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This short note is based on my day-long lecture for ‘Lecture Series on Cosmology’ at MPA
on 9th June in 2016. The aim of this note is to review the galaxy clustering in redshift
space, focusing mainly on the Redshift-Space Distortion (RSD) on cosmological scales from
both model and measurement points of view in a self-consistent manner. The basic goal is
to provide a brief overview of recent developments on RSD and to present the most updated
BOSS DR12 result. It is true that there exist too many equations, but don’t worry! I will
try to keep my explanations as simple as possible.
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I. PREFACE

The goal of this internal lecture is to provide a simplified and pedagogical review of the redshift-space
distortion (RSD) which is one of the main scientific targets in ongoing and forthcoming galaxy redshift
surveys such as BOSS in SDSS-III, eBOSS in SDSS-IV, HETDEX, PFS, DESI, WFIRST and EUCLID.

I surely begin with the very basics assuming a textbook-level knowledge of cosmology. On the other hand,
I try to include recent developments of both modeling and measurement efforts (although I apologize that
these might be technical and advanced topics for general audience). As far as I am aware, there is no recent
comprehensive and self-consistent review which focuses only on RSD in the literature. There was one by
Hamilton [1] for the linear RSD almost 20 years ago and the review of the large-scale structure by Bernardeau
et al. about 15 years ago [2] still remains standard as an introductory reading. This already reflects the fact
that this field is still in a developing phase and not well matured yet. Nevertheless I personally think that it
would be good to summarize the current status and even hope that the lecture is somehow extended to further
collaboration.

This lecture is heavily based on our experiences and contributions to the field through the modeling works
[3–5] and the observational analysis in BOSS [6, 7] (and hence could be somewhat biased), although I try
to include as many relevant references as possible for further reading (of course, the list is likely to be very
incomplete).

II. INTRODUCTION AND ILLUSTRATIVE PICTURES

The goal of this lecture note is to answer or to help one better understand the approaches to answer the
following questions:

• What is RSD?

When we map out objects like galaxies in 3-dimensional space, the radial (comoving) distance to the
object is determined by its measured redshift, zobs. However, we should remember that there are always
two contributions to zobs: Hubble flow, r(zcos) =

∫ zcos
0 cdz/H(z) and the peculiar velocity of the object

as

1 + zobs = (1 + zcos)

(
1−

v∥(r)

c

)−1

, (1)

s = r +
(1 + zcos)v∥(r)

H(zcos)
r̂, (2)

where v∥ denotes the line-of-sight (LOS) component of the peculiar velocity. The 2nd term is usually
ignored in astronomy. For instance, in a flat ΛCDM universe with Ωm0=0.3, r(zcos = 0.5) ≃ 1.32Gpc/h
while the second term is evaluated as

(1 + zcos)v∥(r)

H(zcos)

∣∣∣∣
zcos=0.5

≃ 1.18
v∥

100 km/s
[Mpc/h], (3)

which typically amounts to O(1Mpc/h). Nevertheless, the existence of the 2nd term has non-negligible
impact on the clustering statistics of the matter density field,

δm(x) =
ρm(x)

ρ̄m
− 1. (4)

Its 2-pt correlation in Fourier space, the so-called power spectrum defined by

⟨δm(k)δm(k′)⟩ = (2π)3δD(k + k′)Pm(k), (5)

can be reduced to Pm(k) = Pm(k) due to the cosmological principle. However, this does not hold in
the case of the observed power spectrum in redshift space, simply because the peculiar velocity term



3

obviously breaks down rotational invariance. Therefore, the peculiar velocity makes the redshift-space
clustering anisotropic. The same story shall hold for number counts for dark matter halos and galaxies.
This is the so-called RSD.

The reason why this anisotropy is quantitatively non-negligible will be shortly explained in Sec. III. Here
in turn let me discuss a schematic picture shown in Fig. 1 which illustrates the anisotropic clustering
caused by RSD. At large scales, objects tend to coherently infall into high density region and hence the
density field becomes squashed hence the clustering amplitude becomes stronger along LOS, so-called
the Kaiser effect [8]. On the other hand, at small scales objects are virialized and hence have random
motions. In this case, the density field becomes stretched hence the clustering amplitude becomes smaller
along LOS, so-called the Finger-of-God (FoG) effect [9].

FIG. 1: The schematic picture of RSD. Picture courtesy of my wife, Kimika Saito.

• Why is RSD important and useful?

RSD is important because we can measure any quantities only as a function of redshift-space distance.
In order words, for any cosmological observables involving radial distance, we should take RSD into
account. Such observables include galaxy number count, Lyα forest, 21cm, and intensity mapping etc.
I will also argue that RSD cannot be negligible in the case of projection onto the sky under some
conditions (see Sec. V).

RSD is useful, because RSD is again the measurement of cosmological velocity field which is determined
only through gravitational potential. In linear theory, the Euler equation is given by

v′ + aHv = −∇Ψ, (6)

where ′ denotes derivative w.r.t conformal time. Historically, RSD is proposed as a probe of density
parameter, since the linear velocity field is directly proportional to growth function (e.g., [10]):

f ≡ d lnD1

d ln a
≈ Ωm(z)

0.545, (7)

where D1(a) is linear growth rate and Ωm(z) = H2
0Ωm0(1 + z)3/H(z)2. As far as I know, this idea is

first introduced by Sargent and Turner (1977) [11] (see Fig. 2) rather than Kaiser (1987) [8].
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FIG. 2: Title and abstract of the 1st RSD paper by Sargent and Turner (1977) [11].

Nowadays RSD is paid more attentions to as a probe of gravity theory at cosmological scales because of
the same reason above. Note that RSD is sensitive to the dynamical mass determined by Ψ, while weak
lensing is sensitive to the lensing mass proportional to (Φ + Ψ).

• Why is it difficult to model RSD even at large scales ≳ O(10Mpc)?

This is the main topic which I address in the first half of the lecture (Sec. III, IV, and V). A short
answer is because the RSD involves the nonlinear mapping in terms of peculiar velocity as follows. Since
the density field should be preserved, ρsm(s)ds = ρm(r)dr. So the Jacobian is given by

J =

∣∣∣∣drds
∣∣∣∣ = r2dr

s2ds
=

{
1− (1 + zcos)

H(zcos)

v∥

r

}−2{
1− (1 + zcos)

H(zcos)

∂v∥

∂r

}−1

. (8)

In Sec. IV, I discuss the nonlinear RSD model on the basis of perturbation theory (PT) proposed by our
paper, Taruya, Nishimichi, Saito (TNS, 2010) [3]. The TNS model has been applied to several galaxy
surveys to extract the RSD information. Although its derivation is a bit technical, I think it is helpful
to understand why modeling nonlinear RSD is such a difficult task when going through the derivation
of the TNS model.

• How and to what extent can we extract cosmological information from the RSD measurement?

In this lecture, I mainly focus on modeling the redshift-space power spectrum, P s(k) which is the Fourier
transform of the two-pint correlation function in configuration space. Although this is just my personal
preference, I try to address the advantage of the redshift-space power spectrum in Sec. VI.

• What is the current result of the RSD measurements?

The current status of the RSD measurements is well summarized by Fig. 3 [12]. The meaning of fσ8
will be introduced shortly. It is worth noting that this is not really a fair comparison in the sense that
a way to analyze and extract the RSD information is not exactly same.

As I mentioned earlier, I will briefly show the updated results from BOSS DR12 in Sec. VII. Since the
DR12 results are not allowed to be public at this point, I do not present them in this note but show
them in the lecture.
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Fig. 17. Constraints on the growth rate f (z)σ 8(z) as a function of redshift at 0 < z < 1.55. The constraint obtained from our FastSound sample at
1.19 < z < 1.55 is plotted as the big red point. The previous results include the 6dFGS, 2dFGRS, SDSS main galaxies, SDSS LRG, BOSS LOWZ,
WiggleZ, BOSS CMASS, VVDS, and VIPERS surveys at z < 1. A theoretical prediction for fσ 8 from "CDM and general relativity with the amplitude
determined by minimizing χ2 is shown as the red solid line. The data points used for the χ2 minimization are denoted as filled-symbol points while
those which are not used are denoted as open-symbol points. The predictions for fσ 8 from modified gravity theories with the amplitude determined
in the same way are shown as the thin lines with different line types: f (R) gravity model (dot-short-dashed), the covariant Galileon model (dashed),
the extended Galileon model (dotted), DGP model (dot-dashed), and the early, time-varying gravitational constant model (black solid). (Color online)

Fig. 18. Constraints on the growth rate fσ 8 as a function of redshift compared to the "CDM model with the best-fit models from the CMB exper-
iments. The data points are the same as those in figure 17. Theoretical predictions with 68% confidence intervals based on WMAP9 and Planck
CMB measurements are shown as the green and red shaded regions, respectively. The early, time-varying gravitational constant models with
Ġ/G = 3.5 × 10−11 [yr−1] and 7.0 × 10−11 [yr−1] are respectively shown as the blue and magenta lines. (Color online)

and VIPERS with zeff = 0.8. With this choice, all the
data points are uncorrelated except for the 2.1% corre-
lation between the CMASS and the higher-redshift bin of
the LRG (see Alam et al. 2016). Using the seven data
points of fσ 8, we compute the χ2 for theoretical predic-
tions of gravity theories including GR with the amplitude
of fσ 8 being a free parameter. The "CDM model plus
GR with the best-fit amplitude is shown as the solid line
in figure 17.

6.2 Modified gravity models

On the scales probed by large-scale structure surveys, the
growth rate f generally obeys a simple evolution equation
(Baker et al. 2014; Leonard et al. 2015):

f ′ + q(x) f + f 2 = 3
2

$mξ, (22)

where q(x) = 1
2

{1 − 3 w(x)[1 − $m(x)]} ; (23)
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FIG. 3: A compilation of the recent RSD measurements [12].

A. Assumptions

Here I summarize the assumptions which further simplify the analysis in both modeling and measurement.

• Distant observer and global plain-parallel approximations in modeling RSD.

Eq. (8) tells us that the velocity term in the first bracket can be ignored when

v∥

L
≪ kv∥ ⇔ kL≫ 1, (9)

where k is wavenumber for the Fourier mode of interest and L is the characteristic size of the survey.
Namely, the distant observer approximation is valid when the scale of interest is well within the survey
size. Then the Jacobian is simply approximated by

J ≃
{
1− (1 + zcos)

H(zcos)

∂v∥

∂r

}−1

. (10)

This Jacobian formula guarantees that the RSD depends only on one direction, and hence we can fix
LOS as one global direction such as ẑ,

k̂ · x̂ ≈ k̂ · ẑ. (11)

I call this as the global observer approximation. I am going to assume the distant observer and the
global plain-parallel approximations in modeling RSD in the following section.

In other words, the distant observer and the global plain-parallel approximations break down for the
extremely large scale mode. Once the global plain-parallel approximation is dropped out, it does make
more sense to interpret the clustering by making a radial-angular decomposition [13, 14]. Furthermore,
keeping the v∥/r terms leads to an additional correction term, the so-called wide angle effect (see e.g.,
[15–17]).

• Local plain-parallel approximation in measuring the redshift-space power spectrum.

Historically, the power-spectrum estimator introduced by Feldman, Kaiser and Peacock (the so-called
FKP estimator) assumed the global plane-parallel approximation [18]. It turns out that this is no
longer valid once one measures the anisotropic part of the power spectrum especially in the large-angle
survey like BOSS [19, 20]. In Sec. VII, I will introduce more refined estimators which assume the local
plain-parallel approximation,

k̂ · x̂1 ≈ k̂ · x̂2 ≈ k̂ · x̂h, (12)

where x1 and x2 describe two galaxy positions and xh = (x1 + x2)/2.
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• No velocity bias, i.e., vg = vm.

This means that it will be straightforward to go from matter to halo/galaxy in the RSD modeling as long
as one has a good prescription of biased tracer, δh/g(x) = F [δm(x),O(x)], in real space (see e.g., [21–26]
and those references therein for recent efforts). Although the velocity field is determined by gravitational
potential governed by matter density, it is not necessarily true that velocity bias is negligible (see [27, 28]
for recent discussions).

B. Uncovered topics

Of course it is impossible to cover all the topics on the galaxy clustering in redshift space in this lecture.
Here is the list of topics which is relevant particularly to RSD but uncovered by this lecture:

• Other nonlinear RSD models of the power spectrum or 2pt correlation function which include integrated
Lagrangian Perturbation Theory (iLPT) [29], the Convolution Lagrangian Perturbation Theory (CLPT)
[30], other LPT [31], Effective Field Theory (EFT) [32], the Distribution Function approach [33–38] etc.

• Higher-order statistics such as the bispectrum (the 3pt correlation function). See e.g.,[39].

• Horizon effect such as GR, the wide-angle effect etc. See e.g., [40].

• Small-scale physics such as the galaxy-halo connection, impact of baryon etc. See e.g., [41–43].

