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1 Introduction

1.1 History and Observations

Prior to 1956, it seemed obvious to most physicists that the universe should respect the
parity symmetry. Parity is a spacetime transformation under which spatial coordinates
are negated,

x → −x . (1)

Under this transformation, vectors transform to minus themselves and pseudovectors
(sometimes called axial vectors) are invariant. For example, angular momentum and spin
are axial vectors, as they are invariant under parity. The belief that the laws of physics
respect parity was not completely unjustified. A great deal of atomic and subatomic
experimental physics in the early 20th century was based on the spectroscopy of atoms
and nuclei. Transitions between energy levels in these bound systems satisfy selection
rules that strongly support parity invariance for electromagnetism and the strong nuclear
force. The weak force has no such bound states, so it was not immediately clear that the
weak nuclear force violated parity.

The discovery of parity violation arose from the work of T. D. Lee and C. N. Yang in
1956. They were working on a problem known as the τ -θ puzzle. Experimentalists had
identified two mesons, known at the time as τ+ and θ+. Both had the same mass and
the same lifetimes, but different decay products,

θ+ → π+ + π0 , (2)
τ+ → π+ + π+ + π− , (3)

decaying into two and three pions respectively. At that time, it seemed the equal masses
and lifetimes of these two particles could not just be a coincidence; τ+ and θ+ had to
be related somehow. Since the pion has negative parity in its ground state, this implied
that the final state of the θ+ decay has positive parity while the final state of the τ+

decay has negative parity. Yang and Lee proposed that τ+ and θ+ were the same particle
[10], which is now known as K+. This assertion implies that the weak nuclear force
responsible for the K+ decay is not symmetric under parity, and so it does not conserve
parity. Left-handed and right-handed particles have different weak nuclear interactions.

Lee and Yang proposed experiments that could directly and unambiguously determine
whether or not the weak force conserves parity [10]. One of these was carried out by C.
S. Wu between 1956 and 1957 [19]. In this experiment, depicted in Fig. 1, 60Co was
cooled and then polarized using a magnetic field. The spins of the 60Co nuclei align with
the magnetic field, providing a known pseudovector j. When 60Co beta decays, it emits
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Figure 1: Diagram of C. S. Wu’s experiment [19]. A magnetic field B polarizes the spin
j of a 60Co nucleus. Detector 1 is arranged to detect electrons that emerge from the beta
decay event with angle j · p = jp cos(θ). Detector 2 is arranged to detect electrons that
emerge from the beta decay event with angle j · p = −jp cos(θ). The events detected by
detectors 1 and 2 are related through the combination of a parity transformation p → −p
and a rotation by an angle π around j.

an electron and an unobserved electron antineutrino. The decay product nucleus, 60Ni,
is populated in an excited state that emits two gamma rays before reaching its ground
state. The total decay process is,

60Co → 60Ni + e− + ν̄e + γ + γ . (4)

The gamma rays can be observed and the anisotropy of their angular distribution indicates
the level of polarization in the original 60Co. The momentum of the electron can be
detected, and used to form the pseudoscalar quantity,

p · j = pj cos(θ), . (5)

Here θ is the angle between the orientation of the polarized 60Co and the electron’s
momentum. Since momentum is a vector, which is odd under parity, and spin is a
pseudovector, which is even, p · j is parity odd.

A parity transformation takes the azimuthal and polar angles,

P : (ϕ, θ) 7→ (ϕ+ π, π − θ). (6)

The azimuthal angle can be rotated back to its original value without changing the
orientation of the polar axis, which is parallel with the fixed vector j in the experiment.
Up to a rotation, parity transforms,

P : cos(θ) 7→ cos(π − θ) . (7)

By counting the rate of electrons resulting from the polarized 60Co decays at two angles,
θ and π − θ, the amount of parity asymmetry can be determined,

α =
N(θ)−N(π − θ)

N(θ) +N(π − θ)
. (8)
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Where N is the total number of electrons detected in a fixed amount of time for a fixed
amount of 60Co. In Wu’s original experiment, the electron detector’s angle was fixed and
the orientation of the magnetic field was inverted between runs to change the detector’s
angle.

Wu’s experiment clearly indicated a large amount of parity violation. Due to uncer-
tainty in the exact amount of polarization achieved, Wu could only put a lower bound
on the magnitude of α, but that lower bound was a staggering 70% [19]. We now know
that the value is consistent with 100% parity violation. That is, the weak nuclear force
is maximally parity violating.

The sign of α from Wu’s experiment is negative, meaning the electron’s momentum
is anti-aligned with the 60Co spin. The 60Co have spin J = 5, and in the magnetic field
Jz = 5. The resulting 60Ni has Jz = 4, so from the conservation of angular momentum,
both the electron and the antineutrino must have Jz = +1/2. From the anti-alignment
of the electron momentum with the nuclear spin, we can deduce that the electron is
anti-aligned with its own spin, so it is a left-handed particle. This proves that the weak
nuclear force couples to only left-handed particles and right-handed antiparticles, and not
right-handed particles or left-handed antiparticles.

Another experiment was conducted at the same time by L. Lederman’s group, who
had been in contact with Lee, Yang, and Wu about their parity investigations. This
experiment involved the decay of pions into muons, which then decay into electrons.
Lederman’s results were ready for publication before Wu’s team had completed all of
their tests, and Lederman agreed to coordinate the publication of both experiments since
communications with Wu had been crucial to Lederman’s experiment. Both articles
appear one after another in the same issue of Physical Review [19, 8]. Lee and Yang were
awarded the Nobel Prize within a year of these publications.

1.2 Spacetime Symmetries

Parity is a spacetime transformation. To understand its role in physics and the im-
plication of its violation, we first need to understand its role as a candidate spacetime
symmetry. In special relativity, the spacetime symmetries are Poincaré transformations,
which include both Lorentz transformations and translations. Lorentz transformations
are global, homogenous, linear transformations that leave to form of the metric tensor,

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (9)

unchanged. Consider the linear coordinate transformation,

xµ = Λµ
ν x̃

ν . (10)

The metric tensor in the new coordinate system x̃µ is

η̃µν =
∂xρ

∂x̃µ
ηρλ

∂xλ

∂x̃ν
(11)

= Λρ
µηρλΛ

λ
ν . (12)
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If this transformation is an isometry (it leaves the form of the metric unchanged), then,

ηµν = Λρ
µηρλΛ

λ
ν . (13)

This is the defining property of Lorentz transformations. As a matrix equation, without
indices for components, we could simply write it as ΛTηΛ = η. Any matrix that satisfies
this property is a Lorentz transformation, and the set of these matrices form the Lorentz
group.

