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Chapter 1

Expansion of the Universe

One of the main goals of cosmology is to figure out how the universe expands as a function of time.

1.1 Expansion and Conservation

To describe the evolution of the average universe, one needs only two kinds of equations:

1. The equation that relates the density and pressure of constituents of the universe (such as
baryons, cold dark matter, photons, neutrinos, dark energy) to the expansion of the universe,
and

2. The equation that describes the energy conservation of the constituents.
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Consider a line connecting two arbitrary points in space (which is expanding), and call it L. As the
universe expands, L changes with time. As you will derive in homework using General Relativity,

the equation of motion for L is given by

- ArG
L(t) = ==—~L(t) D [pi(t) + 3P:(1)] (1.1)
i
where p;(t) and P;(t) are the energy and pressure of the ith component of the universe, respectively.
Here, note that the absolute value of L does not affect the equation of motion for L. Therefore,
one may define a dimensionless “scale factor,” a(t), such that L(t) = a(t)z, where z is a time-

independent separation called a “comoving” separation, which is in units of length. In cosmology,



we often encounter the Hubble expansion rate, H(t), which is defined by

H(t) = ZZ) (1.2)

The dimension of this quantity is 1/(time). The age of the universe can be calculated from the
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above definition of H, which gives H (t)dt = da/a. Now, if we know H as a function of a instead of

da
t:/aH(a)' (1.3)

Another interpretation of H is found by writing L(t) = H(t)L(t), which tells us that H(t)
gives a relation between the distance, L, and the recession velocity, L. For this reason, it is often

t, we obtain

convenient to write H(t) in the following peculiar units:
H(t) =100 h(t) km/s/Mpc,

where h is a dimensionless quantity. The current observations suggest that the present-day value
of his h(tioday) =~ 0.7.F

Dividing both sides of equation (1.1) by L and using L(t) = a(t)z, we find one of the key
equations connecting the energy density and pressure to the expansion of the universe:

i) __inG

ai =y () + 3R (1.4)
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As expected, positive energy density and positive pressure slow down the expansion of the universe.f
This equation cannot be solved unless we know how p; and P; depend on time. How p; depends
on time is given by the energy conservation equation, while how P; depends on time is usually given
by the equation of state relating P; to p; and other quantities.
As you will derive in homework, the energy conservation equation is given by

S lt) + 350 S nie) + R =0 (15)

Equation (1.5) is general and does not assume presence or absence of possible interactions between

i

different components. If we assume that each component is conserved separately, then we have

i)+ 350 10 + PA0] = 0 (1.6)

*The most precise value of h(tioday) to date from the direct measurement using low-z supernovae and Cepheid
variable stars is h(tioday) = 0.742 £ 0.036 (Riess, Macri, et al., ApJ, 699, 539 (2009)).
If we ignore the effect of pressure relative to that of the energy density (which is always a good approximation

for non-relativistic matter), and write p(t) in terms of the total mass enclosed with a radius L, >, pi(t) = %, then
equation (1.1) becomes
i_ GM
=—

which is the familiar Newtonian inverse-square law. Although one must not apply the Newtonian mechanics to
describe the evolution of space (because Newtonian mechanism assumes static space), this is a convenient way to
understand equations (1.1) and (1.4).



for each of the ith component. Note that the second term contains the pressure, and thus how the
energy density evolves depends on the pressure.!

Looking at equations (1.4) and (1.5), one might think that we cannot solve for a(t) unless we
have the equation of state giving P;(t) as a function of p;(¢) etc. While in general that would
be true, for these equations a little mathematical trick lets us combine equations (1.4) and (1.5)
without knowing the evolution of P(t)!