III. THEORY: MODELING RSD IN LINEAR REGIME

A. The real-space power spectrum in a nutshell

I assume everyone is quite familiar with the linear theory in real space.3.2. STRUCTURE FORMATION WITH LINEAR COSMOLOGICAL PERTURBATION THEORY 39

Figure 3.2: The linear matter power spectrum (solid red) at z = 0 in a flat ΛCDM universe with
wm = Ωm0h2 = 0.147, wb = Ωb0h2 = 0.0245, Ωw0 = 0.7, h = 0.7, w0 = −1, ∆2

R(k∗) = 2.35 ×
10−9, and ns = 0.95. For comparison, three spectra with different cosmologies: wm = 0.197 (h =
0.8) (green dotted), w0 = −0.5 (blue dashed), and wb = 0.049 (cyan long-dashed), with other
parameters being fixed. In this reference cosmology, the equality scale, keq = 0.015[h/Mpc], is
also shown with a vertical line.

In an Einstein de-Sitter (EdS) universe, Ωm0 = 1 and Ωw0 = 0, this actually recover the result
in MD era, D1 = a. In the left panel of Fig. 3.1, we show the linear growth function, D1(a),
as a function of the scale factor, a. The linear growth is more suppressed by the dark energy
component, compared to that in an EdS universe.

In summary, the asymptotic behavior of the transfer function is described as

T (k)to

{
1 (k ≪ keq)

k−2[ln k] (k ≫ keq)
. (3.63)

Hence, the linear matter power spectrum behaves as follows: the scale-dependence is described
as

P L
m(k) ∝

{
kns (k ≪ keq)

kns−4[ln k]2 (k ≫ keq)
, (3.64)

and all modes grow proportionally to D1(a).
In Fig. 3.2 we show the linear matter power spectrum in a ΛCDM universe. The scale-

dependence explained above can be clearly seen from the figure. Around the equality scale, keq,
the spectrum turns over (so often called as turn over) the scale-dependence. In order to see the
physical effect on the spectrum, we simultaneously plot the spectra with different cosmologies.
Let us respectively explain the physics responsible for the shape of the matter power spectrum:

FIG. 4: The linear matter power spectrum in a ΛCDM universe with Ωm0h
2 = 0.147, Ωm0h

2 = 0.0245, ΩΛ = 0.7,
h = 0.7, ∆2

R(k∗) = 2.35× 10−9 and ns = 0.95.
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B. Linear RSD: Kaiser formula

For convenience, I define the velocity divergence field as

θ(x) ≡ −∇ · v(x)
aHf

, (13)

and its Fourier transform is give by

v(k) = −iaHf k

k2
θ(k). (14)

Then the linear continuity equation, δL
′
m +∇ · vL = 0 becomes

δLm(k) = θL(k). (15)

Now the density conservation from real to redshift space implies that

δsm(s) =

∣∣∣∣dsdr
∣∣∣∣−1

{1 + δm(r)} − 1, (16)

and its Fourier component is obtained as

δsm(k) =

∫
d3x

{
δm(x)−

1

aH

∂vz(x)

∂z

}
eik·x+ikµvz/(aH), (17)

where I fix the LOS direction as ẑ and define the directional cosine as µ ≡ k̂ · ẑ. Note that this expression
is exact under the distant observer and global plain-parallel approximations (see Appendix. D for detailed
derivation).

Now let me derive the RSD correction at linear order, known as the famous Kaiser formula [8]. At linear
order in terms of δ and v, the 2nd term in the power of the exponential factor is dropped out, and hence one
obtains

δs,Lm (k) = δm(k)−
∫
d3x eik·x 1

aH

∂

∂z

∫
d3k′

(2π)3
e−ik

′·xvz(k
′)

= δm(k) + f

∫
d3k′

(2π)3

∫
d3x ei(k−k′

)·xkzk
′
z

k2
θ(k)

= δm(k) + fµ2θ(k)

= (1 + fµ2)δLm(k), (18)

and the redshift-space power spectrum at linear order is given by

P s,Lm (k) = P s,Lm (k, µ) = (1 + fµ2)2PLm(k). (19)

In the case of galaxy number density with δg = bδm, similarly one obtains

P s,Lg (k) = P s,Lg (k, µ) = b2(1 + βµ2)2PLm(k), (20)

where β ≡ f/b. It is important to realize that the anisotropic term originates from the velocity and hence it
does not depend on bias. This is the reason why the RSD measurement is often parametrized by the amplitude
of the peculiar velocity field fσ8(zcos).

How significant is the RSD correction? In order to see this, let me expand the anisotropic power spectrum
with the Legendre polynomials,

P s(k, µ) =
∑
ℓ

Pℓ(k)Lℓ(µ), (21)

Pℓ(k) =
2ℓ+ 1

2

∫ 1

−1
dµP s(k, µ)Lℓ(µ). (22)
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Since the Kaiser formula contains terms only up to µ4, only ℓ = 0 (monopole), 2 (quadrupole) and 4 (hexade-
capole) are non-vanishing (e.g., [44]):

Pg,ℓ=0(k) =

(
1 +

2

3
β +

1

5
β2
)
b2PLm(k), (23)

Pg,ℓ=2(k) =

(
4

3
β +

4

7
β2
)
b2PLm(k), (24)

Pg,ℓ=4(k) =
8

35
β2b2PLm(k). (25)

Suppose that f = 0.774 and b = 2 at z = 0.57 (roughly corresponding to the BOSS CMASS sample), the
Kaiser factor is evaluated as Pg,ℓ=0(k)/Pg ≃ 1.288. This means that RSD introduces overall correction by a
factor of 1.3 even for the monopole, i.e., isotropic part. This is a significant effect! Then a next and natural
question is how well we can measure the anisotropic part such as quadrupole and hexadecapole, which will be
answered in Sec. VI.

Let me make a comment on other (but highly related) two-point statistics. The multipole of the correlation
function in configuration space is simply related to the power spectrum multipole,

ξsℓ (s) = iℓ
∫
k2dk

2π2
P sℓ (k)jℓ(ks), (26)

where jℓ(x) is the spherical Bessel function at ℓ-th order. I should also mention that the clustering wedges
(see e.g., [45, 46]) defined by simple average within certain range of µ,

P s,µ2µ1 (k) ≡
1

µ2 − µ1

∫ µ2

µ1

dµP s(k, µ). (27)

IV. THEORY: MODELING RSD IN NONLINEAR REGIME

This section more or less highlights our paper, Taruya, Nishimichi, and Saito (TNS, 2010) [3]. I also try to
include a recent work by Zheng and Song (2016) [47].

A. How hard is RSD to predict?

• First of all, how good is the Kaiser formula? See Fig. 5.

• What about next-to-leading order calculation in standard PT (SPT) [48]? See Fig. 5.

P sSPT(k, µ) = (1 + fµ2)2PL(k) + P s1 loop(k, µ). (28)

• What about phenomenological models (e.g., [44, 49])? See Fig. 6.

P spheno(k, µ) = DFoG(kµfσv)P
s
Kaiser(k, µ), (29)

where

P sKaiser(k, µ) =


(1 + fµ2)2Pδδ(k) ; linear

Pδδ(k) + 2fµ2 Pδθ(k) + f2µ4 Pθθ(k) ; non-linear
(30)

DFoG(x) =


exp(−x2) ; Gaussian

1/(1 + x2) ; Lorentzian
(31)
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Note that here the velocity dispersion, σ2v ,

σ2v =
1

3

∫
d3q

(2π)3
Pθθ(q)

q2
, (32)

is treated as a free parameter but sometimes fixed by the linear one,

σLv
2
=

1

6π2

∫
dq PLm(q). (33)

peak of BAOs around k! 0:05" 0:1h Mpc"1 reveals a
small discrepancy, which becomes significant for lower
redshifts and can produce few % errors in the power
spectrum amplitude.

These results indicate that the existing PT-based ap-
proaches fail to describe the two competitive effects of
redshift distortion in the power spectrum.1 A proper ac-
count of these is thus essential in accurately modeling
BAOs.

B. Phenomenological model description

Next consider the phenomenological models of redshift
distortion, which have been originally introduced to ex-
plain the observed power spectrum on small scales.
Although the relation between the model and exact ex-
pression (4) is less clear, for most of the models frequently
used in the literature, the redshift-space power spectrum is
expressed in the form (e.g., [42,49–54])

PðSÞðk;!Þ ¼ DFoG½k!f"v'PKaiserðk;!Þ; (9)

where the term PKaiserðk;!Þ represents the Kaiser effect,
and the term DFoG½k!f"v' indicates a damping function
which mimics the Finger-of-God effect. The quantity "v is
the one-dimensional velocity dispersion defined by "2

v ¼
hu2zð0Þi. The variety of the functional forms forPKaiserðk;!Þ
and DFoG½k!f"v' is summarized as follows.
The Kaiser effect has been first recognized from the

linear-order calculations [43], from which the enhance-
ment factor ð1þ f!2Þ2 is obtained [see Eq. (5)]. As a
simple description for the Kaiser effect, one may naively
multiply the nonlinear matter power spectrum by this
factor, just by hand. Recently, proper account of the non-
linear effect has been discussed [42,49], and a nonlinear
model of the Kaiser effect has been proposed using the
real-space power spectra. Thus, we have

PKaiserðk;!Þ ¼
! ð1þ f!2Þ2P##ðkÞ linear;
P##ðkÞ þ 2f!2P#$ðkÞ þ f2!4P$$ðkÞ nonlinear:

(10)

FIG. 1 (color online). Ratio of power spectra to smoothed reference spectra in redshift space, PðSÞ
‘ ðkÞ=PðSÞ

‘;no-wiggleðkÞ. N-body

results are taken from the WMAP5 simulations of Ref. [34]. The reference spectrum PðSÞ
‘;no-wiggle is calculated from the no-wiggle

approximation of the linear transfer function with the linear theory of the Kaiser effect taken into account. Short dashed and dot-dashed
lines, respectively, indicate the results of one-loop PT and Lagrangian PT calculations for the redshift-space power spectrum [Eqs. (5)
and (6)].

1Nevertheless, it should be noted that the Lagrangian PT would still be powerful in predicting the two-point correlation function
around the baryon acoustic peak. In both real and redshift spaces, the prediction reasonably recovers the smeared peak and trough
structures, and it gives a better agreement with N-body simulation.

ATSUSHI TARUYA, TAKAHIRO NISHIMICHI, AND SHUN SAITO PHYSICAL REVIEW D 82, 063522 (2010)

063522-4

FIG. 5: Comparison between PT predictions and N-body simulation [3]. Ratio of power spectra to smoothed reference

spectra in redshift space are plotted. P
(S)
ℓ (k)/P

(S)
ℓ,no-wiggle(k). N-body results are taken from the wmap5 simulations

of Ref. [50]. The reference spectrum P
(S)
ℓ,no-wiggle is calculated from the no-wiggle approximation of the linear transfer

function, and the linear theory of the Kaiser effect is taken into account. Short dashed and dot-dashed lines respectively
indicate the results of one-loop PT and Lagrangian PT calculations for redshift-space power spectrum.

B. Derivation of the TNS model (and beyond)

It is always good to begin with the exact expression. For simplicity, I here focus on the matter density field
and omit the subscipt, ‘m’. Using Eq. (17), the redshift-space power spectrum is exactly given by

P s(k) =

∫
d3r eik·r⟨e−ikµf∆uz{δ(x) + f∇zuz(x)}{δ(x′) + f∇zuz(x

′)}⟩ (34)

=

∫
d3r eik·r⟨ej1A1A2A3⟩, (35)

where I define the following variables to simply the equation; u ≡ −v/(aH), r ≡ x−x′, ∆uz ≡ uz(x)−uz(x′),
and

j1 = −ikµf, (36)

A1 = ∆uz = uz(x)− uz(x
′), (37)

A2 = δ(x) + f∇zuz(x), (38)

A3 = δ(x′) + f∇zuz(x
′). (39)
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Here, the spectra P!!, P"", and P!" denote the auto power
spectra of density and velocity divergence, and their cross
power spectrum, respectively. The velocity divergence " is
defined by " ! ru ¼ #rv=ðaHfÞ.2

On the other hand, the functional form of the damping
term can be basically modeled from the distribution func-
tion of one-dimensional velocity. Historically, it is charac-
terized by a Gaussian or exponential function (e.g., [51–
54]), which leads to

DFoG½x' ¼
!
expð#x2Þ Gaussian;
1=ð1þ x2Þ Lorentzian:

(11)

Note that there is an analogous expression for the expo-
nential distribution, i.e., DFoG½x' ¼ 1=ð1þ x2=2Þ2 [50],
but the resultant power spectrum is quite similar to the
one adopting the Lorentzian form for the range of our
interest, x & 1. Since the Finger-of-God effect is thought
to be a fully nonlinear effect, which mostly comes from the
virialized random motion of the mass (or galaxy) residing
in a halo, the prediction of #v seems rather difficult. Our
primary purpose is to model the shape and structure of the

acoustic feature in the power spectrum, and the precise
form of the damping is basically irrelevant. We thus regard
#v as a free parameter and determine it by fitting the
predictions to the simulations or observations.
Figure 2 compares the phenomenological models of

redshift distortion with combination of Eqs. (10) and (11)
with N-body simulations. In computing the redshift-space
power spectrum from the phenomenological models, we
adopt the improved PT treatment by Refs. [33,34], and the
analytic results including the corrections up to the second-
order Born approximation are used to obtain the three
different power spectra P!!, P!", and P"". The accuracy
of the improved PT treatment has been checked in detail by
Ref. [34], and it has been shown that the predictions of P!!

reproduce the N-body results quite well within 1% accu-
racy below the wave number k1%, indicated by the vertical
arrows in Fig. 2. This has been calibrated from a proper
comparison between N-body and PT results and is empiri-
cally characterized by solving the following equa-
tion [25,34]:

k21%
6$2

Z k1%

0
dqPlinðq; zÞ ¼ C (12)

with C ¼ 0:7 and Plin being the linear matter spectrum.
Note that the 1% accuracy of the improved PT prediction at

FIG. 2 (color online). Same as in Fig. 1, but here we plot the results of phenomenological model predictions. The three different
predictions depicted as solid, dashed, dot-dashed lines are based on the phenomenological model of redshift distortion (9) with various
choices of Kaiser and Finger-of-God terms [Eqs. (10) and (11)]. The left panel shows the monopole power spectra (‘ ¼ 0), and the
right panel shows the quadrupole spectra (‘ ¼ 2). In all cases, the one-dimensional velocity dispersion #v was determined by fitting
the predictions to the N-body simulations. In each panel, the vertical arrows indicate the maximum wave number k1% for improved PT
prediction including up to the second-order Born approximation [see Eq. (12) for a definition].