Taking the determinant of Eq. (13) we find, Det(Λ)2 = 1, so there are two types of
Lorentz transformation, ones with determinant +1 and ones with determinant -1. The
former are known as proper Lorentz transformations. An important subset of the proper
Lorentz transformations is the set of matrices that can be parameterized in such a way
that the limit of the parameters going to zero recovers the identity matrix. For example,
consider rotations around the z-axis,

Rµ
ν =


1 0 0 0
0 cos(ϕ) − sin(ϕ) 0
0 sin(ϕ) cos(ϕ) 0
0 0 0 1

 . (14)

If we take ϕ → 0, we recover the identity. Similarly, if we look at a boost by velocity
vµ = (1, v, 0, 0),

Bµ
ν =


cosh(w) sinh(w) 0 0
sinh(w) cosh(w) 0 0

0 0 1 0
0 0 0 1

 , (15)

where v = tanh(w). Taking v → 0 (w → 0) also recovers the 4×4 identity matrix. The
subset of matrices that satisfy this property can also be shown to preserve the direction
of time. If ∆t > 0 in one reference frame, then ∆t̃ > 0 in another that is related to
the first through one of these transformations. Thus, this subgroup is called the proper
orthochronous Lorentz group. It is the largest subgroup that is not equal to the whole
group.

All other Lorentz transformations are obtained by applying a parity transformation,

Pµ
ν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (16)

a time reversal transformation,

Tµ
ν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (17)

or both to a proper orthochronous transformation. Both of these discrete transformations
have determinant −1.

Asking whether the laws of physics are invariant under parity, time reversal, both, or
neither, is another way to ask the question: how Lorentz invariant is the universe? Is
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the universe invariant under the full Lorentz group, or only invariant under a subgroup
of the full group?

At a minimum, the principle of relativity seems to require invariance under proper
orthochronous Lorentz transformations. These are the ones that relate the coordinates
of observers living in the same universe. If we find two inertial observers, we can al-
ways relate their measurements of the same events via a proper orthochronous Lorentz
transformation.

The question of parity violation and time reversal is less clear. We cannot imagine
a physical observer living in the same universe as us whose coordinates are related to
our own through a parity or time reversal transformation. Instead, we must perform a
more abstract thought experiment: what would a different universe that is related to our
own through a parity transformation or time reversal look like? Since such a universe is
not causally connected to our own, we cannot observe the same events and compare our
measurements directly, so there would be no inconsistency if the laws of physics violated
these discrete transformations.

From particle physics, we now know that the universe does not respect P. There is
another discrete spacetime symmetry in quantum field theory known as charge conjuga-
tion (C), which swaps particles for their antiparticles, leaving their chirality unchanged.
Under this symmetry, a left-handed fermion would be swapped for a left-handed anti-
fermion. The former couples to the weak force, while the latter does not. Thus, Wu’s
and Lederman’s experiments also demonstrate that charge conjugation is violated, as Lee
and Yang had already predicted [10, 19, 8].

In 1964, observations of neutral kaon decays by J. Cronin and V. Fitch showed that
the combination CP is also violated [4]. There is a famous theorem, which mathematically
proves any quantum field theory that is invariant under the proper orthochronous Lorentz
group must be invariant under the combination CPT, known as the CPT theorem. Thus,
observations of CP violation imply T violation.

Based on these results, the universe appears to be quite stingy with the spacetime
symmetries it respects. The laws of physics are invariant under only the bare minimum
subgroup of the full Lorentz group required for the principle of relativity to hold. Since
this is true on small scales for particle physics, this might also be true on large scales
for cosmology. There are several phenomena, such as dark matter, dark energy, and
the inflationary physics of the early universe, that could involve parity-violating physics.
Since there is no reason these phenomena need to respect the parity symmetry, we should
not assume that they do.

1.3 Parity for Fields

1.4 Preliminaries

Fourier transformations of fields are defined,

f(k) =

∫
d3xe−ix·kf(x) , (18)

where the same symbol is used for the field and its modes. The two are distinguished by
the symbol used for the spatial argument. Inverse Fourier transforms are,

f(x) =

∫
d3k

(2π)3
eix·kf(k) . (19)
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Importantly, this means each Dirac delta function in Fourier space is always accompanied
by a factor of (2π)3. For example, the matter power spectrum is defined as,

⟨δm(τ,k)δm(τ,k′)⟩ = (2π)3δ
(3)
D (k+ k′)Pmm(τ, k) . (20)

We will make use of the short-hand notation for Fourier space integrals,∫
q

f(q) ≡
∫

d3q

(2π)3
f(q) , (21)∫

q,q′

f(q)g(q′) ≡
∫

d3q

(2π)3
d3q′

(2π)3
f(q)g(q′) , (22)

and so on.

1.5 Scalar Fields

Under parity, a scalar field f(x) transforms as,

P : f(x) 7→ f(−x) . (23)

Similarly, the modes of the field transform according to

P : f(k) 7→ f(−k) . (24)

If f(x) is a real-valued field, its modes satisfy f(−k) = f(k)∗. Parity replaces the modes
of a field with the complex conjugate of the modes. One immediate implication of this
is that the N-point autocorrelation function of the field in Fourier space is mapped to its
complex conjugate by the parity transformation,

P : ⟨f(k1)f(k2)...f(kN−1)f(kN)⟩ 7→ ⟨f(k1)
∗f(k2)

∗...f(kN−1)
∗f(kN)

∗⟩ . (25)

Therefore, the parity-violating part of any scalar field’s N-point spectrum is the imaginary
part of that spectrum.

We can immediately conclude that a field’s auto power spectrum,

⟨f(τ,k)f(τ,k′)⟩ = (2π)3δ
(3)
D (k+ k′)P (k) , (26)

cannot be sensitive to parity. The power spectrum is an average over the squared ampli-
tudes of the field’s modes: f(τ,k)f(τ,−k) = |f(τ,k)|2, which is purely real.

