
Magnetic Fields in Cosmology

Kerstin Kunze      
                

(Universidad de Salamanca)



Overview

Origin? 

Generation 
mechanisms in 
the very early 

universe

Magnetic fields  
in cosmology

Effect on  
cosmological 
perturbations

Evolution 
and dissipation

1

2

3

KK   PRD 81(2010) 023006; PRD 83 (2011) 023006; 
        PRD 85 (2012) 083004; PRD 87 (2013) 103005;  
        PRD 89 (2014) 103016;PRD 96 (2017) 063526;  
        JCAP 1901 (2019) 033; JCAP 11 (2021) 11.

Kandus, KK, Tsagas Phys.Rept. 505 (2011) 1.

KK, E. Komatsu, JCAP 1506 (2015) 06, 027.
KK, E. Komatsu, JCAP 1401 (2014) 01, 009 .

Observational 
signature?



1

Magnetic Fields in Cosmology

Origin? 

Generation 
mechanisms in 
the very early 

universe



M51 

Total magnetic field 
strength

Bt = (13.7 ± 2)µG

Observations

Magnetic field strength 
at center ~2.5 μG. 

(Govoni et al. 2006)

Total synchrotron intensity around the 
galaxy cluster Abell 2255

(Neininger 1992)

• Galactic magnetic field

Kronberg, Newton-McGee  (2011) 
All-sky map of rotation measures in the Milky Way,
using data of 2257 sources.

• Magnetic field strength: near 
sun: 2 μG                              
halo (north/south): 4 (2) μG



• Origin of large scale magnetic fields?


• Usually a dynamo mechanism is assumed to amplify an initial seed field


• In a flat universe with                                                in order to explain 
galactic field today.

Λ = 0 Bseed ≥ 10
−20

G

How to generate cosmological magnetic fields

� > 0 Bseed � 10�30G



• Origin of initial seed field?


• two classes of mechanisms:


1.processes on small scales: vortical perturbations, phase transitions


   


2.amplification of perturbations in the electromagnetic field during inflation 
(Turner, Widrow 1988....)

(Reviews: e.g. 
Grasso, Rubinstein ’01;
Widrow  ’02;    
Kandus, KK, Tsagas ’11) 

How to generate cosmological magnetic fields



How to generate cosmological magnetic fields



• Example: Generation of magnetic fields during a phase 
transition


First order

DAMTP: http://www.damtp.cam.ac.uk/research/gr/public/cs_phase.html

First order phase transitions proceed by bubble nucleation. A bubble of the 
new phase (the true vacuum) forms and then expands until the old phase 

(the false vacuum) disappears. A useful analogue is boiling water in which 
bubbles of steam form and expand as they rise to the surface.

Magnetic field generation
occurs during 

collisions

turbulent flows

helical magnetic fields

Hogan 1983

magnetic fields  produced with correlation length 
of bubble radius, pattern of randomly oriented 
field lines

How to generate cosmological magnetic fields



• SECOND ORDER PHASE TRANSITION 

• Smooth transition from 
old to new phase

Phase transition creates 
domains of different 
vacuum expectation 

values of the Higgs field

Gradients in the field 
leading to electromagnetic fields after 

the phase transition

Magnetic field generation

Vachaspati 1991

✴ Magnetic fields produced during phase transitions can be very strong but typically have 
small coherence lenghts (limited by the horizon size at the time).

How to generate cosmological magnetic fields



• Inflation: 

slow roll inflation 

accelerated expansion driven by potential  
energy density of scalar field (=inflaton)

H2
!

8πG

3
V (φ)

φ̇ ! −

V ′

3H

V (φ) =
1

2
m2φ2

Linde 1984

Primordial magnetic fields from inflation



Fluctuations “freeze” on superhorizon                                       
scales, treat as classical contribution                                               
to classical values of inflaton field.

Quantum fluctuations induce                                 classical 
fluctuations with amplitude 

Phases of each wave are random.  Sum of all waves at a given 
point fluctuates, described by Brownian motion in all directions.

Linde (1986)

|δφ| !
H

2π

H
−1

horizon scale
causal domain

Primordial magnetic fields from inflation



• Generation of magnetic fields during inflation: Amplify 
perturbations in the electromagnetic field.


✓Coherence lengths can be large.


- Problems with magnetic field strength.


Turner, Widrow (1988)

Primordial magnetic fields from inflation



Standard Maxwell 
electrodynamics

resulting magnetic field too small to seed, 
e.g., galactic magnetic field

flat backgrounds

Non-flat 
backgrounds(Tsagas, Barrow 1998; 

Barrow, Tsagas 2011). 

go beyond standard 
electrodynamics

linear theory
non linear theory 

Large number of 
possibilites

key point: break 
conformal 

invariance of 
Maxwell ED

• massive photons 
• couple ED to gravity 
• to other fields 
• extra dimensions 
• ......