2The sign convention of the definition of velocity divergence "
differs from that of Refs. [33,34], but is equivalent to the one in
Refs. [26–28,42].
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FIG. 6: Comparison between phenomenological models and N-body simulation [3]. Same as in Fig. 5, but we here plot
the results of phenomenological model predictions. The three different predictions depicted as solid, dashed, dot-dashed
lines are based on the phenomenological model of redshift distortion with various choices of Kaiser and Finger-of-God
terms (Eq. (31)). Left panel shows the monopole power spectra (ℓ = 0), and the right panel shows the quadrupole spectra
(ℓ = 2). In all cases, one-dimensional velocity dispersion σv was determined by fitting the predictions to the N-body
simulations. In each panel, vertical arrow indicates the maximum wavenumber k1% for valid range of the improved PT.

Why is it very difficult to exactly evaluate Eq. (35)?

• Even if one assumes the density and velocity fields are Gaussian, Eq. (35) still contains the exponential
prefactor. This physically means that nonlinear mapping in terms of velocity cannot be avoided.

• Irrespective to the pair separation scale, r, Eq. (35) involves the terms like
∫
d3r

∑
n⟨∆unz ⟩ which is in

principle sensitive to small-scale physics and hence hopeless to evaluate on the PT basis. This physically
corresponds to the fact the FoG effect due to the random motion of virialized object is important even
at large scales and hard to be modeled.

The cumulant expansion theorem tells us that (e.g., [49])

⟨ej·A⟩ = exp{⟨ej·A⟩c}. (40)

By taking the derivative twice w.r.t j2 and j3 and then setting j2 = j3 = 0, one obtains

⟨ej1A1A2A3⟩ = exp{⟨ej1A1⟩c}
[
⟨ej1A1A2A3⟩c + ⟨ej1A1A2⟩c⟨ej1A1A3⟩c

]
. (41)

Note that Eq. (41) is an exact expression, and the question is how to evaluate Eq. (41). TNS’s approach is as
follows:

• What we want is an expression at large scale limit, kµ → 0, i.e., j1 → 0 where PT should work well.
However, from the considerations in the previous subsection, we see that the naive PT expansion (SPT)
does not work.

• Therefore, the exponential prefactor is decided to be left. We assume that spatial correlations between
uz(x) and uz(x

′) are ignored, and also

⟨An1 ⟩c ≃ 2⟨uz(x)n⟩c = 2cnσ
n
v , (42)
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for even n with cn being constants. We further simplify the exponential prefactor by assuming that
c2 = 1, c2n = (2n− 1)! for n > 2, c2n−1 = 0. These approximations result in

exp{⟨ej1A1⟩c} ≈ exp
[
−k2µ2f2σ2v,eff

]
. (43)

I write the velocity dispersion parameter as σ2v,eff because Eq. (43) is not obviously an exact expression

and σ2v,eff is treated as a free parameter. To be fair, this is the biggest disadvantage of the TNS model.
I will get back to the validity of these approximation by referring to the speculations in [47].

• On the other hand, we expand the 2nd bracket in Eq. (41) in terms of j1 as

⟨ej1A1A2A3⟩c+⟨ej1A1A2⟩c⟨ej1A1A3⟩c ≃ ⟨A2A3⟩+j1⟨A1A2A3⟩c+j21
{
1

2
⟨A2

1A2A3⟩c + ⟨A1A2⟩c⟨A1A3⟩c
}
+O(j31),

(44)
where we are going to ignore the term, ⟨A2

1A2A3⟩c, since the leading contribution in PT is the tree-level
trispectrum roughly proportional to O(PL(k)3). This term is actually evaluated in other works and
turned out to be negligible at scales of interest (e.g., the ‘D’ term in [51], also see [47] and Eq. (54)).

As a result, we finally derive the TNS formula:

P sm,TNS(k, µ) = exp
[
−k2µ2f2σ2v,eff

] {
Pδδ(k) + 2fµ2Pδθ(k) + f2µ4Pθθ(k) +A(k, µ; f) +B(k, µ; f)

}
, (45)

where the new correction terms, A(k, µ) and B(k, µ), are given by

A(k, µ; f) = j1

∫
d3r eik·r⟨A1A2A3⟩c = kµf

∫
d3p

(2π)3
pz
p2

{Bσ(p,k − p,−k)−Bσ(p,k,−k − p)}, (46)

B(k, µ; f) = j21

∫
d3r eik·r⟨A1A2⟩c⟨A1A3⟩c = (kµf)2

∫
d3p

(2π)3
Fσ(p)Fσ(k − p), (47)

where the function Bσ and Fσ are defined by

(2π)3δD(k1 + k2 + k3)Bσ(k1,k2,k3) =

⟨
θ(k1)

{
δ(k2) + f

k22z
k22
θ(k2)

}{
δ(k3) + f

k23z
k23
θ(k3)

}⟩
, (48)

Fσ(p) =
pz
p2

{
Pδθ(p) + f

p2z
p2
Pθθ(p)

}
. (49)

In the TNS paper, we follow the standard PT technique to compute A and B correction terms up to next-to-
leading order (i.e., O(PL(k)2)). Here I omit the full expressions (which are quite long!), and refer them to [3].
If you hesitate to follow the formulas, just use the public code (there is a public version on Atsushi’s personal
website, and ask me if you want a CAMB-integrated version). Just to provide a sense, A(k, µ) and B(k, µ)
terms contain up to f3µ6 and f4µ8, respectively, since one velocity divergence term has fµ2 dependence. Also
it is worth mentioning that Ref. [51] made an attempt to improve the evaluation of A and B correction terms
with the multi-point propagator, but showed that the difference is basically absorbed into the FoG factor.
Switching to a biased tracer such as galaxy in the case of linear bias, one find

P sg,TNS(k, µ) = exp
[
−k2µ2f2σ2v,eff

] {
b2Pδδ(k) + 2bfµ2Pδθ(k) + f2µ4Pθθ(k) + b3A(k, µ;β) + b4B(k, µ;β)

}
.
(50)

Note that the bias dependence of b3 and b4 in A and B correction terms is just an artifact of β parametrization
and they indeed contains terms only up to b2.

• How well does the TNS model perform?

See Fig. 7. It looks certainly better than the previous figure. We indeed show that the TNS model
better recovers the input fσ8 value in the N -body simulations. Also it is worth pointing out that the
TNS formula performs worse at larger kµ and hence higher-order multipole.
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In Fig. 6, to see the significance of the contributions
from corrections A and B, we divide the improved PT
prediction for the power spectra PðSÞðkÞ at z ¼ 1 into the

three pieces as PðSÞ
Kaiser, P

ðSÞ
corr;A, and PðSÞ

corr;B, which are sepa-

rately plotted as dotted, long-dashed, and short dashed

lines, respectively. The power spectrum PðSÞ
Kaiser is the con-

tribution of the nonlinear Kaiser term given in Eq. (10),
convolved with the damping function DFoG. The spectra

PðSÞ
corr;A and PðSÞ

corr;B represent the actual contributions of the

corrections A and B defined by Eq. (22), with a fitted value
of !v. The corrections A and B give different contributions
in the amplitude of the monopole and quadrupole spectra,
and their total contribution can reach$10% and$40% for
monopole and quadrupole spectra at k & 0:2h Mpc%1,
respectively. Thus, even though the resultant shape of the
total spectrum PðSÞðkÞ apparently resembles the one ob-
tained from the phenomenological model, the actual con-
tribution of the corrections A and B would be large and
cannot be neglected.
Note, however, that a closer look at low-z behavior

reveals a slight discrepancy around k$ 0:15h Mpc%1

and 0:22h Mpc%1 in the monopole spectrum. Also, dis-
crepancies in the quadrupole spectrum seem a bit large,
and eventually reach $5% error in some wave numbers at
z ¼ 0:5. This is partially ascribed to our heterogeneous
treatment on the corrections A and B using the standard PT
calculations. It is known that the standard PT result generi-
cally gives rise to a strong damping in the BAOs, and it
incorrectly leads to a phase reversal of the BAOs. Thus,
beyond the validity regime of the standard PT, the predic-

FIG. 5 (color online). Same as in Fig. 2, but here we adopt a new model of redshift distortion (18). Solid and dashed lines represent
the predictions for which the spectra P"", P"#, and P## are obtained from the improved PT including the correction up to the second-
order Born correction, and one-loop calculations of the standard PT, respectively. In both cases, the corrections A and B given in
Eqs. (19) and (20) are calculated from standard PT results (see Appendix A). The vertical arrows indicate the maximum wave number
k1% defined in Eq. (12), for standard PT and improved PT (from left to right).

FIG. 6 (color online). Contribution of each term in the
redshift-space power spectrum. For monopole (‘ ¼ 0, left) and
quadrupole (‘ ¼ 2, right) spectra of the improved model pre-
diction at z ¼ 1 shown as solid lines of Fig. 5, we divide the total
power spectrum PðSÞ

total (solid) into the three pieces as PðSÞ
total ¼

PðSÞ
Kaiser þ PðSÞ

corr;A þ PðSÞ
corr;B, and each contribution is separately

plotted dividing by smoothed reference spectra, PðSÞ
‘;no-wiggle.

Here, the spectrum PðSÞ
Kaiser (dotted) is the contribution of the

nonlinear Kaiser term (10) convolved with the Finger-of-God

damping DFoG, and the corrections PðSÞ
corr;A and PðSÞ

corr;B are those

given by Eq. (22).
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FIG. 7: Same as in Fig. 6, but we here adopt the TNS model.

In Fig. 6, to see the significance of the contributions
from corrections A and B, we divide the improved PT
prediction for the power spectra PðSÞðkÞ at z ¼ 1 into the

three pieces as PðSÞ
Kaiser, P

ðSÞ
corr;A, and PðSÞ

corr;B, which are sepa-

rately plotted as dotted, long-dashed, and short dashed

lines, respectively. The power spectrum PðSÞ
Kaiser is the con-

tribution of the nonlinear Kaiser term given in Eq. (10),
convolved with the damping function DFoG. The spectra

PðSÞ
corr;A and PðSÞ

corr;B represent the actual contributions of the

corrections A and B defined by Eq. (22), with a fitted value
of !v. The corrections A and B give different contributions
in the amplitude of the monopole and quadrupole spectra,
and their total contribution can reach$10% and$40% for
monopole and quadrupole spectra at k & 0:2h Mpc%1,
respectively. Thus, even though the resultant shape of the
total spectrum PðSÞðkÞ apparently resembles the one ob-
tained from the phenomenological model, the actual con-
tribution of the corrections A and B would be large and
cannot be neglected.
Note, however, that a closer look at low-z behavior

reveals a slight discrepancy around k$ 0:15h Mpc%1

and 0:22h Mpc%1 in the monopole spectrum. Also, dis-
crepancies in the quadrupole spectrum seem a bit large,
and eventually reach $5% error in some wave numbers at
z ¼ 0:5. This is partially ascribed to our heterogeneous
treatment on the corrections A and B using the standard PT
calculations. It is known that the standard PT result generi-
cally gives rise to a strong damping in the BAOs, and it
incorrectly leads to a phase reversal of the BAOs. Thus,
beyond the validity regime of the standard PT, the predic-

FIG. 5 (color online). Same as in Fig. 2, but here we adopt a new model of redshift distortion (18). Solid and dashed lines represent
the predictions for which the spectra P"", P"#, and P## are obtained from the improved PT including the correction up to the second-
order Born correction, and one-loop calculations of the standard PT, respectively. In both cases, the corrections A and B given in
Eqs. (19) and (20) are calculated from standard PT results (see Appendix A). The vertical arrows indicate the maximum wave number
k1% defined in Eq. (12), for standard PT and improved PT (from left to right).