First, rewrite equation (1.4) as

e )= 47C S 1)+ R0 (1.7)

Using equation (1.5) on the second term of the right hand side, we get
a(t) 8rG 47G a(t) )
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a(t)i(t) = 877Ga t)a sz 47TGCL sz
l(aQ), _ 47TG Z il 477Ga Z e (1.8)
As this has the form of A= BC + BC = (BC)', it is easy to integrate and obtain:

() = S Z pill (19)

where £ is an integration constant, which is in units of 1/(time)2. (A negative sign is for a historical
reason.) Dividing both sides by a?(t), we finally arrive at the so-called Friedmann equation:

a(t) 8nG K
20~ 3 2" g
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(1.10)

While it is a wrong explanation, it is useful to compare this equation to the first law of thermodynamics:
TdS = dU + PdV,

where T', S, U, and V are the temperature, entropy, internal energy, and volume, respectively. To a very good
accuracy, the entropy is conserved in the universe, dS = 0. The internal energy is U  pa® and the volume is V o a®,
and thus
d(pa®) + Pd(a*) =0,
which gives
. a

This is a wrong explanation because it assumes that the pressure is doing work as a increases. However, in the
average universe, the pressure is the same everywhere, and thus there is no under-pressure region against which the
pressure can do work. Equation (1.5) must be derived using GR, which you will do in homework, but the above
thermodynamic argument is an amusing way to arrive at the same equation. Also, this gives us some confidence that
it is not crazy to think that the evolution of p depends on P.



A beauty of this equation is that it is easy to solve, once a time dependence of p;(t) is known, which
is usually the case.

General Relativity tells us that the integration constant, &, is equal to +c2/R? where R is the
curvature radius of the universe (in units of length) and ¢ the speed of light. When the geometry
of the universe is flat (as suggested by observations), R — oo (giving £ — 0), and thus one can
ignore this term. Since we have so much to learn, to save time we will not consider the curvature
of the universe throughout (most of) this lecture:

a’(t)  8nG
i) =3 LA

(1.11)

1.2 Solutions of Friedmann Equation

In order to use solve equation (1.11) for a(t), one must know how p;(t) depends on time.
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To find solutions for a(t), let us first assume that the universe is dominated by one energy component
at a time, i.e.,

a* U m
S WOt} (1.12)
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and further assume that p; depends on a(t) via a power-law:

(1.13)



Finding the solution is straightforward:

a(t) oc 2™ (1.14)
This is usually an excellent approximation, except for the transition era where two energy compo-
nents are equally important. There are 3 important cases:

1. Radiation-dominated (RD) era. A radiation component (photons, massless neutrinos, or
any other massless particles) has a large pressure, Pr = pr/3,5 which gives pr(t) o< 1/a*(t),
or ng = 4. We thus obtain

arp(t) o t1/2. (1.15)

The expansion of the universe decelerates. With this solution, we can relate the age of the
universe to the Hubble expansion rate:

@ = 1 (1.16)

2. Matter-dominated (MD) era. A matter component (baryons, cold dark matter, or any
other non-relativistic particles) has a negligible pressure compared to its energy density, Py <
par, which gives ps(t) o< 1/a3(t), or ny = 3. We thus obtain

anp (t) o t2/3. (1.17)

$Again, a “wrong” derivation, but there is an intuitive way to get this result using the equation of state for
non-relativistic ideal gas (this is obviously a wrong derivation because we are about to apply non-relativistic equation

of state to relativistic gas!): o
B

ankBTfp<E> ,
where n is the number density, T the temperature of gas, kg the Boltzmann constant, and (E) the mean energy per
particle. For relativistic particles in thermal equilibrium, (E) ~ 3kgT, which gives P ~ p/3. Now, actually, it turns
out that the error we are making by using non-relativistic equation of state for relativistic gas cancels out precisely
the error we are making by using an approximate relation (F) ~ 3kpT. This gives us the exact relation, P = p/3
for relativistic particles. More precisely, the equation of state for relativistic gas takes on the form P = (1 +¢) p’?BT)T

with (F) = 3(1 + €)kgT, giving P = p/3. Here, € ~ 0.05 and —0.10 for Fermions and Bosons, respectively.
30 E,A‘; \TT N ‘&ud‘.h A Functlo i
j)/u Egk(—E) l ilt ‘4”11&‘4 D Sh’v v
A

Con /
AY(‘;) . YT T+ |

N
@ for Fermprons

© fr Bosowse

by EQ’\PN\.\,Q ‘1
/ Sy ’»l%T‘\

\

>\

b=



The expansion of the universe decelerates. With this solution, we can relate the age of the
universe to the Hubble expansion rate:

)= 4 - 2 (1.18)