The situation for the bispectrum,

⟨f(k1)f(k2)f(k3)⟩ = (2π)3δ
(3)
D (k1 + k2 + k3)B(k1, k2, k3) , (27)

is less immediately clear. One helpful observation is that we need to form a pseudoscalar
quantity to have a parity-odd, scalar-like statistic. Since there are no clear candidates for
a fundamental pseudoscalar, we must construct one ourselves, by taking the dot product
of a pseudovector and a vector.

We can construct a pseudovector by taking the cross product of two vectors, for
example k2 × k3. Now we need a third vector that is linearly independent of k2 and k3

to form the pseudoscalar triple product k1 · (k2 × k3). However, the Dirac delta function
that imposes translational invariance on the bispectrum enforces k1 = −(k2+k3), so the
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Figure 2: Diagram showing the equivalence of parity transformation and a rotation for a
triangle.

triple product must vanish. Rotational invariance implies that there are no other vectors
that the bispectrum can depend on, aside from k1, k2, and k3 , so there is no way to
form a parity-odd three-point function.

A similar line of reasoning is that the three wave vectors of the bispectrum must
form a closed triangle. The parity transformation of a triangle in three dimensions is
equivalent to a rotation. For example, if the triangle lies in the kz = 0 plane, its parity
transformation is the same as a rotation around the kz-axis by π, as shown in Fig. 2.
Thus the bispectrum cannot carry information about parity due to isotropy. This also
means models that break isotropy can result in parity-violating bispectra.

The lowest-order correlation function that is sensitive to parity for a scalar-like field
is the four-point function or trispectrum,

⟨f(k1)f(k2)f(k3)f(k4)⟩ = (2π)3δ
(3)
D (k1 + k2 + k3 + k4)

×T (k1, k2, k3, k4, |k1 + k2|, |k1 + k4|) . (28)

In this case, we have three potentially linearly independent vectors to form the pseu-
doscalar triple product k1 · (k2 × k3). The trispectrum can be decomposed into its real,
parity-even part, and its imaginary, parity-odd part,

T = T (+) + iT (−) . (29)

The parity-odd part must be proportional to the triple product, so we can further pa-
rameterize its shape,

T (−)(k1, k2, k3, k4, |k1 + k2|, |k1 + k4|) = ik1 · (k2 × k3)

× τ (−)(k1, k2, k3, k4, |k1 + k2|, |k1 + k4|) . (30)

The six-dimensional function τ (−) describes the full shape of the parity-odd trispectrum.
Due to translational invariance, the sum of the four wave vectors must vanish, so they
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Figure 3: Diagram of a Fourier space tetrahedron representing a possible trispectrum
configuration.

form a tetrahedron in Fourier space, as in Fig. 3. The wave vector magnitudes k1, k2,
k3, and k4 form four sides of the tetrahedron and the other two sides are diagonals:
|k1 + k2| = |k2 + k3| and |k1 + k4| = |k2 + k3|. The third diagonal, |k1 + k3| = |k2 + k4|
is not independent,

|k1 + k3|2 = k2
1 + k2

2 + k2
3 + k2

4 − |k1 + k2|2 − |k1 + k4|2 . (31)

Since the left-hand side of Eq. (28) is symmetric under the interchange of any two wave
vectors, the function τ (−) must be antisymmetric under the interchange of any two sides
ki and kj.

As an example, consider a random Gaussian field ϕ(x) with a power spectrum P (k).
We can construct a non-Gaussian field that has a term of order ϕ3 and that involves a
triple product of derivatives. For that triple product not to vanish, we need to trans-
form the field so that the derivatives all act on distinct fields. For example, consider
transforming the modes of the field,

ϕ(α)(k) = kαϕ(k) . (32)

Here α is a constant exponent. We can construct the non-Gaussian field,

Φ(x) = ϕ(k) + g−∇ϕ(α)(x) ·
[
∇ϕ(β)(x)×∇ϕ(γ)(x)

]
, (33)

with g− being a constant that determines the level of non-Gaussianity in the field. We
will assume that there is only a small amount of non-Gaussianity and keep only terms
that are linear in g− in what follows. The modes of the non-Gaussian field are

Φ(k) = ϕ(k)− ig−

∫
q1,q2,q3

(2π)3δ
(3)
D (k− q1 − q2 − q3)q1 · (q2 × q3) q

α
1 q

β
2 q

γ
3

× ϕ(q1)ϕ(q2)ϕ(q3) . (34)
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We will compute the leading trispectrum for this field. The full trispectrum is computed
from the four-point correlator ⟨Φ(k1)Φ(k2)Φ(k3)Φ(k4)⟩. If we replace the first three Φ
with ϕ, we obtain one contribution that is linear in g−,

⟨ϕ(k1)ϕ(k2)ϕ(k3)Φ(k4)⟩ = −ig−

∫
q1,q2,q3

(2π)3δ
(3)
D (k− q1 − q2 − q3)q1 · (q2 × q3) q

α
1 q

β
2 q

γ
3

× ⟨ϕ(k1)ϕ(k2)ϕ(k3)ϕ(q1)ϕ(q2)ϕ(q3)⟩ . (35)

The trispectrum results from the six-point function of the Gaussian field being integrated
down to a four-point function.

We could compute the full six-point function of ϕ using Wick’s theorem. However,
this would result in many disconnected terms that vanish. For example, one such term
would be,

⟨ϕ(k1)ϕ(k2)⟩⟨ϕ(k3)ϕ(q1)⟩⟨ϕ(q2)ϕ(q3)⟩ = (2π)3δ
(3)
D (k1 + k2)P (k1)

×(2π)3δ
(3)
D (k3 + q1)P (k3)(2π)

3δ
(3)
D (q2 + q3)P (q1) . (36)

In this term, we have q2 = −q3. But these two wave vectors are in a triple product in
Eq. (35), so if they are parallel this term will vanish. In general, all terms where two q’s
are in the same Dirac delta function will vanish.