FIG. 6 (color online). Contribution of each term in the
redshift-space power spectrum. For monopole (‘ ¼ 0, left) and
quadrupole (‘ ¼ 2, right) spectra of the improved model pre-
diction at z ¼ 1 shown as solid lines of Fig. 5, we divide the total
power spectrum PðSÞ

total (solid) into the three pieces as PðSÞ
total ¼

PðSÞ
Kaiser þ PðSÞ

corr;A þ PðSÞ
corr;B, and each contribution is separately

plotted dividing by smoothed reference spectra, PðSÞ
‘;no-wiggle.

Here, the spectrum PðSÞ
Kaiser (dotted) is the contribution of the

nonlinear Kaiser term (10) convolved with the Finger-of-God

damping DFoG, and the corrections PðSÞ
corr;A and PðSÞ

corr;B are those

given by Eq. (22).
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FIG. 8: Contribution of each correction term in redshift-space power spectrum. For monopole (ℓ = 0, left) and
quadrupole (ℓ = 2, right) spectra of the improved model prediction at z = 1 shown in solid lines, we divide the total
power spectrum P s

total (solid) into the three pieces as P
s
total = P s

Kaiser+P
s
corr,A+P

s
corr,B, and each contribution is separately

plotted dividing by smoothed reference spectra, P s
ℓ,no-wiggle. Here, the spectrum P s

Kaiser (dotted) is the contribution of
non-linear Kaiser term convolved with the Finger-of-God damping and the corrections P s

corr,A and P s
corr,B.

• How do A(k, µ) and B(k, µ) look like?

See Fig. 8. As expected, the correction terms becomes more significant at higher-order multipole. The
A term is more important to better recover the BAO features.

Further investigation by Zheng and Song (2016)

There is one recent work by Zheng and Song (ZS, 2016) [47] which further tries to improve the TNS model.
Here let me briefly discuss their ideas and approaches. They realize that the exponential prefactor can be
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further decomposed into two parts: Eq. (40) can be rewritten as

exp{⟨ej·A⟩c} = exp

[ ∞∑
n=1

jn1
⟨An1 ⟩c
(n)!

]

= exp

[ ∞∑
n=1

j2n1
2⟨uz(x)2n⟩c

(2n)!

]
︸ ︷︷ ︸

DFoG
nonlocal(k,µ)

exp

[ ∞∑
n=1

j2n1
⟨{uz(x)− uz(x

′)}2n⟩c − ⟨uz(x)2n⟩c − ⟨uz(x′)2n⟩c
(2n)!

]
︸ ︷︷ ︸

DFoG
local(k,µ;r)

.(51)

Since the first term is the cumulant of the one-point distribution function and does not depend on the separation
scale, it can be integrated out in Eq. (35). Then they consistently keep the leading-order term proportional
to j21 in each FoG function as

DFoG
nonlocal(k, µ) ≃ exp[−k2µ2f2σ2v,eff ] (52)

DFoG
local(k, µ; r) ≃ exp[−k2µ2f2⟨uz(x)uz(x′)⟩c], (53)

and then they provide the modified formula,

P sm,ZS(k, µ) = exp
[
−k2µ2f2σ2v,eff

] {
Pδδ(k) + 2fµ2Pδθ(k) + f2µ4Pθθ(k) +A(k, µ; f) +B(k, µ; f)

+CTNS(k, µ; f) +DTNS(k, µ; f)} , (54)

where CTNS and DTNS correction terms are given by

DTNS(k, µ; f) = TZS(k, µ; f) =
1

2
j21

∫
d3reik·r⟨A2

1A2A3⟩c, (55)

CTNS(k, µ; f) = FZS(k, µ; f) = −j21
∫
d3reik·r⟨uz(x)uz(x′)⟩c⟨A2A3⟩c. (56)

The tree-level PT expressions for C and D terms can be found in [3, 47]. Note that ZS call DTNS as TZS,
and CTNS as FZS. I choose this convention because we already discuss that C and D correction terms are
subdominant at least for monopole and quadrupole in the TNS paper. Indeed it is not new to introduce the
C term because the SPT expression already includes this term as

P sm,SPT(k, µ) = [1−k2µ2f2σLv
2
]
{
Pδδ(k) + 2fµ2Pδθ(k) + f2µ4Pθθ(k) +A(k, µ; f) +B(k, µ; f) + CTNS(k, µ; f)

}
.

(57)
Nevertheless I appreciate the fact that they realize that every correction term can be directly measured from
simulations (see e.g., Fig. 9). They indeed show that each correction term starts to deviate from the simulation
results at larger kµ, and the Gaussian FoG prefactor is a good approximation up at a certain kµ. For more
detail I refer to the ZS paper.

C. Nonlinear RSD from another different point of view

One may have heard of the so-called streaming model as one of the nonlinear RSD model [49, 52]:

1 + ξs(s∥, s⊥) =

∫
dr∥ [1 + ξ(r)]P(r∥ − s∥, r), (58)

where r2 = r2⊥ + r2∥, s⊥ = r⊥, and P(v∥, r) denotes the pairwise velocity probability distribution function
defined by

P(v, r) ≡
∫
dγ

2π
eiγvM(−ifγ, r), (59)
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FIG. 2: A(k, µ) term measured from 100 N-body simulations
at z = 0.5, 0.9, 1.5, and 3.0. Different colors represent differ-
ent k bins. The solid lines are the mean value averaged over
100 simulations, and the error bars are the standard errors of
the mean, σmean = σ/

√

N , with σ being the sample standard
deviation, N = 100 being the sample number. The dashed
lines show the predictions from standard perturbation theory
[61]. We caution that the y-axis ranges of up and bottom
panels are different.

trum at µ → 1 limit. If we are interested in RSD model
at k >∼ 0.1 hMpc−1, more precise theoretical prediction
is demanded. In this manuscript, the measured j01 order
terms from simulations are used, and our results are free
from UV issues.

B. j11 order: A term

The A(k, µ) in Eq. (15) is a leading j11 order in poly-
nomial expansion generated by non–linear mapping of
density–velocity cross–correlation. There is no corre-
sponding j11 order term in the expansion of velocity auto–
correlation mapping. The A(k, µ) term is described as
[61],

A(k, µ) = j1

∫

d3x eik·x ⟨A1A2A3⟩c

= j1

∫

d3x eik·x ⟨(uz − u′
z) (17)

×(δ +∇zuz)(δ
′ +∇zu

′
z)⟩c

= (kµ)

∫

d3p

(2π)3
pz
p2

{Bσ(p,k − p,−k)

−Bσ(p,k,−k − p)}, (18)

FIG. 3: Similar with Fig. 2, but for B(k, µ) term. We caution
that the y-axis ranges of up and bottom panels are different.

where the bispectrum Bσ is defined by

〈

θ(k1)

{

δ(k2) +
k22z
k22

θ(k2)

}{

δ(k3) +
k23z
k23

θ(k3)

}〉

= (2π)3δD(k1 + k2 + k3)Bσ(k1,k2,k3). (19)

The theoretical solution of A(k, µ) is calculated con-
sistently with theoretical j01 terms derived using RegPT

scheme which are presented as dash curves in Fig. 1. The
level in the A(k, µ) perturbation is correspondent to the
tree level, in which j01 order terms are selected to com-
pute this level by incorporating one loop level. Then the
perturbative expansion in Bσ is truncated at the leading
order, and other higher order levels are ignored (see the
Appendix of [61] for details). The theoretical solution is
presented by dash curves in four panels in Fig. 2. Each
panel represents the results at different redshifts z = 0.5,
0.9, 1.5 and 3.0.
While the theoretical solution of A(k, µ) is derived by

integrating bi–spectra in Fourier space using Eq. (18),
it is a time–consuming procedure when A(k, µ) is com-
puted numerically from simulations. Instead, we exploit
the expression given in Eq. (17), which is effectively de-
composed into two point functions in the configuration
space. All perturbative fields of δ(r), uz(r), ∇zuz(r),
δuz(r), and uz∇zuz(r) are separately measured to be
combined at two different points. The combined fields
at both r and r′ are cross–correlated appropriately, and
the measured pairs in the configuration space are trans-
formed into the Fourier space. We collect all Fourier
components to provide the numeric A(k, µ), which is pre-
sented as solid curves in Fig. 2 at diverse redshifts.

FIG. 9: Comparison of A(k, µ) (left) and B(k, µ) (right) between PT and direct measurements in simulations [47].

where M is the pairwise velocity generating function,

Z(λ, r) ≡ [1 + ξ(r)]M(λ, r) ≡
⟨
eλ∆uz [1 + δ(x)][1 + δ(x′)]

⟩
. (60)

This is useful because the line-of-sight pairwise velocity moments are obtained by its derivative as

v12(r) ≡
(
∂M
∂λ

)
λ=0

, (61)

σ212(r) ≡
(
∂2M
∂λ2

)
λ=0

. (62)

Also, the function Z is useful when comparing different models as follows. After the cumulant expansion, the
exact expression of Z is given by

Zexact(λ, r) = exp
[⟨
eλ∆uz

⟩
c

] [
1 +

⟨
eλ∆uzδ

⟩
c
+
⟨
eλ∆uzδ′

⟩
c

+
⟨
eλ∆uzδ

⟩
c

⟨
eλ∆uzδ′

⟩
c
+
⟨
eλ∆uzδδ′

⟩
c

]
(63)

and therefore the approximation in the TNS model corresponds to

ZTNS(λ, r) = exp
[⟨
eλ∆uz

⟩
c

] [
⟨(1 + δ)(1 + δ′)⟩c

+λ ⟨(1 + δ)(1 + δ′)∆uz⟩c

+
λ2

2
⟨(1 + δ)(1 + δ′)(∆uz)

2 − δδ′(∆uz)
2⟩c. (64)

This can be compared with the configuration space model proposed by Reid and White (RW, 2012) [53]:

PRW(v, r) =
1√

2πfσ12(r)
exp

[
−{v − fv12(r)}2

2f2σ12(r)2

]
. (65)

Then we have

MRW(λ, r) = exp

[
v12(r)λ+

1

2
{σ12(r)2 − v12(r)

2}λ2
]
, (66)
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and

ZRW(λ, r) = [1 + ξ(r)] exp

[
v12(r)λ+

1

2
{σ12(r)2 − v12(r)

2}λ2
]
. (67)

Suppose the bracket in the exponential factor is expanded in terms of λ up to the second order, we have

ZRW(λ, r) ≃ [1 + ξ(r)]× [v12(r)λ+
1

2
σ12(r)

2λ2] (68)

= ⟨(1 + δ)(1 + δ′)⟩
+λ ⟨(1 + δ)(1 + δ′)∆uz⟩

+
λ2

2
⟨(1 + δ)(1 + δ′)(∆uz)

2⟩, (69)

where we have used definition of v12 and σ12,

v12(r) =
⟨∆uz(1 + δ)(1 + δ′)⟩

1 + ξ(r)
, (70)

σ12(r)
2 =

⟨(∆uz)2(1 + δ)(1 + δ′)⟩
1 + ξ(r)

. (71)

A comparison between Eqs. (64) and (69) shows that two expressions are quite similar at very small λ except
for the exponential prefactor in TNS and unconnected pieces in RW. At least, as for the bias dependence,
the term, λ⟨δδ′∆uz⟩c which is exactly corresponding to the A-term in TNS, is proportional to b2, and is the
second term in RW as well. As shown in RW, if the large-scale limit is applied to RW in Eq. (67), this term
can be interpreted as ξ(r)v12(r) which is proportional to b3. This is a artificial consequence of the fact that
v12 is exponetiated.

V. THEORY: IMPACT OF RSD ON THE PROJECTED CLUSTERING

So far I have considered the RSD in the 3D clustering and shown that RSD imprints a characteristic signal
along LOS. However, it is common to project the density field onto the 2D sky and to measure the angular
power spectrum especially in the case of imaging surveys due to the less accuracy in photometric redshifts.
The simple and non-trivial (at least to me) question is whether RSD has an impact on the projected angular
power spectrum. Here I briefly address this question, following [5, 54].

The 2D projected density field is written as

1 + δs2D(n̂) =

∫
dsΠ(s){1 + δs(s, n̂)} =

∫
drΠ(s){1 + δ(r, n̂)}, (72)

where Π(r) is the normalized radial selection function (often written as dN(z)/dz) such that
∫
drΠ(r) = 1.