. Constant-energy-density-dominated (AD) era. A hypothetical energy component (let’s
call it A) whose energy density is a constant over time, ny = 0. In this case we cannot use
equation (1.14). Going back to equation (1.12) and setting pp = constant, we get a/a =
constant, whose solution is

app(t) o efl, (1.19)

where an integration constant, H, is the same as the Hubble expansion rate (which is a
constant for this model). The expansion of the universe accelerates, which must mean that,
according to the acceleration equation (1.4), the pressure of this energy component is negative.
The conservation equation (1.5) tells us that such a component indeed has an enormous
negative pressure given by

Px = —pa. (1.20)

While this looks quite strange, we now know that something like this may actually exist
in our universe, as the current observations suggest that the present-day universe is indeed

accelerating.
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1.3 Equation of State of “Dark Energy” and Density Parameters

The matter has Py < pys; the radiation has Pr = pr/3; and A has Py = —pa. This motivates
our writing the equation of state of the ¢th component in the following simple form:

P = wip;. (1.21)

Here, w; is called the “equation of state parameter,” and can depend on time (although it is usually
taken to be constant).

Why this form? It is important to keep in mind that there is no fundamental reason why we
should use this form. This form is often used either just for convenience, or simply for parametrizing
something we do not know. At the very least, this form is exact for radiation, wr = 1/3, and for
A, wpy = —1. For matter, since wy; < 1, the exact value does not affect the results very much.

The equation of state parameter is almost exclusively used for parametrizing “dark energy,”
which is supposed to cause the observed acceleration of the universe. If we assume that w for dark
energy, wpg, is constant, then the current observations suggest that (Komatsu, et al., ApJS, 192,
18 (2011))

wpp = —0.98 £ 0.05 (68% CL). (1.22)

In other words, the energy density of dark energy is consistent with being a constant (wpp = wp =
—1).

Determining wpg with better accuracy may tell us something about the nature of dark energy,
especially if wpg # 1 is found with high statistical significance, as it would tell us that dark energy
is something dynamical (time-dependent).

Ignoring a potential interaction between dark energy and other components in the universe
(e.g., dark matter), the energy density of dark energy obeys (see equation (1.6))

a(t)

pDE(t) + 3@ (1 + wDE) pDE(t) =0, (1.23)

3(+wpE)  On the other hand, if we do not assume that wpg is a

whose solution is ppg(t) o [a(t)]”
constant, then the energy density of dark energy obeys

ppE(t) + 3252 [1 + wpg(t)] ppE(t) =0, (1.24)

whose solution is
pDE(t) x 673fdlna[1+wDE(a)]' (125)

Putting these results together, we obtain the Friedmann equation for our Universe containing
radiation, matter, and dark energy (but not curvature) as

a’(to) a’(to)
a’(t) a'(t)

where t( is some epoch, which is usually taken to be the present epoch.

a(t)
a2(t)

_ 8nG
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= H*(t) pum(to) + pr(to)



Now, taking t — ty, we find the present-day expansion rate

&rG IrG

H = H2(ty) = == [pa (to) + prlt) + pis(te)] = ~== pulto), (1.27)

which has been determined to be Hy ~ 70 km/s/Mpc. Here, p.(to) is the so-called “critical density”
of the universe, which is equal to the total energy density of the universe when the universe is flat.
The numerical value of the critical density is

pe(to) = ——2 =2.775 x 10" h? Mg, Mpc™>. (1.28)

The critical density provides a natural unit for the energy density of the universe, and thus it is
convenient to measure all the energy densities in units of p.(tp). Defining the so-called density
parameters, ();, as

(T
0, = P 0), (1.29)
pc<t0)
one can rewrite the Friedmann equation (1.26) in a compact form:
H? (t) a3(t0) a4(t0) -3 f“(t> dlna[l+wpg(a)]
=Q Q §) alto) bE 1.30
7F Urry + R aA() + Qpre 0 (1.30)

Basically, most of the literature on cosmology (within the context of General Relativity) use this
equation as the starting point.¥ Taking z = 0, one finds that all the density parameters must sum
to unity: >, Q; = 1.

In summary, the Friedmann equation is a combination of two key equations: (1) the equation
describing how the universe decelerates/accelerates depending on the energy density and pressure of
the constituents, and (2) the equation describing the energy conservation of the constituents. Once
the Friedmann equation is given with the proper right hand side containing the energy densities of
the relevant constituents of the universe, we can find a(t) as a function of time easily.