Primordial magnetic fields from inflation
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Êz B̂y −B̂x 0









A
2
≡ AmA

m

Fα(!k, η) ≡ a2

∫
d3xei"k·"xB̂α(!x, η)

F̈α(k) + k2Fα(k) +
n

η2
Fα(k) = 0

ds2 = a2(−dη2 + d"x 2)
line element

n ≡ η2

(

6b
ä
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correlation function 

spectral energy density 

Turner, Widrow (1988)

super horizon modes 
√

|FµFµ| ∝ ηm±
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1
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√
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ρmag(η) = 〈(B̂αB̂α)(#x, η)〉/(8π) ρmag(η) =
1

4πa4

∫
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r ≡

ρB

ργ
at time of galaxy formation

T∗ ∼ min

[(

TRHM
)1/2

,
(

T 2
RHMP

)1/3]

 temperature at which plasma effects become 
important during reheating

p ≡ m
−

=
1

2

(

1 −
√

1 − 48b − 12c
)

q ≡ m+ =
1

2

(

1 +
√

1 − 48b − 24c
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Lower limit for seed magnetic 
field 


• with a galactic dynamo:


• without a galactic dynamo:


r > 10
−57

r > 10
−8

standard ED: p = 0 q = 1

Primordial magnetic fields from inflation



• Quantum corrections in QED in a curved background (KEK ’10)


QED one-loop vacuum polarization of the photon in a general curved background gives 
rise to terms coupling the Maxwell tensor to the curvature 
(Drummond, Hathrell 1980)

L = −
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4
FmnFmn

−
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4m2
e

(

bRFmnFmn+cRmnFmkFn
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• Background cosmology


• Maxwell tensor 


• radiation gauge 


• Expansion in Fourier modes


a(η) =















a1

(

η
η1

)β

η < η1

a1

(

η−2η1

−η1

)

η ≥ η1.

inflation:  
de Sitter:  

power-law:  

radiation dominated era
β = −1

β < −1

a1 = 1

Fmn = ∂mAn − ∂nAm

A0 = 0, ∂λAλ = 0
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• Mode equation


• Canonical field


F1(η) = 1 +
µ1

m2
eη

2
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• On superhorizon scales


• during power law inflation


• during radiation dominated stage (assuming standard ED) 


z ! 1

Ψ′′ + (ξ1z
−2 + ξ2)Ψ = 0

ξ1 = −(β + 1)(β + 2) ξ2 =
6b(β − 1) + c(2β − 1) + 2dβ

6b(β − 1) + c(β − 2) − 2d
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√
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√
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∣
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∣

∣

Hankel function of the 2nd kind
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1
√

k

(
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−
e
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)
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• Matching gauge potential and its first derivative at              determines Bogoliubov 
coefficient


Primordial magnetic fields from inflation



• Checking for back reaction


➡ Compare energy density associated with perturbations in electromagnetic   
field with total energy density during inflation

Primordial magnetic fields from inflation

Energy momentum tensor



• So that 


• During inflation total energy density

Primordial magnetic fields from inflation

Ratio

r(I) ⇠ �

M4
P

< 1
no strong back 

reaction

KK ‘10



• What about the curvature perturbation in this model?     (KK ’13)

Primordial magnetic fields from inflation

Power law inflation a ∼

(

a

a1

)β

Cosmologically 
relevant magnetic 

fields are generated 
only for β<-2.8.

Spectral index of 
curvature perturbation 

too small



• Slow roll (power-law)  inflation                   Exponential potential of the inflaton

Primordial magnetic fields from inflation
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• Spectral index (Slow roll inflation)

ns = 1 + 2⇥ � 6�

� =
⇥

2
=

1

p

� < �2.8 ) �1.0 < ns < �0.29

ns = 0.972

WMAP9

but
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• Generating the curvature perturbation using the simplest curvaton model


• Spectral index of curvature perturbation:


• Nearly scale invariant spectrum:            

Primordial magnetic fields from inflation

ns = 1 + 2ησσ − 2ε
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σ̈ + 3Hσ̇ + Vσ = 0

Lyth, Wands ’02 
Bartolo, Liddle ‘02



• Curvaton becomes massive when m~H after inflation.


