β as a function of image position θ (left panel), and images
for circular sources (blue, red, and green) at three different source positions (right panel).

The differential deflection is given by:

∂α̃

∂x
=

4GM

a(zL)c2

1

|x|4

(
x2

0 − x2
1 2x0x1

2x0x1 x2
1 − x2

0

)
. (5.12)

All light rays of a source located at line-of-sight comoving distance χS = χ(zS) from the observer
directly behind the point-mass lens at distance χL = χ(zL) that reach the observer impact the
lens at one comoving distance rE from the lens centre. The radius rE is called comoving Einstein
radius. Using the abbreviations (5.1), the comoving Einstein radius reads:

rE =

√
4GM

a(zL)c2

fLfSL

fS
. (5.13)

The angular Einstein radius reads:

θE =
rE

fL
=

√
4GM

a(zL)c2

fSL

fSfL
. (5.14)

The lens potential of the point mass lens reads:

Ψ̃(x) =
4GM

aLc2
log |x|. (5.15)

5.2 The isothermal lens

Assume a lens at redshift zL with the a singular isothermal spherical 3D density profile

ρ(r;Ms, rs) =
Ms

2r3
s

r2
s

r2
. (5.16)
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A projection of this density profile along the line-of-sight yields the following circularly symmetric
comoving surface mass density:

Σ(r;Ms, rs) =
Ms

2πr2
s

rs

r
. (5.17)

The mass projected inside radius r is given by:

M(r;Ms, rs) = Ms
r

rs
(5.18)

The deflection angle is given by:

α̃ = − 4G

aLc2

Ms

rs

x

r
. (5.19)

The differential deflection is given by:

∂α̃

∂x
= − 4G

aLc2

Ms

rs

1

r3

[
δijr

2 − xixj
]
. (5.20)

The total mass Mtot of the lens is infinite.
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6 Time delays

6.1 The light tavel time

Consider a source at spacetime position (tS,βS, χS) emitting a photon that eventually reaches the
observer. Let

thom(χ) = tS +
1

c

∫ χS

χ
a
(
thom(χ′)

)
dχ′ (6.1)

denote the time coordinate the photon would have in a homogenous universe. Then, the observer
would receive the photon at time thom

0 = thom(0) in a completely homogenous universe.
The time t0 = t(0) at which the observer receives the photon in the inhomogeneous universe

may differ from thom
0 , and furthermore may differ between different paths via which the photon

could reach the observer when the source is strongly lensed. Let
(
qα(χ)

)
=
(
t(χ),β(χ), χ

)
denote

the photon path. According to Eq. (2.49),

t(χ) = tS +
1

c

∫ χS

χ
a
(
t(χ′)

)
n(χ′)dχ′, (6.2)

where

n(χ) =
[
1− 2Φ

(
t(χ),β(χ), χ)

)]√√√√1 + f2
K(χ)

[(
dβ1

dχ

)2

+ cos2(β1)

(
dβ2

dχ

)2
]

= 1− 2Φ
(
t(χ),β(χ), χ)

)
+
f2
K(χ)

2

[(
dβ1

dχ

)2

+ cos2(β1)

(
dβ2

dχ

)2
]

+ . . .

= 1− 2Φ
(
t(χ),β(χ), χ)

)
+
f2
K(χ)

2

∣∣∣∣dβdχ

∣∣∣∣2 + . . .

(6.3)

For a given light path
(
t(χ),β(χ), χ

)
, Eq. (6.2) can be integrated to obtain the arrival time t(0).

However, this approach is often impractical. Except in special situations, the integration cannot
be performed analytically, but numerical integration schemes are needed. In particular, numerical
errors become a problem when one wants to calculate the arrival time difference between two
different light paths in a strong-lens situation, where the time difference is much smaller than the
light travel times.

There are other methods to compute the travel times than direct integration. The basics of
time delays between multiple images of a source lensed by a single matter inohomogeneity has be
worked out by, e.g., Cooke and Kantowski (1975), Kayser and Refsdal (1983), and Borgeest (1983).
The relation of the time delay to the lens equation in the single-lens-plane approximation has been
discussed by, e.g., Schneider (1985). Time lelays in the multiple-plane approximation have been
discussed by, e.g., Blandford and Narayan (1986) and Seitz and Schneider (1992). These works
have used an eclectic approach employing analytic, geometric, and physical arguments together
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to derive the relevant equations for the time delay. Here, I try to provide a straight-forward,
self-contained, and analytic derivation.