Y An interesting possibility is that General Relativity may not be valid on cosmological scales. There are scenarios
in which the form of the Friedmann equation is modified. One widely-explored example is the so-called Dvali-
Gabadadze-Porrati (DGP) model (Dvali, Gabadadze & Porrati, Phys. Lett. B485, 208 (2000)). In this scenario, the
Friedmann equation is modified to:

H(t) 8nG
re 3

H2 (t) - Pi (t)7

where 7. is some length scale below which General Relativity is restored. (For r < 7., the potential is given by
—Gnm/r where Gy is the ordinary Newtonian gravitational constant. For r >> r., the potential is modified to
—G5m/r2 and decays faster. G5 is the gravitational strength in the 5th dimension.) This model has attracted a huge
attention of the cosmology community, as it was shown that this modified Friedmann equation gives an accelerating
expansion without dark energy. Namely, even when the right hand side contains only matter, the solution for this

equation can still exhibit an accelerating expansion. As this is a quadratic equation for H(t), we can solve it and find

1/1 1 321G

At late times when p(t) becomes negligible compared to the other term, one of the solutions is given by a(t) et/”,
i.e., an exponential, accelerated expansion.



At present, the radiation is totally negligible compared to matter, Qr/Qy ~ 1/3250, and the
dark energy density is about 3 times as large as the matter density, Qpgr/Qar ~ 2.7 (with Qpy ~ 0.27
and QDE >~ 073)

el = 2475107 ((+0.29N,,
S0 for Y op

1.4 Redshift

As the universe expands, the wavelength of light, A, is stretched linearly:
A(t) o< a(t), (1.31)

which implies that photons lose energy as E(t) o 1/a(t).

This is something one can observe, by comparing, for example, the observed wavelength of a
hydrogen line to the rest-frame wavelength that we know from the laboratory experiment. We often
use the redshift, z, to quantify the stretching of the wavelength:

Alto)

l+z2= ——m——0.
)\(temitted)

(1.32)

The present-day corresponds to z = 0.
Using equation (1.31), we can relate the observed redshift to the ratio of the scale factors:
t
4o ) (1.33)

a (temitted) .

Using this result in the Friedmann equation (1.30), we obtain the most-widely-used form of the
Friedmann equation:

H(2)

HZ Qar(1+ 2)% + Qr(1 + 2)* + Qppedlo i+ +wos(:)] (1.34)




From this result, it follows that the best way to determine the equation of state of dark
energy is to measure H(z) over a wide range of z. If we can only measure the expansion
rates at z < 1, then Taylor expansion of equation (1.34) with Qp < Qp; and Qpg ~ 1 — Qp gives

H? 1
(;f) ~ 143z +3(1 + wpp)(1 — Q). (1.35)
0
As we know from observations that |1 + wpg| is small (of order 10! or less), the third term is
tiny compared to other terms, making it difficult to measure wpg. This is why we need to measure

H(z) over a wide redshift range.

1.5 Alcock-Paczynski Test

We have learned that, in order to determine wpg, we need to measure H(z) over a wide redshift
range. But, how? In principle, one can measure H(z) in the following way.
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Consider two points A and B, which are separated by L4p along the line of sight. Both points
are on the Hubble flow. The tip (A) and tail (B) emit light, which we observe to be at redshifts
of z4 and zp, respectively. These are our observables. Now we show that the redshift difference,
Az = zp — z4, is somehow related to the Hubble expansion rate at Z = (z4 + zp)/2. Using
a(ta) = a(t + Atap/2) ~ a(t) + a(t)Atap/2 and similarly a(tp) = a(t) — a(t)Atap/2, we find

ag a ~ a(f)

Taltp) alty) @@

where At 4p is the time the light takes to go from B to A, which is equal to L4p/c. Therefore

H(E) aoLlaB
c a(z)

Az=1z25— 24

Az =

(1.36)
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Here, apLap/a(Z) = x ap is a comoving separation (which is time-independent; ay is the scale factor
at present). Rewriting the result in terms of H(Z) and z4p, we finally find the relation between
what we want to determine, H(Z), and the observable, Az, as

H(z) = ;ﬁ; (1.37)

This is a beautiful result, but has one problem. In order to use this method, we need to know
the intrinsic comoving separation, x5, which is not always known. (As a matter of fact, xap is
not known for most cases.) In other words, this method works if we have the standard ruler, for
which the intrinsic size is known.