• It decays instantaneously when 

Primordial magnetic fields from inflation

Γσ = Hdecay
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curvaton 
subdominant at 

decay

P
φ
ζ ≤ 10

−12

r > 10
−57

Regions 
allowed by 
constraints:

KK ‘13
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curvaton 
dominant at 

decay

P
φ
ζ ≤ 10

−12

r > 10
−57

Regions 
allowed by 
constraints:

KK ‘13
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• Model building                                 Check list


✓ Constraints from 


➡ nucleosynthesis


➡ gravitational wave production


✓ Back reaction during inflation (magnetic as well as electric fields)


✓ Strong coupling problem


✓ Complete model including curvature perturbations 

Primordial magnetic fields from inflation

S = −

1

4

∫
d4x

√

−gf2(φ)FµνFµν

(Ferreira, Jain, Sloth ’13)

(Demozzi et al. ’09)

(Caprini, Durrer ’01)
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Cosmological magnetic fields and the CMB

• Origin of magnetic fields in the very early universe

• Stochastic magnetic field

window function

pivot scale 

upper cut-off

⇥B⇤
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◆nM

W (k, km)

M = S,A

W (k, km) = �� 3
2 k�3

m e�(k/km)2

damping scale

Assumptions

Most general form: 
helical magnetic field

Example of helical magnetic field 
structure: Filament eruption in solar 

corona modelled by twisted flux rope

Torok & Kliem (2005) 

where 



• More on the magnetic field spectrum...


kmThe damping scale 
determined by dimensionless Alfvén velocity and 
Silk damping scale (Subramanian, Barrow 1998)

k�2
m = V 2

Alfk
�2
Silk

km ' 200.694

✓
B

nG

◆�1

Mpc�1largest damped scale

ΛCDM best fit WMAP7 �b = 0.0227h�2 h = 0.714
maximal wave number

(damping of nonlinear Alfvén waves)

Jedamzik, Katalinic, Olinto (1998): damping of 
linear Alfvén waves

�m ' 30

✓
B

nG

◆
kpc

damping scale

CMB anisotropies 

First approach to damping 



CMB temperature 
anisotropies and 

polarisation

contribution to perturbations of 
energy density, anisotropic 

stress and  to baryon velocity 
via Lorentz force

magnetic field 

21 cm line 
signal

Matter power 
spectrum

LSS

Contribution to cosmological perturbations

scalar, vector 
and tensor 

modes

A s s u m p t i o n : 
magnetic energy 
density does not 
contribute to total 
background energy 
density

Cosmological perturbation 
theory in a nutshell:

 linear
 small perturbations of 

Friedmann-Robertson-
Walker metric

 3 types of perturbations: 
scalar, vector, tensor modes



Primary CMB anisotropies and polarisation induced by 
contribution of helical magnetic field

ANGULAR POWER SPECTRA FOR SCALAR, VECTOR AND TENSOR MODES
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• Bulk motions of electrons along the line of sight 
induce secondary temperature fluctuations in the 
postdecoupling, reionized universe.

• In the presence of a magnetic field not only the 
scalar mode but also the vector mode source bulk 
motions.

Fluctuations in baryon energy density 
along line-of-sight change number density 
of potential scatterers for CMB photons, 
thus change scattering probability and 

visibility function.

Secondary CMB anisotropies



Induced temperature 
anisotropies

KK ‘14

Future observations with 
ALMA might reach 

Credit: ALMA (ESO/NAOJ/NRAO)

Atacama Large Millimeter/submillimeter Array (ALMA): ALMA -the 
largest astronomical project in existence- is a single telescope of 
revolutionary design, composed of 66 high precision antennas 
located on the Chajnantor plateau, 5000 meters altitude in northern 
Chile.

Secondary CMB  
anisotropies



Effect of magnetic mode on the linear matter power 
spectrum and 21cm line signal

• Total linear matter power spectrum: primordial curvature mode + magnetic mode

•

KK 2021

JCAP11(2021)044

Figure 7. Linear matter power spectrum for three thermal neutrinos (TH) and three non-thermal
neutrinos (NT, z

TH

eq
) with distribution function (2.1) for di�erent choices of the magnetic field

parameters (B0[nG], nB). Upper panel: the total linear matter power spectrum of the adiabatic mode
(ad) and the compensated magnetic mode (CMF) is shown together with data points from BOSS
DR9 Ly-– forrest [42] and SDSS [43]. The light dotted and dashed-dottted lines indicate the three
neutrino thermal magnetic mode and the three neutrino non-thermal pure magnetic mode solutions,
respectively. z

TH

eq
denotes that the cosmological parameters have been adjusted so that the redshift of

radiation-matter equality in the non-thermal model is the same as that in the non-thermal one (see
details in the text). Lower panel: relative change of the linear matter power spectrum w.r.t. to the
three thermal neutrino model (TH).