The only terms that we need to compute are the ones where each ϕ(ki) is contracted
with a ϕ(qi). One such term is

⟨ϕ(k1)ϕ(q1)⟩⟨ϕ(k2)ϕ(q2)⟩⟨ϕ(k3)ϕ(q3)⟩ = (2π)3δ
(3)
D (k1 + q1)P (k1)

×(2π)3δ
(3)
D (q2 + k2)P (k2)(2π)

3δ
(3)
D (k3 + q3)P (q1) . (37)

This sets qi = −ki for all wave vectors after integration and we find one term in Eq. (35),

(2π)3δ
(3)
D (k1 + k2 + k3 + k4)ik1 · (k2 × k3) g−k

α
1P (k1)k

β
2P (k2)k

γ
3P (k3) . (38)

This has all of the features of a parity-odd trispectrum:

• Dirac delta function for translational invariance

• Purely imaginary

• Pseudoscalar triple product

• Shape is not symmetric under interchange of any two k’s

We can obtain another term by interchanging k1 with k2. This is the term in the
Wick expansion where ϕ(k1) is contracted with ϕ(q2) and ϕ(k2) is contracted with ϕ(q1).
In this case we get kβ

1k
α
2 instead of kα

1 k
β
2 and we get the triple product k2 · (k1 × k3) =

−k1 · (k2 × k3), so overall this term is,

−(2π)3δ
(3)
D (k1 + k2 + k3 + k4)ik1 · (k2 × k3) g−k

β
1P (k1)k

α
2P (k2)k

γ
3P (k3) . (39)

Repeating this reasoning, there are 3! = 6 terms that are obtained by permuting
{k1, k2, k3}. Terms with an even permutation have a positive sign and odd permutations
have a negative sign, so the whole contribution from Eq. (35) is

(2π)3δ
(3)
D (k1 + k2 + k3 + k4)ik1 · (k2 × k3) g−P (k1)P (k2)P (k3)((

kα
1 k

β
2 − kβ

1k
α
2

)
kγ
3 +

(
kα
2 k

β
3 − kβ

2k
α
3

)
kγ
1 +

(
kα
3 k

β
1 − kβ

3k
α
1

)
kγ
2

)
(40)
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The full leading trispectrum has three more contributions. We could have taken the
non-Gaussian term from Φ(k1), Φ(k2), or Φ(k3) instead of from Φ(k4). These contribu-
tions have the same form as the above expression, interchanging on ki for k4. Consider
the term that swaps k1 with k4. It has a triple product k4 · (k2 × k3). From the Dirac
delta function, k4 = −k1 − k2 − k3, so k4 · (k2 × k3) = −k1 · (k2 × k3). That is, we can
always put the triple product in the form k1 · (k2 × k3) up to a sign. Using Eq. (30),
we can isolate the trispectrum shape function τ− by stripping off the delta function and
triple product,

τ−(k1, k2, k3, k4) = g−

(
kα
1 k

β
2k

γ
3P (k1)P (k2)P (k3)∓ 23 permutations

)
, (41)

where the permutations are of {k1, k2, k3, k4}, even permutations receiving a positive
sign and odd permutations receiving a negative sign. Due to the antisymmetry of the
shape, the trispectrum vanishes unless all three exponents, α, β, and γ are distinct.
In this example, the trispectrum has no dependence on the diagonals, so it is only a
four-dimensional function.

This kind of template can be used to set up initial conditions for N-body simulations
to investigate how the presence of a primordial parity violating trispectrum affects large-
scale structure (LSS), as was done in Ref. [6].

1.6 Vector Fields

Under parity, a vector field V(x) transforms,

P : V(x) 7→ −V(−x) . (42)

For the modes of the field, we can choose an orthonormal basis ei(k) such that,

V(k) = ei(k)V
i(k) , (43)

and

ei(k) · ej(k)∗ = δij . (44)

One natural candidate for a basis vector is the unit vector associated with the gradient
operator, which corresponds to longitudinal modes,

e∥(k) = i
k

k
, (45)

Next, we need to choose a basis for the transverse space perpendicular to e∥(k). To do
this, pick any unit vector in(k) that is not parallel with k. The factor of i is included so
that n(x) is a real-valued field if n(k) is real and n(−k) = −n(k). Then

e+(k) = − k× n(k)√
k2 − (k · n)2

, (46)

is a unit vector perpendicular to e∥(k), and so is,

e−(k) = − ik× (k× n(k))

k
√

k2 − (k · n)2
. (47)
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The basis formed by {e∥(k), e+(k), e−(k)} is the parity basis, since e±(k) are explicitly
even (+) and odd (−) under parity if in(k) is taken to be a vector. Then we can
decompose the vector field’s modes,

V(k) = e∥(k)V
∥(k) + e+(k)V

−(k) + e−(k)V
+(k) . (48)

Here we label the components V ∓(k) with the opposite sign from their associated basis
vectors e±(k) since the components have opposite transformation properties to the basis
vectors under parity. That is,

P : {e∥(k), e+(k), e−(k)} 7→ {−e∥(−k), e+(−k),−e−(−k)} . (49)

P : {V ∥(k), V −(k), V +(k)} 7→ {V ∥(−k),−V −(−k), V +(−k)} . (50)

We can see that ⟨V +(k)V −(k′)⟩ is parity odd, so for a vector field we can access parity
information at the level of the power spectrum. To gain more insight, consider the way
the curl operator, or e∥ acts on the transverse basis vectors,

i
k

k
× e±(k) = ±e∓(k) . (51)

This follows directly from the definitions of the basis vectors and the fact that they form
an orthonormal basis. We can use this to form new basis vectors that diagonalize the
curl operator,

eR/L(k) =
1√
2
(e+(k)∓ ie−(k)) . (52)

Then we find,

k

k
× eR/L(k) = ±eR/L(k) . (53)

The modes that have a positive curl are right-handed and the modes with negative curl
are left-handed, hence the labels of these basis vectors. Under parity, these transform as,

P : eR/L(k) 7→ eL/R(−k) , (54)

so parity swaps the right-handed and left-handed modes.
The parity odd power spectrum can be rewritten,

⟨V +(k)V −(k′)⟩ = 1

2
⟨V R(k)V R(k′)⟩ − 1

2
⟨V L(k)V L(k′)⟩ (55)

so the parity-odd cross-power spectrum from the transverse components of the vector field
measures the difference between power in right-handed modes and left-handed modes. If
the universe violates parity, then the universe distinguishes between right and left.