There is another way, which does not require the prior knowledge of the size. This was proposed
first by Charles Alcock and Bohdan Paczyriski in 1979 (Alcock & Paczynski, Nature, 281, 358
(1979)), and is known as the “Alcock-Paczynski test.” While this method does not require the
prior knowledge of the intrinsic size, it does still require an ideal situation: a collection of test
particles (e.g., galaxies) which spatial distribution is spherically symmetric.
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Consider a spherical distribution with a diameter of L. By measuring the redshift difference
along the line of sight, we find H(z) = ¢Az/[L(1 + z)]. On the other hand, the angular extension
of this spherical distribution of the sky, 6, is related to the intrinsic physical size, L, as

L
~ Da(z)’

where D 4(z) is the angular diameter distance. Therefore, by measuring the angular extension,

(1.38)

0, and the redshift difference, Az, and combining them, we obtain

cAz

Da(2)H(z) = )

(1.39)
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The right hand side only contains the observables, and thus the Alcock-Paczyriski test allows us to
determine D4 H.

A challenge for this method is to find objects whose distribution is spherically symmetric. There
is one known example, which is the distribution of the large-scale structure. We will come back to
this later.

1.6 Angular Diameter Distance
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In order to utilize the AP test (equation (1.39)), we need to relate the angular diameter distance,
D (z), to cosmological models. This can be done by realizing that the angular diameter distance
is equal to the comoving radial distance times the scale factor:
_ aogr
I

D(z) = a(z)r (1.40)

Then, we can calculate r(z) as follows. Along the path of photons coming toward us in a flat
universe, we have cdt = a(t)dr.!l Therefore,

to gy’ ao da’ 2 dy
_ — " - - 1.41
" / () / (@ (@) /0 wH ()’ (141)

with H(z) given by the Friedmann equation (1.34). The angular diameter distance is

c 2 ody

T 1+z2), HEZ) (142

D4(2)

dr

— = where K = +1 and —1 for positively and negatively curved spaces,

In a curved space, we have cdt = a(t)

respectively.
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Using this result in equation (1.39), we find that the Alcock-Paczyniski test provides (in a flat
universe):
2 odd Az
H(z) o) 0 (1.43)
As the angular diameter distance is an integral of 1/H (z), it is less sensitive to the equation of
state of dark energy. However, if we have many measurements of D4(z) at various redshifts, we
can effectively differentiate D 4(z) with respect to z, obtaining a measurement of 1/H(z). While
we have not yet entered the era where we can do this with the angular diameter distance, we have
been able to do this using the luminosity distances measured out to distant Type Ia supernovae,
as described next.

1.7 Luminosity Distance
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Perhaps the best known method for measuring distances in cosmology is the luminosity dis-
tance. This builds on a simple idea: the farther objects look dimmer. More specifically, the energy
we receive per unit time per unit area, which is usually known as the “flux,” is related to the
intrinsic luminosity of the light source as F' =

4TI'D% ’

L
D=4/ —. 1.44
L AnF (1.44)

The flux F' is our observable; thus, in order to use this method, we need to have the light sources
whose intrinsic luminosity is known, i.e., the standard candles.

where Dy, is the luminosity distance. This
equation defines Dy :

Type Ia supernovae, which are believe to be thermonuclear explosion of white dwarf stars, are
known to exhibit similar peak luminosities (after a few corrections), and have been used as the

13



primary standard candles in the cosmology community. In fact, it was the observation of Type Ia
supernovae which led to the discovery of the acceleration of the universe (Riess et al., AJ, 116, 1009
(1998); Perlmutter et al., ApJ, 517, 565 (1999)).