As is clearly seen, there is already a notable difference compared to the 3D case. Namely, the Jacobian of
real-to-redshift-space mapping is cancelled out in the integral and the 2D density field is affected by RSD only
through the radial selection function. Therefore it is much easier to handle the RSD correction in the 2D case.

Taylor-expanding the radial selection function yields to

Π(s) ≃ Π(r)− f
∂Π

∂r
{u(r, n̂) · n̂}+ f2

2

∂2Π

∂r2
{u(r, n̂) · n̂}2 + . . . . (73)

Now it is obvious the the expansion parameter is the balance between the characteristic displacement by the
velocity field and the slice width. The 1st term is the real-space part which is usually considered:

δℓ =
1

2

∫ 1

−1
dµ δ2D(n̂)Lℓ(µ)

=
1

2

∫ 1

−1
dµ

[∫
drΠ(r)

∫
d3k

(2π)3
δ(k; r)

∑
L

(−i)L(2L+ 1)jL(kr)LL(µ)

]
Lℓ(µ)

= (−i)ℓ
∫

d3k

(2π)3
δ(k)Wℓ(k), (74)
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where Wℓ(k) is the radial window function which describes the projected weight along the LOS direction,

Wℓ(k) ≡
∫
drΠ(r)jℓ(kr). (75)

Similar calculations show that the 2nd term that is the leading-order RSD correction is described as

θ2D(n̂) ≡ −f
∫
dr
∂Π

∂r
{u · n̂}, (76)

and then

θℓ = (−i)ℓf
∫

d3k

(2π)3
θ(k)W I

ℓ (k), (77)

W I
ℓ (k) =

∫
drΠ(r)

[
(2ℓ2 + 2ℓ− 1)

(2ℓ+ 3)(2ℓ− 1)
jℓ(kr)−

ℓ(ℓ− 1)

(2ℓ− 1)(2ℓ+ 1)
jℓ−2(kr)−

(ℓ+ 1)(ℓ+ 2)

(2ℓ+ 3)(2ℓ+ 1)
jℓ+2(kr)

]
.(78)

Thus the angular power spectrum with the linear RSD correction included is derived as [54]

C1stRSD
ℓ =

2

π

∫
k2dk

{
Pδδ(k)Wℓ(k)

2 + 2fPδθ(k)Wℓ(k)W
I
ℓ (k) + f2Pθθ(k)W

I
ℓ (k)

2
}
. (79)

It is useful to compare this expression with the Kaiser formula, Eq. (30). The different µ2 dependence of
the anisotropic terms is described by the different projection effect with the different radial window function.
In fact it is straightforward to derive the 2nd-order RSD correction terms [5],

∆C2ndRSD
ℓ =

2

π

∫
k2dk

[
2fQ(k)Wℓ(k)W

I
ℓ (k) + f2R(k)Wℓ(k)W

I
ℓ (k) + f2S(k)Wℓ(k)W

II
ℓ (k) + f2T (k)W I

ℓ (k)
2
]
,(80)

where the functions, Q(k), R(k), S(k), and T (k) are correction terms originating the bispectrum (therefore, in
fact, corresponding to A(k, µ) term in the TNS model), and the 2nd-order radial window function is given by

W II
ℓ (k) =

∫
drΠ(r)

[
ℓ(ℓ− 3)(ℓ− 2)(ℓ− 1)

(2ℓ− 5)(2ℓ− 3)(2ℓ− 1)(2ℓ+ 1)
jℓ−4(kr)−

2ℓ(ℓ− 1)(2ℓ2 − 2ℓ− 7)

(2ℓ− 5)(2ℓ− 1)(2ℓ+ 1)(2ℓ+ 3)
jℓ−2(kr)

+
3(2ℓ4 + 4ℓ3 − 6ℓ2 − 8ℓ+ 3)

(2ℓ− 3)(2ℓ− 1)(2ℓ+ 3)(2ℓ+ 5)
jℓ(kr)−

2(ℓ+ 1)(ℓ+ 2)(2ℓ2 + 6ℓ− 3)

(2ℓ− 1)(2ℓ+ 1)(2ℓ+ 3)(2ℓ+ 7)
jℓ+2(kr)

+
(ℓ+ 1)(ℓ+ 2)(ℓ+ 3)(ℓ+ 4)

(2ℓ+ 1)(2ℓ+ 3)(2ℓ+ 5)(2ℓ+ 7)
jℓ+4(kr)

]
. (81)

In the following, I examine the impact of RSD on the angular power spectrum assuming

Π(z) =
1√
2πσz

exp

{
−(z − z∗)

2

2σ2z

}
, (82)

where σz = σz0(1 + z∗) and we set σz0 = 0.04 unless specifically quoted.

• How strong is the projection effect in each radial window function? See Fig. 10.

• How significant are the RSD correction terms? See Fig. 11.

• Take-home message:

The angular power spectrum is NOT a projected version of the 3D redshift-space power spectrum! The
Kaiser-like enhancement cannot be ignored at large scales, and nonlinear RSD corrections could add
small contributions at mildly nonlinear regime. Much easier than the 3D case to handle the RSD
correction as long as the width of slice is sufficiently large.
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FIG. 1: The radial window functions at ℓ = 10 (left) and ℓ = 85 (right) at z∗ = 0.55. We show 3 radial window functions as
the real-space part (solid red), the 1st-order RSD (dashed blue), and the 2nd-order RSD (green dotted). At ℓ = 85, small RSD
ones are zoomed up for clarification purpose. Vertical thin lines indicate k∗ = (ℓ + 1/2)/y∗ corresponding to the scale where
the Limber approximation is estimated.

FIG. 2: Comparison of radial window functions amplitude at the scale k∗ = (ℓ + 1/2)/y∗ corresponding to peak of radial
window functions. 3 radial window functions are shown as the real-space part (red), the 1st-order RSD (blue), and the 2nd-order
RSD (green). The amplitude shown here partly explains to what extent projection to the 2D-sky suppress the density or the
velocity fields. Hence we expect the amplitude in the case of thinner slices becomes bigger, which can be indeed confirmed
from the 10 times thinner case drawn with dashed lines. The ratios between real-space and RSD correction part, i.e., W I

ℓ/Wℓ

or W II
ℓ /Wℓ, are apparently smaller for thinner slice.

2. Bispectrum corrections and angular power spectrum

3. Baryon Acoustic Oscillations scale
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IV. DISCUSSION
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FIG. 10: (Upper panels) The radial window functions at ℓ = 10 (left) and ℓ = 85 (right) at z∗ = 0.55. We show 3 radial
window functions as the real-space part (solid red), the 1st-order RSD (dashed blue), and the 2nd-order RSD (green
dotted). At ℓ = 85, small RSD ones are zoomed up for clarification purpose. Vertical thin lines indicate k∗ = (ℓ+1/2)/y∗
corresponding to the scale where the Limber approximation is estimated.
(Lower panels) Comparison of radial window functions amplitude at the scale k∗ = (ℓ+1/2)/y∗ corresponding to peak of
radial window functions. 3 radial window functions are shown as the real-space part (red), the 1st-order RSD (blue), and
the 2nd-order RSD (green). The amplitude shown here partly explains to what extent projection to the 2D-sky suppress
the density or the velocity fields. Hence we expect the amplitude in the case of thinner slices becomes bigger, which can
be indeed confirmed from the 10 times thinner case drawn with dashed lines. The ratios between real-space and RSD
correction part, i.e., W I

ℓ/Wℓ or W II
ℓ /Wℓ, are apparently smaller for thinner slice.

VI. ANALYSIS (THEORY): QUANTIFYING THE RSD INFORMATION IN AN IDEAL SURVEY

Let me go back to RSD in the 3D case. Once one is convinced that the TNS model is an okay description
of the nonlinear RSD, it is interesting to ask the following questions:

• How well can we measure the anisotropic power spectrum, and hence constrain fσ8 etc given a galaxy
redshift survey?

• What is the efficient way to compress the data to fully extract cosmological information on RSD? For
example, how many multipoles are necessary in nonlinear regime?

These questions can be answered (not perfectly, though) within a theoretical framework by combining a simple
calculation of the power spectrum covariance with the Fisher matrix formalism. Here I summarize our findings
in our paper, Taruya, Saito, Nishimichi (2011) [4]. One may find similar efforts to address these questions in
the literature (see e.g., [55–58]).

The Alcock-Paczynski effect

Before proceeding the Fisher forecast, I discuss another source of the anisotropy. In making a 3D map of
galaxies, we should assume cosmology to convert redshift to radial comoving distance. Then the measured
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6

FIG. 3: Comparison of the power spectra and correction terms.

FIG. 4: Comparison of the power spectra and correction terms.

Appendix A: Derivation

In this appendix we give detailed derivations skipped in Sec. II A.

1. Real-space part: δℓ

Starting from Eq. (7), the Fourier transformation yields

δ(n̂) =

∫
dyΠ(y)

∫
d3k

(2π)3
δ(k; y)e−ik·n̂y

=

∫
dyΠ(y)

∫
d3k

(2π)3
δ(k; y)

∑

L

(−i)L(2L+ 1)jL(ky)PL(µ), (A1)

where µ = k̂ · n̂, and we used the partial-wave expansion,

e−ik·n̂y =
∑

L

(−i)L(2L+ 1)jL(ky)PL(µ), (A2)

with PL(µ) being the Legendre polynomial at L-th order. Then the multipole component of 2D density field is written
by

δℓ =
1

2

∫ 1

−1
dµ δ(n̂)Pℓ(µ)

= (−i)ℓ
∫

dyΠ(y)

∫
d3k

(2π)3
δ(k; y)jℓ(ky), (A3)

7

FIG. 5: Comparison of the power spectra and correction terms.

where we used the orthogonal property of the Legendre polynomials,

1

2

∫ 1

−1
dµPℓ(µ)Pℓ′(µ) =

δℓℓ′

(2ℓ+ 1)
. (A4)

Assuming that the evolution of the density field can be neglected, i.e., δ(k; y) ≈ δ(k), we finally have

δℓ = (−i)ℓ
∫

d3k

(2π)3
δ(k)Wℓ(k), (A5)

Wℓ(k) =

∫
dyΠ(y) jℓ(ky). (A6)

2. 1st-order perturbation: θℓ

Similarly to the real-space part, the leading-order correction term coming from the velocity is Fourier-transformed
to

θ(n̂) = −
∫

dy
dΠ(y)

dy

∫
d3k

(2π)3
u(k; y) · n̂ e−ik·n̂y

= −if

∫
dy

dΠ(y)

dy

∫
d3k

(2π)3
θ(k)

kµ

k2

∑

L

(−i)L(2L+ 1)jL(ky)PL(µ), (A7)

where we used Eq. (13) and set θ(k; y) ≈ θ(k). Then we write

θℓ =
1

2

∫ 1

−1
dµ θ(n̂)Pℓ(µ)

= (−i)ℓf

∫
d3k

(2π)3
θ(k)

k

∫
dy

dΠ(y)

dy

djℓ(ky)

d(ky)
. (A8)

We applied the following relations along the way:

1

2

∫ 1

−1
dµµPℓ(µ)Pℓ′(µ) =

(ℓ+ 1)

(2ℓ+ 1)(2ℓ+ 3)
δℓ′,ℓ+1 +

ℓ

(2ℓ− 1)(2ℓ+ 1)
δℓ′,ℓ−1, (A9)

(2ℓ+ 1)j′ℓ(x) = ℓjℓ−1(x)− (ℓ+ 1)jℓ+1(x). (A10)

Integrating by part, we finally have

θℓ = (−i)ℓf

∫
d3k

(2π)3
θ(k)W I

ℓ (k), (A11)

W I
ℓ (k) =

∫
dyΠ(y)

[
(2ℓ2 + 2ℓ− 1)

(2ℓ+ 3)(2ℓ− 1)
jℓ(ky)−

ℓ(ℓ− 1)

(2ℓ− 1)(2ℓ+ 1)
jℓ−2(ky)−

(ℓ+ 1)(ℓ+ 2)

(2ℓ+ 3)(2ℓ+ 1)
jℓ+2(ky)

]
. (A12)

FIG. 11: (Upper left panel) Comparisons of the 3D power spectra which appear in Eqs. (79) and (80).
(Upper right panel) Contributions from each term in the angular power spectrum in Eqs. (79) and (80).
(Lower panels) The fractional contributions from the RSD correction terms.

distance assuming wrong cosmology can differ from true distance scale. This is the so-called Alcock-Paczynski
(AP) effect which makes the density distribution anisotropic, since the distortion of the scale perpendicular to
LOS is proportional to the angular diameter distance, DA(z), while the distortion of the scale along LOS is
proportional to the Hubble distance, c/H(z) [59, 60]. More explicitly, the measured scale, (k∥, k⊥), is related

to the true distance scale (q∥, q⊥) through k⊥D
fid
A = q⊥DA and k∥/H

fid = q∥/H. Therefore, the observed power
spectrum is rewritten as

P obs(k, µ) =
H(z)

Hfid(z)

[
Dfid
A (z)

DA(z)

]2
P true(q, ν), (83)

where

q ≡
√
q2∥ + q2⊥ = k

[(
Dfid
A

DA

)2

+

{(
H

Hfid

)
−
(
Dfid
A

DA

)2
}
µ2

]1/2
, (84)

ν ≡
q∥

q
=

(
H

Hfid

)
µ

[(
Dfid
A

DA

)2

+

{(
H

Hfid

)
−
(
Dfid
A

DA

)2
}
µ2

]−1/2

. (85)

Note that the AP effect makes the clustering anisotropic even without RSD. Ref. [61] shows that the isotropic
part (i.e., monopole) constrains the dilation parameter, α ∝ (D2

A/H)1/3, and the anisotropic components
constrain the deformation parameter, ϵ ∝ DAH. The main cosmological interests in modern galaxy surveys
are BAO and RSD, and the parameter constraints are presented in combination of (DA,H, fσ8) or (α, ϵ, fσ8).