2 Generating Parity Violation in the Early Universe
In this section, we will study one possible mechanism for generating primordial parity
violation during inflation. As an example, we will analyze the axion-U(1) model. This
section summarizes some results that were first calculated in Refs. [1, 2].
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2.1 Inflation

Rather than give an overview of all of the details of slow-roll inflation, here we will
consider only the most essential feature of this model: the requirement for an early epoch
of near-exponential expansion. If the universe is in a state where it expands exponentially,

a(t) ≃ eHt . (56)

Then the Hubble rate H is nearly constant. In the absence of spatial curvature, the
Friedmann equation,

H2 =
1

3M2
p

ρ̄ , (57)

requires that the mean energy density of the universe, ρ̄ is nearly constant. Here Mp is
the reduced Planck mass. The continuity equation,

˙̄ρ+ 3Hρ̄ (1 + w) = 0 (58)

where the equation of state w ≡ P̄ /ρ̄ is the ratio of pressure to energy density, implies
that w ≃ −1. The dot denotes the derivative with respect to time.

Suppose the energy density is dominated by some scalar(-like) field φ(t,x) = φ̄(t) +
δφ(t,x). If the fluctuations of φ are small, then its total energy density is

ρ̄φ =
1

2
˙̄φ2 + V (φ̄) , (59)

and its pressure is

P̄φ =
1

2
˙̄φ2 − V (φ̄) , (60)

with V (φ) the field’s potential energy density. The equation of state is,

wφ =
1
2
˙̄φ2 − V (φ̄)

1
2
˙̄φ2 + V (φ̄)

. (61)

If the scalar field’s potential energy dominates, V (φ̄) ≫ ˙̄φ2, then wφ ≃ −1. In summary,
we can achieve near-exponential expansion if

• the energy density of the universe is dominated by a scalar field

• that scalar field’s energy density is potential dominated.

Generically, if these conditions are satisfied as some initial condition, the scalar field
would quickly evolve to minimize its potential energy and the exponential expansion
would cease. To have sustained exponential expansion, we also require that the scalar
field evolves slowly. Usually this is achieved by concocting a potential that is flat enough,
so that the scalar field approaches some terminal velocity ˙̄φ ∼ constant. However, other
scenarios such as noncanonical kinetic terms and higher derivative interactions can also
achieve the same effect.

The equation of motion for the scalar field’s background is,

¨̄φ+ 3H ˙̄φ = −V,φ(φ̄) , (62)
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Figure 4: Evolution of the inflaton derivative divided by the Hubble rate for an α-attractor
inflaton potential that agrees well with the CMB measurements of the amplitude and the
spectral tilt of the primordial power spectrum.

where V,φ(φ̄) is the slope of the potential. In the standard slow-roll scenario, assuming
the potential is sufficiently flat, we neglect the acceleration so the background equation
of motion reduces to,

˙̄φ

H
= −V,φ(φ̄)

3H2
. (63)

Using the Friedmann equation,
˙̄φ

H
= −M2

p

V,φ(φ̄)

V (φ̄)
. (64)

To leading order, this quantity is nearly constant, but it can evolve by 10 percent through-
out inflation, as shown in Fig. 4. This will be quantitatively important below, as the gen-
eration of parity violation will be exponentially sensitive to ˙̄φ/H. However, the evolution
of this quantity does not change the qualitative features of dynamical parity violation in
the axion–U(1) model, so we will treat it as a constant.

We will use conformal time,

τ =

∫ t

−∞
dt a(t) , (65)

when analyzing the evolution of fluctuations during inflation. If the universe expands
exponentially (de Sitter space), then

τ = − 1

Ha(τ)
, (66)

= − 1

H(τ)
. (67)

Here H = aH is the conformal Hubble rate. The conformal time spans τ ∈ (−∞, 0),
where τ → 0 is the asymptotic future. In these coordinates the metric has the form
gµν = a(τ)2ηµν , where ηµν is the Minkowski metric.
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2.1.1 The Axion-U(1) Model

In this subsection, we will describe the Axion-U(1) model in expanding spacetime. We
will refer to the U(1) field as the electromagnetic field. However, it does not need to
correspond to the electromagnetic field of the stand model.

The fundamental quantity of electromagnetism is the Maxwell tensor,

Fµν = ∂µAν − ∂νAµ . (68)

where the electromagnetic potential 4-vector Aµ has components (−ϕ,A). The electric
field is related to Fµν though

F0i = A′
i +∇iϕ (69)

= − Ei . (70)

The magnetic field is related,

Fij = ∇iAj −∇jAi (71)
= ϵijkBk . (72)

The standard Lagrangian of the electromagnetic field is,

LU(1) = − 1

4
FµνF

µν , (73)

=
a−4

2

(
|E|2 − |B|2

)
. (74)

Using this, we can find the energy density and isotropic pressure,

ρU(1) =
a−4

2

(
|E|2 + |B|2

)
, (75)

PU(1) =
a−4

6

(
|E|2 + |B|2

)
. (76)

Although the electric field is a parity-odd vector and the magnetic field is a parity-
even pseudovector, the Lagrangian is explicitly parity even since it involves only the
magnitudes of these fields.

A possible generalization of this construction is to include the dual electromagnetic
tensor,

F̃µν =

√−g

2
ϵµνρλF

ρλ . (77)

where ϵµνρλ is totally antisymmetric and ϵ0123 = 1. We find that the dual Maxwell tensor
swaps the electric and magnetic fields in the following sense,

F̃0i = Bi , (78)

F̃ij = ϵijkEk . (79)

This means that,

−1

4
FµνF̃

µν = a−4E ·B , (80)
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which is parity odd. Including this in the Lagrangian would seem to explicitly violate
parity, but in fact, this can be shown to be a total (covariant) derivative, so it does not
affect the classical equations of motion.

We can include a term like this by coupling it to a pseudoscalar field φ,

LCS = −g

4
φFµνF̃

µν . (81)

Here g is the coupling constant between φ and the U(1) field, it has dimensions of
(mass)−1. This is known as a Chern-Simons coupling between the U(1) electromagnetic
gauge field and the pseudoscalar φ, which in this context is called an axion-like field,
or sometimes just an axion. As long as φ is a pseudoscalar, the Chern-Simons term is
explicitly parity invariant, since it is the product of two parity-odd quantities. However,
as we will see below, this coupling can dynamically break parity.