Now, we must relate Dy to cosmological models. To do this, we first note that the energy
emitted by a supernova is diluted by the surface area, which is 4777’2@(2). Second, each photon
emitted by a supernova loses energy as E « a/ag = 1/(1 + z). Third, the rate at which photons
are received per unit time is dilated by a factor of a/ag = 1/(1 + z) compared to the rate at which
the light was emitted by a supernova. (L.e., we receive fewer photons per second at our location,
relative to the number of photons emitted per second at the source). This leads to the cosmological

inverse-square-law formula:

L/(1+2)
= 1.45
47rr2a3 ( )

Comparing this formula to the definition of Dy, above, we conclude that

Dr(2) = ap(1 + 2)r = (1 + 2)?Da(2) (1.46)

This relation, Dy (z) = (1+ 2)2Da(z), is exact, and does not depend on cosmological models.

As of today, hundreds of distant Type Ia supernovae have been observed, and Dy (z) has been
determined out to z = 1.7. One can fit the data to Dy, = ¢(1 + z) [ dz/H(z) and constrain the
cosmological parameters such as Q37 and wpg.
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One may also differentiate the Dy, data with respect to z, and see if one can measure 1/H (z).

1.8 Effects of Changing Effective Relativistic Degrees of Freedom

The expansion rate during the matter era (well after the matter-radiation equality, but well before
the dark energy domination) is given by H(z)/Hy = v/Qu7(142)%/2. However, in general, we should
be careful about applying this formula blindly to arbitrarily high redshifts, as some “matter” would
start behaving as if they were radiation (massless particles) when the kinetic energy of the particles
exceeds the rest mass energy. This can happen because the universe was hotter when it was younger.

1.8.1 Neutrinos

A good example is the effect of massive neutrinos on the expansion rate of the universe. When
the mass of neutrinos, m,, is larger than roughly 3kg7, (7, is the neutrino temperature, which is
equal to (4/11)Y/3 of the photon temperature in the standard scenario for T, < 1 MeV), neutrinos
behave as non-relativistic particles. In the opposite limit, they behave as relativistic particles.

While we do know that neutrinos have finite masses, we do not know the actual values of the
masses. The current limit suggests that the sum of the masses of 3 neutrino species is greater than
0.05 eV, but smaller than 0.6 eV (or m, < 0.2 €V for each of the 3 species if we assume that all
neutrino species have equal masses). As 1 eV corresponds to 1.16 x 10* K, neutrinos could have
become non-relativistic when the neutrino temperature fell below 770 K, or the redshift less than
400. At the very least, one of the neutrino species must have become non-relativistic when the
neutrino temperature fell below 190 K (or z < 100).
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As the expansion rate is solely determined by the energy density of the constituents (in a flat
universe), all we need to calculate is the energy density of neutrinos. As neutrinos are Fermions
and were in thermal equilibrium in the early universe, their distribution function is given by the
Fermi-Dirac distribution. Also, as they decoupled from the plasma when neutrinos were still highly
relativistic (when the temperature of the universe was about 2 MeV~ 20 billion K), their dis-
tribution function will remain the Fermi-Dirac distribution for massless particles, even after

neutrinos became non-relativistic.
With this information, we calculate the energy density of neutrinos (in natural units) by inte-

grating the distribution function times energy per particle:**

pul) = (+2)!

2dg 2 \/qz +my/(1

+ 2)2

2 eq/Tvo + 1

This can be evaluated numerically, and the result is shown for m, = 0.2 below.

Neutrino Energy Density / puo

Correct calculation

_____ Incorrectly assume that neutrinos
are always non-—relativistic

o
~
T

o
Gl
M

o
o

Redshift, z

**This is derived as follows.

1000

The energy density of 1 neutrino species is given (in natural units) by

d3
v,i =2
pa=2 | @r)?

Defining ¢ = p/(1 + z), we rewrite this equation as

P dp \/p +muz
eP/Tu+1 /

er/Tv +1 ’

2dq\/q +m /(14 2)?

Pv,i = (1+ /

ed(1+2)/Tv 4 1

Finally, using (1 + 2)/T, = 1/Ty0, where Ty is the present-day temperature of neutrino, we obtain

24g \J© + M /(14 2)°
pri = (1 + 2)4/ qﬂ.2q \/ .

ed/Tvo + 1
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1.8.2 General Consideration

As we go farther back in time, various other particles, such as electrons and positrons, become
relativistic, and these effects must be taken into account when calculating the expansion rate.