Gaussian covariance of the redshift-space power spectrum
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The statistical error of the redshift-space power spectrum, i.e., the covariance, is given by [18]

Cov[P sg (k, µ), P
s
g (k

′, µ′)] = [∆P sg (k, µ)]
2δD(k − k′) =

2

Nk

[
P sg (k, µ) +

1

n̄g

]2
δD(k − k′), (86)

where n̄g is the mean number density of galaxies (assumed to be constant here) and the term 1/n̄g is the
Poisson shot noise. The factor Nk is the number of Fourier modes in a given survey volume Vs, given by

Nk = 2πk2∆k∆µ

(
2π

V
1/3
s

)−3

=
k2∆k∆µ

4π2
Vs. (87)

Strictly speaking, this expression holds only for the Gaussian density field which is not true for the galaxy
density field in redshift space. This is one of the reasons why the covariance matrix should be estimated with
many realizations of realistic mock galaxy catalog. Neverthless, Eq. (86) is still useful to study feasibility
of a given galaxy survey. The cumulative signal-to-noise ratio of the redshift-space power spectrum is then
evaluated as (

S

N

)2

k<kmax

=
Vs
8π2

∫ kmax

kmin

k2dk

∫ 1

−1
dµ

[
n̄gP

s
g (k, µ)

n̄gP sg (k, µ) + 1

]2
. (88)

Therefore the Fisher matrix in Gaussian likelihood is simply given by (e.g., [62])

Fαβ = −
⟨
∂2 lnL

∂pαpβ

⟩
=

Vs
8π2

∫ kmax

kmin

k2dk

∫ 1

−1
dµ

∂ lnP sg (k, µ)

∂pα

∂ lnP sg (k, µ)

∂pβ

[
n̄gP

s
g (k, µ)

n̄gP sg (k, µ) + 1

]2
. (89)

The Cramer-Rao bound tells that the 1σ error on pα marginalized over the other parameters is computed by
σ(pα)

2 = F−1
αα . Similarly, the 2D error contours can be estimated by the inverse submatrix of F−1 (but, when

plotting error contours, be aware that the value of ∆χ2 in 1σ confidence region is not 1.0 but actually 2.3 in
the 2D case. See e.g., [63].) Also, I define the Figure-of-Merit (FoM) parameter as an area of the error ellipse
in n-dimensional space,

FoM(p1, p2, . . . , pn) ≡
1√
|F̃−1|

, (90)

where F̃−1 is the n× n submatrix of the inverse Fisher matrix [4].
So far I have considered the full anisotropic power spectrum, P sg (k, µ). This is motivated by the fact that

Eq. (86) suggests that the two-point statistics becomes the most diagonal in the case of the full anisotropic power
spectrum. However, this is an ideal case, and many realistic conditions (e.g., the survey window function as
discussed in next section) make such analysis much more complicated. From a data-compression point view,
it would be a better idea to choose a different base statistics. A natural candidate is the multipole power
spectrum, since all the cosmological information is encoded in the multipole moment up to ℓ = 4 in linear
theory. Notice that the multipole power spectrum is no longer diagonal even for the Gaussian approximation
[64, 65],

Cov[P sg,ℓ(k), P
s
g,ℓ′(k

′)] =
2

Nk
Cov′ℓℓ′δD(k−k′) =

2

Nk

(2ℓ+ 1)(2ℓ′ + 1)

2

∫ 1

−1
dµLℓ(µ)Lℓ′(µ)

[
P sg (k, µ) +

1

n̄g

]2
δD(k−k′),

(91)
where now the number of mode becomes Nk = Vsk

2∆k/(2π2). Eq. (91) shows that the error on any order of
the multipole has a contribution from the constant shot noise. This means that a higher-order multipole has
a lower signal-to-noise ratio, since a higher-order multipole has lower amplitude. The Fisher matrix for the
multipole is also written as

Fmultipole
αβ =

Vs
4π2

∫ kmax

kmin

k2dk
∑
ℓ,ℓ′

∂P sg,ℓ(k)

∂pα
[Cov′ℓℓ′ ]

−1
∂P sg,ℓ′(k)

∂pβ
. (92)
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Now it is ready to perform the Fisher forecast. Namely, given a hypothetical galaxy survey with (Vs, n̄g) (and
redshift range), one can estimate how well the free parameter set, pα = (DA,H, f, b, σv) is simultaneously
constrained. Our finding is summarized as follows:

• What is the contribution from each multipole to constrain (DA, H, b)?

See Fig. 12. The different multipole power spectra contribute to the parameter constraints with different
degeneracy directions. Hence combining them is powerful to break such degeneracies.

• How many multipole are necessary to constrain (DA,H, b) as well as the full 2D case?

See Fig. 13. A short answer is that it is still sufficient to measure the multipole up to ℓ = 4! However, keep
in mind that the parameter constraints could be more biased when higher-order multipole is included if
an imperfect RSD model is applied.

• What is the best tracer for the purpose of RSD in terms of bias with survey parameter being fixed?

See the right panel of Fig. 13. A higher bias parameter makes the real-space amplitude larger, while
the β = f/b parameter smaller and hence the anisotropic part becomes smaller. This detailed balance
results in a peak at b ∼ 1.2.

information to simultaneously constrain DA, H, and f. In
particular, for the constraints on DA and H, there appear
strong degeneracies, and the error ellipses are highly elon-
gated and inclined. These behaviors are basically deduced
from the Alcock-Paczynski effect, and are consistent with
the facts that the monopole spectrum is rather sensitive to
the combination ðD2

A=HÞ, while the quadrupole spectrum is
sensitive to (DAH) (e.g., [8]). On the other hand, combin-
ing the monopole and quadrupole greatly improves the
constraints (indicated by the blue, outer shaded region)
not only on DA and H, but also on growth-rate parameter
f. This is because the degeneracies between the parameters
DA and H constrained by the monopole differ from that by
the quadrupole, and thus the combination of these two
spectra leads to a substantial reduction of the size of error
ellipses. Further, the growth-rate parameter is proportional
to the strength of redshift distortions, and can be deter-
mined by the quadrupole-to-monopole ratio. Although the
measurement of the galaxy power spectrum alone merely
gives a constraint on ! ¼ f=b, provided an accurate CMB
measurement of the power spectrum normalization, we can

separately determine the growth-rate parameter. Note that
the combination of the monopole and hexadecapole spectra
also provides a way to determine the growth-rate parameter
(red shaded region), although the error on f is a bit larger
due to the small amplitude of the hexadecapole spectrum.
For comparison, Fig. 2 also shows the forecast con-

straints obtained from the full 2D power spectrum (green,
inner shaded region). Further, we plot the results of com-
bining the monopole and quadrupole spectra, but neglect-
ing the covariance between ‘ ¼ 0 and ‘ ¼ 2, i.e.,
gCov02 ¼ gCov20 ¼ 0 (blue, dotted lines). Clearly, using
the full 2D shape of the redshift-space power spectrum
leads to a tighter constraint, and the area of the two-
dimensional error is reduced by a factor of 1.6–18, com-
pared with the constraints from the monopole and quadru-
pole spectra. These results indicate that the contribution of
the higher multipoles is very important, and the additional
information from the quadrupole and hexadecapole spec-
tra, each of which puts a different direction of parameter
degeneracies, seems to play a dominant role in improving
the constraints. On the other hand, for joint constraints
from the monopole and quadrupole, the role of the covari-

ance gCov02 or gCov20 seems less important, and one may
naively treat the monopole and quadrupole power spectra
as statistically independent quantities. However, these re-
sults are partially due to the properties of the galaxy
samples characterized by several parameters, and may be
altered with different assumptions or survey setup. This
point will be investigated in some detail in the next
subsection.

B. Figure-of-Merit

We here study the dependence of galaxy samples or
survey setup on the forecast results for parameter con-
straints. To do this, it is useful to define the figure-of-merit :

FoM $ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det eF%1

q ; (19)

where the matrix eF%1
is the 3& 3 submatrix, whose ele-

ments are taken from the inverse Fisher matrix F% 1
associated with the parameters DA, H, and f. The FoM
quantifies the improvement of the parameter constraints, and
is inversely proportional to the product of one-dimensional
marginalized errors, i.e., FoM / 1=f"ðDAÞ"ðHÞ"ðfÞg.
Figure 3 shows the dependence of the FoM on the

properties of the galaxy samples characterized by the
number density ng (top right), bias parameter b (bottom
left), and one-dimensional velocity dispersion "v (bottom
right). Also, in the top left panel, we show the FoM as a
function of the maximum wave number kmax used in the
parameter estimation study. Note that in plotting the re-
sults, the other parameters are kept fixed to the canonical
values. The upper part of each panel plots the three differ-
ent lines, and shows how the FoM changes depending on

FIG. 2 (color online). Two-dimensional contours of 1-" (68%
C.L.) errors on ðDA;HÞ (bottom left), ðDA; fÞ (top left), and
ðf;HÞ (bottom right), assuming a stage-III-class survey with
Vs ¼ 4h%3Gpc3 at z ¼ 1. In each panel, magenta solid and
cyan dashed lines, respectively, indicate the forecast constraints
coming from the monopole (P0) and quadrupole ðP2Þ spectrum
alone, while the middle and outer shaded regions (indicated by
blue and red online) represent the combined constraints from P0

and P2, and P0 and P4, respectively. The innermost shaded
region (indicated by green online) represents the results coming
from the full 2D spectrum. As a reference, blue dotted contours
show the results combining both P0 and P2, but (incorrectly)
neglecting the covariance between monopole and quadrupole

spectra, i.e., gCov02 ¼ gCov20 ¼ 0.
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FIG. 12: The marginalized 1σ contour in 2D parameter space as a function of (DA,H, f). Here we consider a hypothetical
survey with z = 1, Vs = 4 [(Gpc/h)3], and n̄g = 5 × 10−4 [(h/Mpc)3], and consider galaxy samples with b = 2 and
σv = 395 [km/s]. We also set kmax = 0.2 [h/Mpc].

VII. ANALYSIS: MEASURING RSD FROM THE MULTIPOLE IN BOSS

In previous sections, we developed the refined RSD model (TNS model, but include a bunch of nonlinear
galaxy bias term as well in the real data analysis. See Appendix. C for the full expression), and learned how
useful the multipole power spectra are. Now it is time to face the real data! Here I present the updated RSD
measurement from BOSS DR12 (final dataset!) in SDSS-III [7]. However, even if the galaxy survey is done
and its catalog is already available (which is basically a list of (ra, dec, z). Of course getting this involves
tremendous efforts by many people! I refer to [66] for the galaxy target selection algorithm in BOSS, and to
[67, 68] for its stellar-mass completeness using the S82MGC catalog.), there are still several steps to reach the
fσ8 constraint as follows:
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the choice or combination of power spectra used in the
analysis: combining monopole (P0) and quadrupole (P2)
spectra (magenta, dash-dotted); combining three multipole
spectra, P0, P2 and P4 (blue, long dashed); using the full
2D spectrum Pðk;!Þ (black, solid). On the other hand, the
lower part of each panel plots the ratio of FoM normalized
by the one for the full 2D spectrum.

In principle, using the full 2D spectrum gives the tightest
constraints onDA, H, and f, but an interesting point here is
that a nearly equivalent FoM to the one for the full 2D
spectrum is obtained even from partial information with the
lower-multipole spectra P0, P2 and P4. This is irrespective
of the choice of the parameters for galaxy samples.

