epartment 0 P S S S G a I

Basic Routine

Measure/Test

Brilliant New Ideas

Feedback

Four Big Questions in Cosmology

- Members of the Physical Cosmology Division seek answers to FOUR big questions in cosmology:
 - How did the Universe begin? [What is the physics of inflation?]
 - What is the origin of the cosmic acceleration? [What is the nature of dark energy?]
 - What is the nature of dark matter?
 - What is the mass of neutrinos?

We use both theory and observational data to seek answers to these major questions

Main Tools

- Cosmic Microwave Background (CMB)
 - Fossil light of the Big Bang
 - Excellent probe of the early universe: Inflation

- Large-scale structure (LSS): distribution of galaxies and galaxy clusters
 - Probing the late-time universe: dark energy and mass of neutrinos

Afterglow Light Pattern 380,000 yrs.

Inflation

Quantum Fluctuations

1st Stars about 400 million yrs.

Dark Ages

Big Bang Expansion

127 hillion voore

Accelerated Expansion

WMAP

Development of Galaxies, Planets, etc.

10 Members (as of today)

- Director
 - Prof. Dr. Eiichiro Komatsu
- Scientific staff member
 - Dr. Fabian Schmidt
- Junior members
 - Three postdoctoral fellows
 - Five Ph.D. students
- 4 female; 6 male members

500 Mpc/h

Chi-Ting Chiang [now at Stony Brook, NY]

How does the cosmic structure depend on the surrounding environments?

Example: Latest PhD Thesis

Divide the survey volume into many sub-volumes V_L, and compare locally-measured power spectra with the corresponding local over-densities

New Theoretical Formula

$$P(k, a | \overline{\delta}) = \tilde{P}\left(k, a \left[1 - \frac{1}{3}\overline{\delta}(a)\right]\right) \left[1$$

• Do we see this in the real universe?

RA [degree]

A Plenty of Exciting New Data Are Coming to Our Group 2016 2019 2025 2030

Galaxy survey in 0.8<z<2.4 using a 8-m telescope Polarisation of CMB to in Hawaii detect gravitational waves Dark energy, neutrino mass Inflation

Galaxy survey in 1.9<z<3.5 using a 10-m telescope in Texas

Dark energy, neutrino mass

A Typical Thesis Structure

- Chapter I: Introduction
- Chapter 2: Brilliant New Idea
- Chapter 3: Methodology and Tests
- Chapter 4: Application to the Real Data
- Chapter 5: Exciting New Results
- Chapter 6: Conclusions

Possible Thesis Projects (FS)

- Modified Gravity (MG) and Inflation, using the LSS
 - Understanding the relation between galaxies, dark matter, and the initial conditions from inflation
 - Testing General Relativity on cosmological scales, using measurements of velocities and gravitational lensing
 - Looking for imprints of inflation in large-scale structure: gravitational waves and mode coupling (non-Gaussianity)