My approach is based on a perturbation expansion of the travel time. I define

t(χ, ε) = tS +
1

c

∫ χS

χ
a
(
t(χ′, ε)

)(
1 + εu(χ′)

)
dχ′ (6.4)

with ε as a formal expansion parameter for the detour

u(χ) = −1 +

[
1− 2

c2
Φ
(
t(χ),β(χ), χ)

)]

×

√√√√1 + f2
K(χ)

[(
dβ1

dχ

)2

+ cos2(β1)

(
dβ2

dχ

)2
]

= − 2

c2
Φ
(
t(χ),β(χ), χ)

)
− 1

+

√√√√1 + f2
K(χ)

[(
dβ1

dχ

)2

+ cos2(β1)

(
dβ2

dχ

)2
]

+ . . .

= − 2

c2
Φ
(
t(χ),β(χ), χ)

)
+
f2
K(χ)

2

[(
dβ1

dχ

)2

+ cos2(β1)

(
dβ2

dχ

)2
]

+ . . .

(6.5)

The expansion of t(χ, ε) around ε = 0,

t(χ, ε) =

∞∑
k=1

t(k)(χ, ε) =

∞∑
k=1

εk

k!

∂kt(χ, ε)

∂εk

∣∣∣∣
ε=0

, (6.6)

defines the k-th order contributions t(k)(χ, ε) to the time coordinate. The zeroth order reads:

t(0)(χ, ε) = t(χ, 0) = thom(χ). (6.7)

For the first-order term, one obtains the following implicit equation:

t(1)(χ, ε) = ε
∂t(χ, ε)

∂ε

∣∣∣∣
ε=0

= ε
1

c

∫ χS

χ

[
ȧ
(
t(χ′, 0)

) ∂t(χ′, ε)
∂ε

∣∣∣∣
ε=0

+ a
(
t(χ′, 0)

)
u(χ′)

]
dχ′

= ε
1

c

∫ χS

χ

[
ȧ
(
thom(χ′)

) ∂t(χ′, ε)
∂ε

∣∣∣∣
ε=0

+ a
(
thom(χ′)

)
u(χ′)

]
dχ′

= ε
1

c

∫ χS

χ

[
−

dln a
(
thom(χ′)

)
dχ′

∂t(χ′, ε)

∂ε

∣∣∣∣
ε=0

+ a
(
thom(χ′)

)
u(χ′)

]
dχ′

= ε
a(thom(χ))

c

∫ χS

χ
u(χ′)dχ′.

(6.8)

One way to arrive at the last line is to define the function

t(1)(χ) =
∂t(χ, ε)

∂ε

∣∣∣∣
ε=0

, (6.9)
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wich satisfies the integral equation:

t(1)(χ) =
1

c

∫ χS

χ

[
−

dln a
(
thom(χ′)

)
dχ′

t(1)(χ′) + a
(
thom(χ′)

)
u(χ′)

]
dχ′. (6.10)

This corresponds to the linear inhomogeneous ordinary differential equation:

dt(1)(χ)

dχ
=

1

c

dln a
(
thom(χ)

)
dχ

t(1)(χ)− 1

c
a
(
thom(χ)

)
u(χ). (6.11)

The homogenous part of the solution,

t(1,hom)(χ) ∝ a(thom(χ)), (6.12)

vanishes because of the initial condition t(1)(χS) = 0, but helps us at guessing the remaining
inhomogeneous part of the solution (see Sec. 2.4):

t(1)(χ) =
a(thom(χ))

c

∫ χS

χ
u(χ′)dχ′. (6.13)

Differentiating the solution shows that it satisfies Eq. (6.11).
The time coordinate of the photon in the inhomogeneous universe is given by:

t(χ) = thom(χ) +
a(thom(χ))

c

∫ χS

χ
u(χ′)dχ′ + O

[
u2
]
. (6.14)

Thus, the arrival time of the photon can be calculated by:

t0 = t(0) = thom(0) +
1

c

∫ χS

0
u(χ′)dχ′ + O

[
u2
]
. (6.15)

The arrival time delay

∆ = t0 − thom(0) =
1

c

∫ χS

0
u(χ′)dχ′ + O

[
u2
]

(6.16)

can be split into a potential part

∆pot = − 2

c3

∫ χS

0
Φ
(
t(χ′),β(χ′), χ′)

)
dχ′, (6.17)

a geometric part

∆geom =
1

c

∫ χS

0

√√√√1 + f2
K(χ′)

[(
dβ1

dχ′

)2

+ cos2(β1)

(
dβ2

dχ′

)2
]

dχ′ − χS

=
1

2c

∫ χS

0
f2
K(χ′)