Although the result may rely on the model of redshift
distortions adopted in this paper, recalling the fact that
the nonvanishing multipole spectra higher than ‘ * 6 arise
only from the nonlinear effects through the gravitational
evolution and redshift distortion, the cosmological model
dependence encoded in these higher multipoles is expected
to be very weak, partly due to the low signal-to-noise ratio.
In this sense, the result in Fig. 3 seems reasonable.
Now, we focus on the FoM from the combination of P0

and P2. Figure 3 indicates that except for the case varying
the bias b, the resultant FoM shows a monotonic depen-
dence on the parameters. As a result, the ratio of FoM
shown in the lower part of the panels is nearly constant

FIG. 3 (color online). Figure-of-merit for the parameters DA, H, and f defined by Eq. (19), as functions of kmax (top left), !ngal (top
right), b (bottom left), and "v (bottom right), assuming a hypothetical galaxy survey at z ¼ 1 with volume Vs ¼ 4h$3 Gpc3. In each
panel, solid lines are the results obtained from the full 2D power spectrum, while the dashed and dash-dotted lines represent the FoM
from the combination of the multipole spectra (dash-dotted: P0 & P2, dashed: P0, P0, & P4). The bottom panels show the ratio of FoM
normalized by the one obtained from the full 2D spectrum. Note that except for the parameter along the horizontal axis, the fiducial
values of the model parameters are set to kmax ¼ 0:2h Mpc$1, ng ¼ 5% 10$4h3 Mpc$3, b ¼ 2, and "v ¼ 3:95h$1 Mpc, indicated by
the vertical dotted lines.
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constraints onDA, H, and f, but an interesting point here is
that a nearly equivalent FoM to the one for the full 2D
spectrum is obtained even from partial information with the
lower-multipole spectra P0, P2 and P4. This is irrespective
of the choice of the parameters for galaxy samples.

Although the result may rely on the model of redshift
distortions adopted in this paper, recalling the fact that
the nonvanishing multipole spectra higher than ‘ * 6 arise
only from the nonlinear effects through the gravitational
evolution and redshift distortion, the cosmological model
dependence encoded in these higher multipoles is expected
to be very weak, partly due to the low signal-to-noise ratio.
In this sense, the result in Fig. 3 seems reasonable.
Now, we focus on the FoM from the combination of P0

and P2. Figure 3 indicates that except for the case varying
the bias b, the resultant FoM shows a monotonic depen-
dence on the parameters. As a result, the ratio of FoM
shown in the lower part of the panels is nearly constant

FIG. 3 (color online). Figure-of-merit for the parameters DA, H, and f defined by Eq. (19), as functions of kmax (top left), !ngal (top
right), b (bottom left), and "v (bottom right), assuming a hypothetical galaxy survey at z ¼ 1 with volume Vs ¼ 4h$3 Gpc3. In each
panel, solid lines are the results obtained from the full 2D power spectrum, while the dashed and dash-dotted lines represent the FoM
from the combination of the multipole spectra (dash-dotted: P0 & P2, dashed: P0, P0, & P4). The bottom panels show the ratio of FoM
normalized by the one obtained from the full 2D spectrum. Note that except for the parameter along the horizontal axis, the fiducial
values of the model parameters are set to kmax ¼ 0:2h Mpc$1, ng ¼ 5% 10$4h3 Mpc$3, b ¼ 2, and "v ¼ 3:95h$1 Mpc, indicated by
the vertical dotted lines.
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FIG. 13: FoM(DA,H, f) with the same hypothetical survey in Fig. 12 but varying parameters such as kmax (left) and
b (right).

1. First of all, we should measure P̂ℓ(k) in an unbiased way.

2. In Fourier space, the measured power spectrum is convolved with the survey window function. Therefore
we should evaluate the survey window function given a survey geometry.

3. The error covariance matrix, Cov[P̂ℓ(k), P̂ℓ′(k
′)] should be estimated by realistic mock catalogs.

4. The theoretical model and every analysis pipeline should be checked against such mock catalogs before
they are applied to the real data.

5. Finally perform the MCMC parameter estimation to get the fσ8 constraint.

Also I should mention that there are other approaches to constrain RSD with the same BOSS dataset, which
include the multipole in configuration space, the wedges in configuration space, the wedges in Fourier space,
and combining with the bispectrum etc. I refer to the main alphabetical DR12 paper for the complete reference
list. Note that DR12 CMASS and LOWZ papers are already out [69, 70]. In the following, I am going to
explain the basic methodology especially in the first three steps in more detail.

A. The multipole power spectrum estimator

The galaxy power spectrum estimator is first developed by the famous Feldman-Kaiser-Peacock (FKP)
paper [18]. Their estimator is designed to implement Fast Fourier Transform (FFT) by assuming the global
plain-parallel approximation. As mentioned earlier, however, this is no longer a good approximation when
one is interested in measuring the anisotropic component of the galaxy clustering [19, 20]. In order to over-
come this, Yamamoto [64] extended the FKP estimator to the multipole by assuming the local plain-parallel
approximation in turn:

P̂ℓ(k) =
2ℓ+ 1

2A

[∫
d3x

∫
d3x′ eik·(x−x′)F (x)F (x′)Lℓ(k̂ · x̂h)− Sℓ

]
. (93)

Here the density field, F (x), and the normalization, A, are given by

F (x) = wFKP(x)
[
n′g(x)− αnrand(x)

]
(94)

A =

∫
d3x [ng(x)

2wFKP(x)]
2, (95)
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respectively. n′g(x) denotes the observed galaxy number density but is corrected by weight function as

n′g(x) = wc(x)ng(x) (96)

wc(x) = (wrf(x) + wfc(x)− 1)wsys(x), (97)

where wrf , wfc, and wsys are the weights which correct the redshift failure, the fiber collision, and systematics
that combines a stellar density and seeing condition, respectively, in the particular case of BOSS. wFKP(x) is
the weight which makes the variance of measured power spectrum minimum, derived as [18, 64]

wFKP(x) =
1

1 + n′g(x)P0
. (98)

nrand(x) denotes the random field such that ⟨n′g⟩ = α⟨nrand⟩ at a given redshift and α is the ratio of number of
galaxies to number of random particles (usually α ∼ 1/50). Finally Sℓ denotes the Poisson shot noise, defined
by

Sℓ =

∫
d3x (1 + α)n′g(x)w

2
FKP(x)Lℓ(k̂ · x̂). (99)

Note that there is a subtlety on whether or not the weighted galaxies missed due to the fiber collision is counted
in Poisson statistics, which affects the shot noise definition and the FKP weight (see more discussion in [6]).
In the Yamamoto estimator it is further simplified by switching the integral to the sum, i.e.,

∫
d3xn′g(x) · · · →∑Ng

i wc(xi) . . . or → α
∑Nrand

i . . . , yielding to

P̂ℓ(k) =
2ℓ+ 1

2A
[Fℓ(k)F0(k)

∗ − Sℓ] , (100)

Fℓ(k) =

∫
d3xF (x)eik·xLℓ(k̂ · x̂)

=

Ng∑
i

wc(xi)wFKP(xi)e
ik·xiLℓ(k̂ · x̂i)− α

Nrand∑
j

wFKP(xj)e
ik·xjLℓ(k̂ · x̂j), (101)

where the local plain-parallel approximation is adopted. Notice that this estimator has k dependence in the
integrand and hence FFT cannot be applied. Therefore the Yamamoto estimator has a computing cost of
O(N2) but was anyhow used in the DR11 analysis [6].

However, Bianchi et al. (2015) [71] and Scoccimarro (2015) [72] have recently realized that there is actually
a way to implement FFT on Eq. (101). The idea is very simple: once the Legendre polynomial is explicitly
written down, the k dependence in the integrand is factored out and hence FFT can be safely applied. The
resultant expressions are

P̂0(k) =
1

2A
[F0(k)F0(k)

∗ − S0] , (102)

P̂2(k) =
5

4A
F0(k) [3F2(k)

∗ − F0(k)
∗] , (103)

P̂4(k) =
9

16A
F0(k) [35F4(k)

∗ − 30F2(k)
∗ + 3F0(k)

∗] , (104)

where

F0(k) = A0(k), (105)

F2(k) =
1

k2

∑
p,q=x,y,z

kpkqBpq, (106)

F4(k) =
1

k4

∑
p,q,r=x,y,z

k2pkqkrCpqr, (107)
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and each coefficient can be estimated with FFT,

A0(k) =

∫
d3r F (r)eik·r, (108)

Bij(k) =

∫
d3r

rirj
r2

F (r)eik·r, (109)

Cijk(k) =

∫
d3r

r2i rjrk
r4

F (r)eik·r. (110)

Now the estimator has a computational complexity of O(Nc logNc) with Nc being the number of grid cells,
and is adopted in the DR12 analysis [7]. Finally, the multipole power spectrum is evaluated by averaging over
spherical shell in Fourier space,

P̂ℓ(k) = ⟨P̂ℓ(k)⟩ =
1

Nmode

∑
k bin

P̂ℓ(k). (111)

B. The survey window function

Because Fourier transform involves the integral over the infinite space while we can observe only finite
volume, the measured power spectrum is always convolved with the survey window function,

P conv(k) =

∫
d3k′ P true(k′)

∣∣W (k − k′)
∣∣2 − |W (k)|2

|W (0)|2

∫
d3k′ P true(k′)

∣∣W (k′)
∣∣2 , (112)

where the 2nd term is the so-called integral constraint which ensures that P conv = 0 at k → 0. This means
that one needs to estimate the survey window function a priori and to convolve with the theoretical model
spectrum. One immediately sees from Eq. (112) that it is complicated to estimate the window function which
is as a function of k and k′. However, we found in the DR11 paper the way to handle this issue on the basis of
multipole [6]. With a bit lengthy calculation one obtain a simplified formula (see [6] for detailed derivation),

P conv
ℓ (k) =

∫
k′2dk′

2π2

∑
L

P true
L (k′)

∣∣W (k, k′)
∣∣2
ℓL
, (113)

∣∣W (k, k′)
∣∣2
ℓL

= iℓ(−i)L(2ℓ+ 1)

Nrand∑
ij,i ̸=j

wFKP(xi)wFKP(xj)jℓ(k|∆x|)jL(k′|∆x|)Lℓ(x̂h ·∆x̂)LL(x̂h ·∆x̂).(114)

Here ∆x ≡ xi − xj . A similar formula can be also found for the integral constraint term. This simplification
is one of the reasons why I prefer to work on the multipole in Fourier space. Interestingly, Eq. (114) tells
that monopole cannot be decoupled from other multipole due to the survey geometry and vice versa. A physical
understanding of this is rather clear: anisotropic survey geometry can make the anisotropic contribution as a
leakage from monopole, even if there is no RSD.

One downside of this approach turned out to be the fact that it is hard to obtain the well-converging window
function for the hexadecapole. To overcome this, we decide to follow the approach recently proposed by [73].
This indeed leads to more stable results of the hexadecapole window function. The basic idea is following:

• Firstly, Fourier transform the model power spectrum to obtain the correlation function, ξℓ(s).

• Secondly, multiply the window function, Wℓ(s)
2 in configuration space to obtain the ‘convolved’ corre-

lation function, ξconvℓ (s). For the explicit expression for the convolution, see [73].

• Finally, Fourier transform the ‘convolved’ correlation function to obtain the convolved power spectrum,
P conv
ℓ (k).
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Here the window function in configuration space is given by

Wℓ(s)
2 ∝

∑
µ

∑
x1

∑
x2

RR(s, µ)L(µ). (115)

Although [73] assumes the global plain parallel approximation, we prove in [7] that the same formula can be
used under the local plain parallel approximation as well.

C. Estimating the covariance matrix and fitting procedure

Compared to an ideal setting in the previous section, the observed galaxy density field is not perfectly
Gaussian. Also, the modes of interest is O(10-100Mpc) and comparable to the survey size, and hence internal
methods such as jackknife or bootstrap do not work well [74]. Therefore the covariance matrix is directly
estimated from a large number of realizations of realistic mock galaxy catalogs. In the case of the BOSS
DR12 analysis, we make use of 2048 realizations of the Multidark Patchy mock catalogs which is based on
combination of approximated but quite fast N -body simulations and the subhalo abundance matching [75, 76]
(however, see [77] for a similar work but with different results). The realistic survey geometry is applied to
light-cone output of each realization. Namely, the covariance matrix is simply estimated by

Cov′XY =
1

Ns − 1

Ns∑
n=1

[P̂ℓ,n(X)−Pℓ(X)][P̂ℓ,n(Y )−Pℓ(Y )], (116)

where the vector Pℓ contains monopole, quadrupole, and hexadecapole. The fiducial fitting range is k = 0.01-
k = 0.15h/Mpc with ∆k = 0.01 for monopole and quadrupole (i.e., nbin,ℓ=0 = nbin,ℓ=2 = 14) and k = 0.01-
k = 0.10h/Mpc with ∆k = 0.01 for hexadecapole (i.e., nbin,ℓ=4 = 9). Hence the index in the matrix is defined
by (X,Y ) = (nbin,ℓℓ/2 + i, nbin,ℓ′ℓ

′/2 + j) which describes the covariance between Pℓ(ki) and Pℓ′(kj). Note
that estimating the covariance matrix with the finite-volume simulation could be underestimated due to the
so-called super sample mode [78, 79]. The parameter fitting is performed by minimizing

χ2 = ∆Pℓ(X) Cov−1
XY ∆Pℓ(Y ), (117)

where ∆Pℓ(X) denotes the difference between measurement and model, and also the Hartlap factor should be
multiplied to correct the skewness in the inverse covariance matrix [80],

Cov−1
XY =

Ns − ntotbin − 2

Ns − 1
Cov′

−1
XY . (118)

Finally, the error in the covariance matrix should be further multiplied to the variance of the derived parameters
by [81, 82]

M1 =

√
1 + a(ntotbin − np)

1 + a+ b(np + 1)
, (119)

where

a =
2

(Ns − ntotbin − 1)(Ns − ntotbin − 4)
, (120)

b =
Ns − ntotbin − 2

(Ns − ntotbin − 1)(Ns − ntotbin − 4)
. (121)

At each redshift bin, we have ntotbin = 37× 2 = 74 (for NGC and SGC), np = 11 which results in a very minor
correction, M1 ≈ 1.01. At each redshift bin, the 11 free-parameter set includes (b1σ8, b2σ8, N, σv) for NGC
and SGC separately, and (fσ8, DA/D

fid
A ,H/H

fid) for common cosmological parameters of interest. See also
Appendix. C.
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D. BOSS DR12 Result

See another handout in the lecture. Enjoy the most recent RSD measurement! All the results will appear
on arXiv at the end of June in 2016.