A straightforward method for figuring out how the Chern-Simons term alters the
Maxwell equations is to factor the two terms involving Fµν in the Lagrangian,

−1

4
Fµν

(
F µν + gφF̃ µν

)
. (82)

Then the terms in the parentheses have contributions of the form,

F 0i + gφF̃ 0i = a−4
(
Ei − gφBi

)
, (83)

F ij + gφF̃ ij = a−4ϵijk (Bk + gφEk) . (84)

The equations of motion, the sourced Maxwell equations (Coulomb’s law and the Ampère-
Maxwell law), are obtained by varying Eq. (82) by the gauge potential Aµ. We can obtain
those equations by varying only the gauge potential in the Fµν outside of the parentheses.
So we can replace E → E − gφB and B → B + gφE in the standard sourced Maxwell
equations to obtain the Axion-U(1) equations.

∇ · (E− gφB) = 0 , (85)
(E− gφB)′ −∇× (B+ gφE) = 0 . (86)

The unsourced Maxwell equations are unchanged,

∇ ·B = 0 , (87)
B′ −∇× E = 0 . (88)

Using these, we can simplify the sourced equations,

∇ · E = g∇φ ·B , (89)
E′ +∇×B = g (φ′B+∇φ× E) . (90)

Substituting the left-hand side of the above equation for the definition of the electric and
magnetic fields in terms of the gauge potential,

E′ +∇×B = −A′′ +∇2A+∇ (ϕ′ +∇ ·A) . (91)

Choose a gauge where φ′ +∇ ·A = 0,

E′ +∇×B = −A′′ +∇2A . (92)
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We also find

∇ · E = −∇ ·A′ −∇2ϕ , (93)
= ϕ′′ −∇2ϕ . (94)

Defining the D’Alembert wave operator 2f ≡ −f ′′+∇2f , the equations of motion become

−2ϕ = g∇φ ·B , (95)
−2A = −g (φ′B+∇φ× E) . (96)

2.1.2 Linearized Axion-U(1) Inflation

We want to solve the linearized version of Eqs. (95–96) assuming φ is the inflaton. First,
note that ∇φ and B = ∇×A are both linear in fluctuations, so Eq. (95) indicates that
the sourced fluctuations of ϕ are at least second order. We can thus neglect the scalar
electromagnetic potential. The equation for the linearized vector potential becomes,

−2A = −gφ̄′∇×A . (97)

In Fourier space, we can decompose the vector potential into its left and right modes,

A(τ,k) = eR(k)AR(τ,k) + eL(k)AL(τ,k) , (98)

where the right and left polarization vectors satisfy Eq. (53). Using,

φ̄′ = a ˙̄φ , (99)

= −
˙̄φ

Hτ
. (100)

and defining,

ξ ≡ g ˙̄φ

2H
, (101)

We find the equation of motion for the right and left modes of the gauge field,

AR/L(τ,k)
′′ + k2

(
1± 2ξ

kτ

)
AR/L(τ,k) = 0 . (102)

This equation can be put in a familiar form by letting x = −kτ and AR/L(τ,k) = fR/L(x),

d2fR/L

dx2
+

(
1∓ 2ξ

x

)
fR/L = 0 . (103)

To remember where we have most likely encountered this differential equation before,
remember that in quantum mechanics the wavefunction for a charged particle of charge
q and mass m in the presence of a Coulomb potential from a charge Q can be decom-
posed through partial wave expansion and separation of variables. Then the Schrödinger
equation for the radial wave function is,

d2Rℓ

dr2
+

(
1− 2η

r
− ℓ(ℓ+ 1)

r2

)
Rℓ = 0 . (104)
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where η = mqQα/k and α is the fine structure constant. By comparing with Eq. (103),
we see that the right and left modes of the gauge field in axion-U(1) inflation satisfy the
radial Coulomb wavefunction equation with ℓ = 0, η = ±ξ, and r = −kτ .

Notice that this means asymptotically far from the center of the potential, r → ∞,
corresponds to asymptotically far in the past τ → −∞ in our case. This makes sense, since
for the Coulomb wave function, the charged particle is essentially a freely propagating
particle with plane wave solutions for its wave function in this regime. Similarly, in
our case, the right and left modes of the photon field have plane wave solutions in the
asymptotic past, which correspond to vacuum fluctuations deep inside the horizon. This
can be seen directly from Eq. (102) in the limit τ → −∞,

AR/L(τ,k)
′′ + k2AR/L(τ,k) = 0 , (105)

which has solutions,

AR/L(τ,k)
′′ ∝ e±ikτ . (106)

Importantly, in this regime, the right and left modes behave the same. We can set up
initial conditions that do not distinguish between right and left photons and therefore are
even under parity. That is, we can assume that inflaton begins with the fields initialized
as vacuum fluctuations, and therefore they have no parity-violating components to begin
with. After evolution under Eq. (102), this party invariant state will evolve to a state
that clearly distinguishes between right and left, as the right and left modes undergo very
different evolution in the regime where τ → 0.

The solutions are expressed in terms of Coulomb Wave functions F0 and G0,

AR/L(τ,k) ∝
(
G0(±ξ,−kτ) + iF0(±ξ,−kτ)

)
. (107)

Unfortunately, to go further and access the degree of parity violation dynamically gen-
erated in this model we must venture into the territory of special functions and their
asymptotic expansions. It is difficult to determine how the amplitudes of the right and
left modes differ at late times if they begin the same. To gain some insight here, we will
make use of a rather crude but instructive approximation. We will analyze the solution
in the asymptotic regimes where x → ∞ and x → 0, and then extrapolate both of these
to match their amplitudes when x ≃ 2ξ. This will give a rough estimate of how different
the amplitudes of the left and right modes have become at late times.