[(
dβ1

dχ′

)2

+ cos2(β1)

(
dβ2

dχ′

)2
]

dχ′ + . . . ,

(6.18)

and a higher-order part, which I neglect in the following.
In the plane-sky approximation, i.e. cos(β1) ≈ 1, the lowest-order geometric time delay reads:

∆geom =
1

2c

∫ χS

0
f2
K(χ′)

(
dβ

dχ′

)2

dχ′. (6.19)
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6.2 Time delay in the multiple-lens-plane approximation

In the multiple-plane approximation (discussed in Sec. 3.6), the comoving light path is picewise
linear between successive lens planes. For χ(i) ≤ χ ≤ χ(i+1),

β(χ) = β(i) +
(
β(i+1) − β(i)

) f
(i+1)
K

f
(i,i+1)
K

fK
(
χ− χ(i)

)
fK(χ)

= β(i) + ε(i) fK
(
χ− χ(i)

)
fK(χ)

, and

(6.20)

dβ(χ)

dχ
=
(
β(i+1) − β(i)

) f
(i+1)
K

f
(i,i+1)
K

×
fK,χ

(
χ− χ(i)

)
fK(χ)− fK

(
χ− χ(i)

)
fK,χ(χ)

f2
K(χ)

= ε(i) fK,χ
(
χ− χ(i)

)
fK(χ)− fK

(
χ− χ(i)

)
fK,χ(χ)

f2
K(χ)

,

(6.21)

where ε(i) =
(
β(i+1) − β(i)

) f
(i+1)
K

f
(i,i+1)
K

. (6.22)

Thus, it is approriate to split the geometric time delay for sources at the n-th plane into contri-
butions from (here I also use the plane-sky approximation):

∆(n)
geom =

1

2c

∫ χ(n)

0
f2
K(χ)

(
dβ

dχ

)2

dχ

=

n−1∑
i=1

1

2c

∫ χ(i+1)

χ(i)

f2
K(χ)

(
dβ

dχ

)2

dχ =

n−1∑
i=1

∆(i,i+1)
geom .

(6.23)

The geometric time delay between successive planes reads:1

∆(i,i+1)
geom =

1

2c

∫ χ(i+1)

χ(i)

f2
K(χ)

(
dβ

dχ

)2

dχ

=
1

2c

(
β(i+1) − β(i)

)2
(
f

(i+1)
K

f
(i,i+1)
K

)2

×
∫ χ(i+1)

χ(i)

f2
K(χ)

[
fK,χ

(
χ− χ(i)

)
fK(χ)− fK

(
χ− χ(i)

)
fK,χ(χ)

f2
K(χ)

]2

dχ

=
1

2c

(
β(i+1) − β(i)

)2
(
f

(i+1)
K

f
(i,i+1)
K

)2
f

(i)
K f

(i,i+1)
K

f
(i+1)
K

=
1

2c

f
(i)
K f

(i+1)
K

f
(i,i+1)
K

(
β(i+1) − β(i)

)2

=
1

2c
f

(i)
K ε

(i)
(
β(i+1) − β(i)

)
.

(6.24)

1with a little help from Mathematica
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Summing the contributions from all lens planes up to the source plane, one obtains the geometric
time delay:

∆(n)
geom(θ) =

1

c

n−1∑
i=1

1

2

f
(i)
K f

(i+1)
K

f
(i,i+1)
K

[
β(i+1)(θ)− β(i)(θ)

]2
. (6.25)

Using the identities

α̃(i) =
f

(i+1)
K

f
(i+1,i)
K

(
β(i+1) − β(i)

)
−

f
(i−1)
K

f
(i,i−1)
K

(
β(i) − β(i−1)

)
,

f
(i)
K ε

(i) − f (i−1)
K ε(i−1) =

f
(i+1)
K

f
(i+1,i)
K

(
β(i+1) − β(i)

)
−

f
(i−1)
K

f
(i,i−1)
K

(
β(i) − β(i−1)

)
, and

f
(n−1)
K ε(n−1) =

n−1∑
i=1

f
(i)
K α̃

(i),

which can be derived, e.g., from Eqs. (3.43) and (3.56), the geometric time delay can also be
expressed as:

∆(n)
geom(θ) =

1

2c

n−1∑
i=1

f
(i)
K ε

(i)
[
β(i+1)(θ)− β(i)(θ)

]
= − 1

2c

n−1∑
i=1

(
f

(i)
K ε

(i) − f (i−1)
K ε(i−1)

)
β(i)(θ) +

1

2c
f

(n−1)
K ε(n−1)β(n)(θ)

= − 1

2c

n−1∑
i=1

f
(i)
K α̃

(i)β(i)(θ) +
1

2c
f

(n−1)
K ε(n−1)β(n)(θ)

= − 1

2c

n−1∑
i=1

f
(i)
K α̃

(i)
[
β(i)(θ)− β(n)(θ)

]
= − 1

2c

n−1∑
i=1

f
(i)
K

[
β(n)(θ)− β(i)(θ)

]
∇β(i)ψ̃(i)(β(i)).