E. The optimal estimator

My final quote in the analysis section is on the optimal estimator. It is shown that the FKP estimator (and
hence Yamamoto and its variants as well) is optimal only for the modes much smaller than the survey size
(k ≫ L) and the so-called quadratic estimator is optimal otherwise [62]. As far as I know, the exact quadratic
estimator has never been successfully applied to the actual galaxy survey, although there are a couple of
attempts in an approximated way [83–85]. This means that there is still a way to extract more information
from the redshift-space power spectrum even from the same BOSS data, and I hope this is achieved in a near
future.

VIII. CONCLUDING REMARK

RSD is one of the main scientific targets for ongoing and forthcoming cosmological surveys. Here I discuss
recent efforts for both modeling and measurement which highlights what I have been involved in this several
years. I expect there will be substantial progresses in many aspects in this field in coming years. Even though
there are tons of topics which I cannot cover in this lecture, I hope this is helpful for you to learn something
about RSD. At least this note should be quite helpful to remind me a lot of things!
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Appendix A: Convention and useful formula

Cosmology

Hubble equation in a ΛCDM universe

H(z)2 = H2
0{Ωm0(1 + z)3 +ΩΛ}. (A1)

Friedman-Robertson-Walker (FRW) metric

ds2 = a(τ)2
{
−(1 + 2Ψ)dτ2 + (1− 2Φ)dx2

}
. (A2)

The amplitude of matter fluctuation is often characterized by

σ28(z) =

∫
k2dk

2π2
PLm(k; z)W8(k)

2, (A3)

where W8(k) is the Fourier transform of the top-hat window function of width 8Mpc/h.

Mathematics
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Fourier tranformation

A(x) =

∫
d3k

(2π)3
e−ik·xA(k). (A4)

A(k) =

∫
d3x eik·xA(x). (A5)

the Legendre polynomial:

L0(µ) = 1, (A6)

L2(µ) =
3µ2 − 1

2
, (A7)

L4(µ) =
35µ4 − 30µ2 + 3

8
. (A8)

And its orthogonality

2ℓ+ 1

2

∫ 1

−1
dµLℓ(µ)L(µ′) = δℓℓ′ . (A9)

The partial-wave expansion

eik·n̂r =
∑
L

iL(2L+ 1)jL(kr)LL(µ). (A10)

Recursion relation of the spherical Bessel function

ℓjℓ−1(x)− (ℓ+ 1)jℓ+1(x) = (2ℓ+ 1)jℓ(x)
′. (A11)

Statistics

Moments and cumulants of the one-point distribution function [2]:

⟨δ⟩c = ⟨δ⟩ → 0, (A12)

⟨δ2⟩c = σ2 = ⟨δ2⟩ − ⟨δ⟩2c → ⟨δ2⟩, (A13)

⟨δ3⟩c = ⟨δ3⟩ − 3⟨δ⟩2c⟨δ⟩c − ⟨δ⟩3c → ⟨δ3⟩, (A14)

⟨δ4⟩c = ⟨δ4⟩ − 4⟨δ⟩3c⟨δ⟩c − 3⟨δ2⟩2c − 6⟨δ2⟩c⟨δ⟩2c − ⟨δ⟩4c → ⟨δ4⟩ − 3σ4, (A15)

where the case with ⟨δ⟩ = 0 is shown after the arrow.

Appendix B: Perturbation Theory basics

In this appendix we summarize basic equations in perturbation theory, taken over from [24].

1. Matter density

A matter density in Fourier space is perturbatively expanded into

δm(k) = δ0(k)

+

∫
d3q

(2π)3
F

(2)
S (q,k − q)δ0(q)δ0(k − q)

+

∫
d3q1
(2π)3

d3q2
(2π)3

F
(3)
S (q1, q2,k − q1 − q2)δ0(q1)δ0(q2)δ0(k − q1 − q2)

+O(δ0
4), (B1)
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where δ0 is the linear density perturbation and the symmetrized PT kernels are given by

F
(2)
S (q1, q2) =

1

2

{
F (2)(q1, q2) + F (2)(q2, q1)

}
=

5

7
+

1

2

q1 · q2
q1q2

(
q1
q2

+
q2
q1

)
+

2

7

(
q1 · q2
q1q2

)2

, (B2)

G
(2)
S (q1, q2) =

3

7
+

1

2

q1 · q2
q1q2

(
q1
q2

+
q2
q1

)
+

4

7

(
q1 · q2
q1q2

)2

, (B3)

F
(3)
S (q1, q2, q3) =

1

3!

{
F (3)(q1, q2, q3) + cyclic

}
=

1

6

[
7

9

q123 · q3
q23

F
(2)
S (q1, q2) +

{
7

9

q123 · (q1 + q2)

|q1 + q2|2
+

2

9

q2123q3 · (q1 + q2)

|q1 + q2|2 · q23

}
G

(2)
S (q1, q2)

]
+cyclic, (B4)

G
(3)
S (q1, q2, q3) =

1

6

[
1

3

q123 · q3
q23

F
(2)
S (q1, q2) +

{
1

3

q123 · (q1 + q2)

|q1 + q2|2
+

2

3

q2123q3 · (q1 + q2)

|q1 + q2|2 · q23

}
G

(2)
S (q1, q2)

]
+cyclic, (B5)

where q123 = q1 + q2 + q3. The unsymmetrized kernels are given by

F (2)(q1, q2) =
5

7
α(q1, q2) +

2

7
β(q1, q2), (B6)

G(2)(q1, q2) =
3

7
α(q1, q2) +

4

7
β(q1, q2), (B7)

α(q1, q2) =
(q1 + q2) · q1

q21
, (B8)

β(q1, q2) =
1

2
(q1 + q2)

2q1 · q2
q21q

2
2

. (B9)

2. Biased tracer’s density

Following an ansatz in McDonald & Roy (2010) [21], a halo density field (or generally biased tracer) is
written as

δh(x) = cδδm(x)

+
1

2
cδ2δm(x)

2 +
1

2
cs2s(x)

2

+
1

3!
cδ3δm(x)

3 +
1

2
cδs2δm(x)s(x)

2 + cψψ(x) + csts(x)t(x) +
1

3!
cs3s(x)

3

+cϵϵ+ . . . , (B10)

where each independent variable is defined as

sij(x) ≡ ∂i∂jϕ(x)−
1

3
δKijδm(x) =

[
∂i∂j∂

−2 − 1

3
δKij

]
δm(x), (B11)

tij(x) ≡ ∂ivj −
1

3
δKijθm(x)− sij(x) =

[
∂i∂j∂

−2 − 1

3
δKij

]
[θ(x)− δm(x)], (B12)

ψ(x) ≡ [θ(x)− δm(x)]−
2

7
s(x)2 +

4

21
δm(x)

2. (B13)
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Note that tij is zero at first order, and ψ is zero up to second order. In Fourier space, the halo density contrast
is given by

δh(k) = cδδ0(k)

+cδ

∫
d3q

(2π)3
F

(2)
S (q,k − q)δ0(q)δ0(k − q)

+
1

2
cδ2

∫
d3q

(2π)3
δ0(q)δ0(k − q)

+
1

2
cs2

∫
d3q

(2π)3
S(2)(q,k − q)δ0(q)δ0(k − q)

+cδ

∫
d3q1
(2π)3

d3q2
(2π)3

F
(3)
S (q1, q2,k − q1 − q2)δ0(q1)δ0(q2)δ0(k − q1 − q2)

+cδ2

∫
d3q1
(2π)3

d3q2
(2π)3

F
(2)
S (q1,k − q1 − q2)δ0(q1)δ0(q2)δ0(k − q1 − q2)

+
1

3!
cδ3

∫
d3q1
(2π)3

d3q2
(2π)3

δ0(q1)δ0(q2)δ0(k − q1 − q2)

+cs2

∫
d3q1
(2π)3

d3q2
(2π)3

S(2)(q1,k − q1)F
(2)
S (q2,k − q1 − q2)δ0(q1)δ0(q2)δ0(k − q1 − q2)

+
1

3!
cs3

∫
d3q1
(2π)3

d3q2
(2π)3

S(3)(q1, q2,k − q1 − q2)δ0(q1)δ0(q2)δ0(k − q1 − q2)

+
1

2
cδs2

∫
d3q1
(2π)3

d3q2
(2π)3

S(2)(q2,k − q1 − q2)δ0(q1)δ0(q2)δ0(k − q1 − q2)

+cψ

∫
d3q1
(2π)3

d3q2
(2π)3

{
D

(3)
S (q1, q2,k − q1 − q2)− 2F

(2)
S (q1,k − q1 − q2)D

(2)
S (q2,k − q2)

}
×δ0(q1)δ0(q2)δ0(k − q1 − q2)

+2cst

∫
d3q1
(2π)3

d3q2
(2π)3

S(2)(q1,k − q1)D
(2)
S (q2, q1 − q2)δ0(q1)δ0(q2)δ0(k − q1 − q2), (B14)

where

S(2)(q1, q2) =

(
q1 · q2
q1q2

)2

− 1

3
, (B15)

S(3)(q1, q2, q3) =
(q1 · q2)(q2 · q3)(q3 · q1)

q21q
2
2q

2
3

− 1

3

(q1 · q2)2

q21q
2
2

− 1

3

(q2 · q3)2

q22q
2
3

− 1

3

(q3 · q1)2

q23q
2
1

+
2

9
, (B16)

D(N) ≡ G(N) − F (N). (B17)

Appendix C: The redshift-space power spectrum model adopted in the actual analysis for BOSS

The model adopted in the BOSS analysis is an extended version of the TNS model, Eq. (50):

P sg,TNS(k, µ) = exp
[
−k2µ2f2σ2v,eff

] {
Pg,δδ(k) + 2fµ2Pg,δθ(k) + f2µ4Pθθ(k) + b31A(k, µ;β) + b41B(k, µ;β)

}
.

(C1)
Our galaxy bias model is based on the bias renormalization including local and nonlocal bias term proposed
in [21] is validated by [24]:

Pg,δδ(k) = b21P
NL
δδ (k) + 2b1b2Pb2,δ(k) + 2b1bs2Pbs2,δ(k) + 2b1b3nl σ

2
3(k)P (k)

+ b22Pb22(k) + 2b2bs2Pb2s2(k) + b2s2Ps22(k) +N, (C2)

Pg,δθ(k) = b1P
NL
δθ (k) + b2Pb2,θ(k)

+ bs2Pbs2,θ(k) + b3nl σ
2
3(k)P

L(k). (C3)
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The exact expression of the bias correction terms are redundant here, and I refer to [6]. One approximation
which is not exactly true but can reduce the free parameter is the local Lagrangian bias for the nonlocal bias
[24]:

bs2 ≈ −4

7
(b1 − 1), (C4)

b3nl ≈ 32

315
(b1 − 1). (C5)

Strictly speaking, we should consistently include the bias term up to 2nd order in A and B correction terms
but simply ignore them here. As a summary, the model include 4 free parameter, b1, b2, N, and σv,eff .

Appendix D: Derivation of Eq. (17)

Starting from Eq. (16), one finds

δs(k) =

∫
d3s δs(s)eik·s

=

∫
d3x eik·s{1 + δ(x)} −

∫
d3s eik·s

=

∫
d3x eik·s{1 + δ(x)} −

∫
d3x

d3s

d3x
eik·s

=

∫
d3x eik·s{1 + δ(x)} −

∫
d3x

{
1 +

1

aH

∂vz(x)

∂z

}
eik·s

=

∫
d3x

{
δ(x)− 1

aH

∂vz(x)

∂z

}
eik·x+ikµvz/(aH). (D1)
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