We already know that in early times the modes of both helicities have the same
amplitude. To be concrete we will say,

AR/L = Aie
−ikτ , (108)

in the limit τ → −∞. Next, we assume that g > 0. Making the opposite assumption
simply swaps the behaviour of the right and left modes. For the left-handed modes, in
the τ → 0 limit we have,

d2AL

dx2
+

2ξ

x
AL = 0 , (109)

which is solved by

AL =
√

2ξx
(
ALJJ1

(
2
√
2ξx

)
+ ALY Y1

(
2
√

2ξx
))

, (110)
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where J1 and Y1 are Bessel functions of the first and second kind. At early times, −kτ = x
is large. When the argument of the Bessel functions is large,

J1(z) =

√
2

πz
cos

(
z − 3

4

)
, (111)

Y1(z) =

√
2

πz
sin

(
z − 3

4

)
, (112)

Since the initial vacuum fluctuations are random, we are equally likely to source either
of the J1 or Y1 modes, so to match the expected amplitude from Eq. (108) at x = 2ξ, we
take

|ALY |2 = |ALJ |2 = |Ai|2
π

4ξ
(113)

At late times, −kτ = x is small and approaching zero from below. In the small x limit,

J1(z) ≃
z

2
, (114)

Y1(z) ≃ − 2

πz
, (115)

so the J1 term is decaying while the Y1 is growing. We approximate

|AL(x → 0)| ≃ |Ai|√
4ξ

. (116)

The left modes saturate, and their amplitude approaches a constant, which is suppressed
by a factor of ∼ ξ−1/2 relative to the initial amplitude.

The right handed-modes satisfy,

d2AR

dx2
− 2ξ

x
AR = 0 , (117)

which has the solution

AR =
√

2ξx
(
ARII1

(
2
√
2ξx

)
+ ARKK1

(
2
√

2ξx
))

, (118)

where I1 and K1 are the modified Bessel functions of the first and second kind. When
the arguments of these Bessel functions are larger than 1,

I1(z) ≃
√

1

2πz
ez (119)

K1(z) ≃
√

π

2z
e−z . (120)

We set the expected amplitude for each component to be equal, and match it to the plane
wave solution at the transition when x = 2ξ. Then

|ARI | =
√

2π

ξ
e−4ξ|Ai| , (121)

|ARK | =
√

2

πξ
e4ξ|Ai| . (122)
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Figure 5: Amplitude of the right and left modes of the gauge field during Axion-U(1)
inflation. The blue curve, for the right-handed modes are exponentially enhanced −kτ ≃
2ξ = 4 and saturate around −kτ ≃ 1/(8ξ) = 6.25× 10−2. The left-handed modes, shown
as the dashed red curve, are mildly suppressed across this same regime. The yellow dot-
dashed line shows the expected vacuum fluctuations in the absence of the axion-like field
for reference.

In the future, when x → 0, the behaviour of the modified Bessel functions becomes,

I1(z) ≃
z

2
(123)

K1(z) ≃
1

z
. (124)

so again we find a decaying solution, I1 and a growing solution, K1. We find the amplitude
for the right modes asymptotes to,

|AR(x → 0)| ≃ 1√
2πξ

e4ξ|Ai| . (125)

Based on this reasoning, we find an expected enhancement of right modes of left modes,

|AR(x → 0)|
|AL(x → 0)| ∝ e4ξ . (126)

There is an exponential increase in the amount of right modes. The dynamically generated
parity violation is exponentially sensitive to the value of ξ which is proportional to the
axion-gauge coupling. The amplitudes of the linearized mode functions are shown in
Fig. 5. A more careful analysis reveals that the factor should be eπξ. However, due to
the exponential sensitivity to the ratio ˙̄φ/H and the assumption that this is constant,
one shouldn’t take either of these analyses too quantitatively seriously.

While this exponential, and thus nearly maximal parity violation result is promising,
we have not yet identified how it affects cosmological observables. The first issue is that
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photons quickly redshift away, so even though we may produce an abundance of right
modes compared to left modes, by the end of inflation these make a negligible contribution
to the total energy density. We will not directly observe the photons, and therefore it
may seem that this parity-violating phenomenon is unobservable.

The observable quantity at the end of inflation is the primordial curvature perturba-
tion ζ, which is determined by the fluctuations in the inflaton field,

ζ(τ,k) = −H
˙̄φ
δφ(τ,k) . (127)

While the gauge field is not directly observable, it affects the axion-like inflation through
the inverse decay process,

Aµ + Aµ → δφ , (128)

To see this, we need to look at the axion/inflaton equation of motion with its gauge field
coupling,

−2φ+ 2Hφ′ = −a2V,φ(φ)−
g

a2
E ·B (129)

The first term on the left is the standard wave operator accounting for the propagation
of the field’s modes. The second term on the left is Hubble drag. The first term on the
right is the slope of the scalar field’s potential. The last term describes the inverse decay
process, where the excited gauge field modes back react onto the inflaton’s background
and source inflaton fluctuations. Since this is a parity-odd term, it will source parity-odd
fluctuations. By the end of inflation, the inflaton will have two sources of fluctuations:
the usual vacuum fluctuations that are parity even and the gauge-sourced parity-odd
fluctuations.

Interestingly, changing the sign of g cannot affect the sourced inflaton fluctuations. If
we change from g > 0 to g < 0, then we excite the left modes instead of the right modes.
Then we would change the sign of E ·B, so the product gE ·B would stay the same. We
would find,

|AL(x → 0)|
|AR(x → 0)| ∝ e−4ξ . (130)

but ξ now has the opposite sign, thus we are only sensitive to e4|ξ|.
Since the gauge-sourced fluctuations are of order O(A2), the trispectrum of the gauge

modes contributes a correction to the primordial power spectrum.

P (k) =
2π2

k3
As

(
k

kp

)ns−1 [
1 + Asf2(ξ)e

4πξ
]
. (131)

Here f2(ξ) is a slowly varying, nearly power-law function of ξ. The gauge field six-
point spectrum gives rise to an inflaton bispectrum with a nearly equilateral shape,
proportional to e6πξ. There will also be a parity-violating inflaton trispectrum. However,
the computation of the full shape of the trispectrum is an active area of research, as it
is difficult to evaluate such a high-dimensional integral (see [7, 18, 11]). In addition to
these scalar fluctuations, the gauge field in this model also sources chiral gravitational
waves that could be probes using the EB correlations of the CMB fluctuations.
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3 Probes of Cosmic Parity Violation

3.1 Trispectrum

3.1.1 CMB

CMB analysis involves decomposing the temperature and polarization anisotropies into
spherical harmonics on the sky. The CMB polarization is decomposed into E-modes
and B-modes using Stoke’s parameters. The result of these decompositions is a set of
amplitudes aXℓm, where X can either be T , E, or B. The T and E modes are sourced by
scalar fluctuations during inflation, while the B modes are sourced by tensor fluctuations.
Under parity,