(6.26)

The potential time delay for sources on the n-th plane can be computed by a sum over contri-
butions from each lens plane:

∆
(n)
pot(θ) = − 2

c3

∫ χ(n)

0
Φ
(
t(χ),β(θ, χ), χ

)
dχ

= −1

c

∑
i

2

c2

∫ χ(n)

0
Φ(i)

(
t(χ),β(θ, χ), χ

)
dχ

= −1

c

n−1∑
i=1

f
(i)
K ψ̃(i)(θ, χ).

(6.27)

Here, Φ(i)(t,β, χ) denotes the gravitational potential created by the matter projected onto lens
plane i (cf. Eq. (3.50) and (3.51)), and ψ̃(i) denotes the lens potential on plane i (cf. Eq. (3.42)).
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Time delays

Adding geometric and potential contributions in the multiple-plane approximation, the time
delay for light originating from the nth plane and reaching the observer from direction θ is given
by (see, e.g., Blandford and Narayan 1986; Seitz and Schneider 1992):

∆(n)(θ) =
1

c

n−1∑
i=1

{
1

2

f
(i)
K f

(i+1)
K

f
(i,i+1)
K

[
β(i+1)(θ)− β(i)(θ)

]2
− f (i)

K ψ̃(i)(β(i))

}

=
1

c

n−1∑
i=1

f
(i)
K

{
1

2

[
β(n)(θ)− β(i)(θ)

] [
−∇β(i)ψ̃(i)(β(i))

]
− ψ̃(i)(β(i))

}

=
1

c

n−1∑
i=1

f
(i)
K

{
1

2

[
β(n)(θ)− β(i)(θ)

]
α̃(i)(β(i))− ψ̃(i)(β(i))

}
.

(6.28)

6.3 Time delay for a single strong lens

Consider a point-like source at redshift position βS and redshift zS strongly and a matter structure
at lens at redshift zL, characterized by the lens potential ψ̃(θ). Consider an image of the source
at position θ,

βL(θ) = θ, (6.29a)

α̃(βL) = ∇θψ̃(θ), (6.29b)

βS(θ) = θ +
fSL

fS
α̃(θ), (6.29c)

∆(θ) =
1

c

{
1

2

fLfSL

fS

[
α̃(θ)

]2 − fLψ̃(θ)

}
. (6.29d)

The time delay difference ∆(θ,θ′) between two images at θ and θ′ of the same source,

∆(θ,θ′) = ∆(θ′)−∆(θ)

=
1

c

{
1

2

fLfSL

fS

[
α̃(θ′)2 − α̃(θ)2

]
− fL

[
ψ̃(θ′)− ψ̃(θ)

]}
=

1

c

{
1

2

fLfSL

fS

[
α̃(θ′)− α̃(θ)

][
α̃(θ′) + α̃(θ)

]
− fL

[
ψ̃(θ′)− ψ̃(θ)

]}
= −1

c
fL

{
1

2

[
θ′ − θ

][
α̃(θ′) + α̃(θ)

]
+
[
ψ̃(θ′)− ψ̃(θ)

]}
.

(6.30)

Now write the lensing potential and the deflection angle as:

ψ̃(θ) = ψ̃0 − α̃t
0θ −

1

2

fS

fSL
θtUθ + ψ̃3+(θ), (6.31)

α̃(θ) = α̃0 +
fS

fSL
Uθ + α̃3+(θ). (6.32)
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Then the time delay

∆(θ,θ′) = −1

c
fL

{
1

2

[
θ′ − θ

][
α̃(θ′) + α̃(θ)

]
+
[
ψ̃(θ′)− ψ̃(θ)

]}
= −1

c
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{
1
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][
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]
+
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]}
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1
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fS

fSL
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]
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[
−α̃0(θ′ − θ)− 1

2
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fSL
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]}
= −1

c
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1

2
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α̃3+(θ′) + α̃3+(θ)
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[
ψ̃3+(θ′)− ψ̃3+(θ)

]}
.

(6.33)
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