Moreover, it is found that the amplitude of the linear matter power spectrum of the three
neutrino non-thermal pure compensated magnetic mode is suppressed in comparison to the one
in the three neutrino thermal pure compensated magnetic mode model. This is the opposite
behaviour of the adiabatic, primordial curvature mode where the amplitude is larger in the
case of the three non-thermal neutrino model. The suppression of the matter perturbation
of the three non-thermal neutrino compensated magnetic mode is related to the diminished
coupling to the Lorentz term because of a larger cold dark matter density parameter. Thus
magnetic field spectra with larger amplitudes or stronger tilt can be compensated by light
neutrinos with a non-thermal phase space distribution.
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21 cm line signal: change in 
brightness temperature of CMB due 

to hyperfine transition in neutral 
hydrogen atoms along line of sight



Simulations: 21cm line signal

z=32

B=5 nG, nB=-1.5 B=5 nG, nB=-2.2

KK 2019



Simulations: 21cm line signal

z=32

B=5 nG, nB=-2.9

KK 2019



Observations

• Average 21 cm line signal

KK 2019



Magnetic Fields in Cosmology

Evolution 
and 

dissipation

3

Observational 
signature?



Cosmological magnetic fields and the CMB

 Before decoupling of photons

 viscous damping

 After decoupling of photons

 decaying MHD turbulence

 ambipolar diffusion

There is also damping around neutrino 
decoupling at around z~        when a 
black body spectrum is always restored. 
(no spectral distortions)

10
10

Damping of magnetic fields

energy injection

change in thermal  
and ionisation history



Damping in the pre-decoupling era 

• Fast magnetosonic modes: damp similarly to sonic 
waves (Silk damping)

• Slow magnetosonic and Alfvén modes:  overdamped 
limit

kd = kγdamping wave number

Subramanian, Barrow 1998 
(nonlinear treatment)

damping wave number kd =

kγ

vA cos θ

inverse of usual photon diffusion scale

Alfvén  velocity vA ∼ B0/
√

ρ + p

vA = 3.8 × 10
−4

(

B0

1nG

)

a n g l e b e t w e e n 
b a c k g ro u n d fi e l d 
direction and wave 
vector

Jedamzik, Katalinic, Olinto 
1998In a magnetized plasma: 3 additional modes



 Ambipolar diffusion

After decoupling 
radiative viscosity 
dramatically drops. 
However magnetic 
fields can still be 
damped.

Decaying MHD turbulence

After decoupling turbulence no 
longer suppressed, nonlinear 
interactions transfer energy to 
smaller scales, dissipating 
magnetic field on large scale, 
inducing MHD turbulence to decay.

non helical

(open debate on inverse 
cascade for non helical 
fields: Kahniashvili et al. 

’13, ’14, ’15)  

Damping in the post-decoupling era



Γ = Γin + Γdecay

Ṫe = −2
ȧ

a
Te +

xe

1 + xe

8ργσT

3mec
(Tγ − Te) +

xeΓ

1.5kBne

Γin ∝ (1 + z)3.625(1 − xe)/xe

Γdecay ∝ (1 + z)5.5

important at late times

z < 100

important at early times

z > 100

Ambipolar diffusion

Decaying MHD turbulence

Evolution of electron 
temperature (Sethi, Subramanian 
’05)

KK, Komatsu ‘15



CMB spectral 
distortions 

CMB temperature 
anisotropies and 

polarisationenergy injection 

magnetic field 

plasma interactions induce partly 
decay/damping 

21 cm line 
signal

Evolution/dissipation and observational effects



magnetic field 
dissipation contributes

⌧tot = ⌧reio + ⌧high�z

CEE
`

at low l not 
affected

determined by 
�⌧(B0, nB)

Effect of post-decoupling magnetic field damping on 
CMB anisotropies 

CTT
` ! CTT

` e�2⌧tot

KK, Komatsu ‘15

The 95% CL upper bounds are B0 < 0.63, 0.39, and 
0.18 nG for nB = −2.9, −2.5, and −1.5, respectively.
modified version of CLASS + montepython



Many open questions with respect to cosmological magnetic fields:


Generation mechanism?


Observational tracers? Effects are small and often difficult to disentangle 
from other effects (“degeneracy” with other cosmological parameters)


Prospects: 


more data, also different frequencies…cross correlate different data 
sets…


advance model building: theoretical understanding of evolution of 
large scale magnetic fields: numerical simulations

Conclusions