P : aTℓm → (−1)ℓaTℓ−m , (132)
P : aEℓm → (−1)ℓaEℓ−m , (133)

P : aBℓm → −(−1)ℓaBℓ−m . (134)

There are many CMB trispectra that we can compute,

⟨aX1
ℓ1m1

aX2
ℓ2m2

aX3
ℓ3m3

aX4
ℓ4m4

⟩ = TX1X2X3X4
ℓ1ℓ2ℓ3ℓ4

. (135)

The average on the left also averages over all of the mi values. If there is an even number
of B’s among the Xi’s, then the trispectrum is parity-odd when ℓ1 + ℓ2 + ℓ3 + ℓ4 is odd.
If there are an odd number of B’s then the trispectrum is parity-odd if ℓ1 + ℓ2 + ℓ3 + ℓ4
is even. The trispectrum on the right of the above equation is related to the primordial
trispectrum from inflation (see Ref. [13] for details).

In general, the CMB is particularly sensitive to one specific shape of primordial trispec-
tra. This is because, in the flat-sky limit, corresponding to high ℓ for all ℓi, the tetrahedra
reduces to 2D shapes in a plane, for which parity is equivalent to a rotation. Then the
trispectrum from scalar fluctuations cannot yield a signal in this limit. The B-modes
can still yield a signal in this regime, although there has been no detection of even the
B-mode power spectrum to date, so these fluctuations may be prohibitively small.

Another regime is the full-sky limit, where ℓ can be small. Here we are severely cosmic
variance limited for many configurations. Since the tetrahedra that we correlate must
have all of their vertices on the last-scattering surface, we cannot probe a significant
number of fully equilateral tetrahedra. If there is a primordial trispectrum that peaks for
these configurations, the CMB will not be very sensitive to it.

However, trispectra peaks on configurations where the diagonal of the tetrahedron is
small, sometimes called collapsed configurations, essentially correlate the power spectrum
in one region of the sky with a power spectrum in another region. One model that
produces a trispectrum of this shape has a U(1) field Lagrangian [?, 17],

L ∝ −f(φ)

4
Fµν

(
F µν + gF̃ µν

)
. (136)

In this model, isotropy is broken during inflation by generating a small electric field
expectation value. This provides a vector which can be used to form the triple-product
ubiquitous in parity-violating statistics, so the structure of the trispectrum is significantly
different than in the Axion-U(1) case. This model is well constrained by the CMB. So far
no evidence of parity violation has been found in CMB trispectrum analysis [5, 13, 16].
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Figure 6: The four-point galaxy correlation function probes tetrahedral shapes formed
by four galaxies, which is sensitive to parity.

3.1.2 LSS

A collection of four galaxies forms a tetrahedron, with one galaxy at each corner. By
selecting one of the galaxies as a reference, there are three vectors r1, r2, and r3 pointing
to the other three galaxies. The lengths of these vectors give the separation between
each galaxy and the reference galaxy. By imposing an ordering r1 < r2 < r3, a sign,
or handedness can be assigned to each collection of four galaxies through the sign of
the triple-product r1 · (r2 × r2). Right-handed collections of four galaxies have a positive
triple product and left-handed collections have a negative triple product. By counting the
abundances of right-handed and left-handed groups of four galaxies, we can determine if
the galaxy statistics is symmetric with respect to right and left, or if they violate parity.
If we bin the configurations of tetrahedra formed by collections of four galaxies, we are
measuring the galaxy four-point function.

Let δg(x) be the galaxy density contrast. The four-point function is,

ζ(r1, r2, r3) = ⟨δg(x)δg(x1)δg(x2)δg(x3)⟩ . (137)

with ri = xi − x. If we count only right-handed configurations we have,

ζR(r1, r2, r3) = ⟨δg(x)δg(x1)δg(x2)δg(x3)⟩r1·(r2×r3)>0 . (138)

and for left-handed configurations,

ζL(r1, r2, r3) = ⟨δg(x)δg(x1)δg(x2)δg(x3)⟩r1·(r2×r3)<0 . (139)

Under parity ζR/L(r1, r2, r3) 7→ ζL/R(r1, r2, r3), so the difference between these two four-
point functions,

ζ(−)(r1, r2, r3) = ζR(r1, r2, r3)− ζL(r1, r2, r3) , (140)

is odd under parity. This is equivalent to weighting the galaxy tetrahedra by the sign of
their triple-product,

ζ(−)(r1, r2, r3) = ⟨sgn(r1 · (r2 × r3))δg(x)δg(x1)δg(x2)δg(x3)⟩ . (141)
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The four-point correlation function in real space is the Fourier transform of the trispec-
trum,

ζ(r1, r2, r3) =

∫
k1,k2,k3

eir1·k1eir3·k3eir3·k3T (k1,k2,k3) . (142)

The effect of weight by the sign of the triple product in real space is to weight by the triple
product over wave vectors in Fourier space, which isolates the parity-odd trispectrum,

ζ−(r1, r2, r3) =

∫
k1,k2,k3

eir1·k1eir3·k3eir3·k3
−ik1 · (k2 × k3)

|k1 · (k2 × k3)|
T (k1,k2,k3) , (143)

=

∫
k1,k2,k3

eir1·k1eir3·k3eir3·k3|k1 · (k2 × k3)|τ−(k1, k2, k3, k4, K12, K14) . (144)

with k4 = −(k1 + k2 + k3) and Kij = ki + kj. The relative abundances of right-handed
and left-handed tetrahedra are directly related to the parity-odd trispectrum.

Binning the full four-point function directly is computationally slow, so measurements
of the four-point function rely on a trick using spherical harmonic transformations of the
density fields to reduce the angular structure of the tetrahedra to a discrete list of angular
indices ℓ1, ℓ2, and ℓ3 [3, 15]. When the sum of these is odd, the configuration is parity-odd.

Two analyses of the BOSS data detected parity violation in the galaxy distribution
[9, 12]. However, a reanalysis of the data with more sophisticated covariance modelling
significantly decreased the detection, so the results are unclear [14]. Future surveys will
help decide if the galaxy distribution preserves parity or not.

3.2 Nonlinear LSS
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