More specifically, when the temperature of the universe was higher than above 1 MeV, but lower

than 2 times the muon mass (105.7 MeV), the relativistic particles included photons, 3 neutrino

species, electrons, and positrons. And, they all shared the same temperature, 7. The energy

density can be found easily by integrating the corresponding distribution functions times energy

per particle. In natural units, we find
3 2
py = 2/])27?21)@3”1—1 = %T‘*, (1.48)
p>dp 1 7

o _ 4
po = / o /T 11 40 L (1.49)
3 2
B p°dp 1 Ty
per = 4 / a1 60 L (1.50)

Here, “2” for photons is the number of helicity states (i.e., left and right circular polarization
states); “6” for neutrinos is the number of helicity state (1; just left-handed neutrinos) times the
number of neutrino species (3) times 2 because we count both neutrinos and anti-neutrinos; and
“4” for electrons/positrons is the number of spin states (2; up and down) times 2 because we count
both electrons and positrons.

It is more common to define the “effective number of relativistic degrees of freedom” by writing

the total radiation energy as
2

™
PR =Pyt put pe = 550.T", (1.51)
where
7 43

y=2+-(64+4)=—. 1.52
g +g6+4) = (1.52)

With this, the expansion rate during the radiation era is given by

811G 4m3G

H>=——pp= T 1.53
3 PR 15 Gx ( )

Therefore, when we calculate the expansion rate during the radiation era, we must be careful about
how many relativistic degrees of freedom we have in the universe at a given time. For g, = 43/4,

we obtain ,
1 1 MeV
— =148 ——— . 1.54
() o
As the age of the universe during the radiation era is ¢ = 1/(2H), we also have
1 1 MeV\?
t= =074 ——— 1.
SH(T) 0.7 < T ) sec (1.55)

Again, this formula is valid only for 1 MeV < T <« 200 MeV. Above this temperature, we will
need to count muons as relativistic particles, etc.
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PROBLEM SET 1

1.1 Expansion of the Universe

In this section, we will use Einstein’s General Relativity to derive the equations that describe the
expanding universe. Einstein’s General Relativity describes the evolution of gravitational fields for
a given source of energy density, momentum, and stress (e.g., pressure). Schematically,

&G
[Curvature of Space-time] = %[Energy density, Momentum, and Stress|
c

Here, the dimension of “curvature of space-time” is 1/(length)?, as the curvature is usually defined
as the second derivative of a function with respect to independent variables, and for our application
the independent variables are space-time coordinates: z# = (ct, 2!, 22, 23) for =0, 1, 2, 3.

1.1.1 Space-time Curvature: Left Hand Side of Einstein’s Equation

The coefficient on the right hand side, 87G/c?, is chosen such that Einstein’s gravitational field
equations reduce to the familiar Poisson equation when gravitational fields are weak and static,
and the space is not expanding: V2¢y = 47Gpyr, where ¢y is the usual Newtonian potential, and
pum is the mass density. Let us rewrite it in the following suggestive form:

¢ 811G
v (255) =~ (pac).

Here, as ¢x/c? is dimensionless, and thus the left hand side has the dimension of curvature,
i.e., 1/(length)?. The right hand side contains pysc?, which is energy density; thus, G/c* correctly
converts energy density into curvature. Now, this equation tells us something Newton did not know
but Einstein finally figured out: the second derivative of the dimensionless Newtonian potential
times 2 with respect to space coordinates is the curvature of space, and mass deforms space.

In order to calculate curvature of space-time, we need to know how to calculate a distance be-
tween two points. Of course, everyone knows that, in Cartesian coordinates, the distance between
two points in flat space separated by dz! = (dx!, dz?, dz?) is given by dl = \/(dx1)? + (dz2)? + (dx3)2,
or

3 3
di> =" " Sydadad (1.56)

i=1 j=1
where 0;; = 1 for ¢ = j and §;; = 0 for ¢ # j. Since space is flat, the curvature of this space is zero.
This is a consequence of the coefficients of dx'dz’ on the right hand side of equation (1.56) being
independent of coordinates. In general, when space is not flat but curved, the distance between
two points can be written as

3 3
di* = Z Z gij(v)dz'da? (1.57)

i=1 j=1
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where g;;(z) is known as the metric tensor. Schematically, the curvature of space is given by the
second derivatives of the metric tensor with respect to space coordinates:

*gij
Oxkoxl”

In General Relativity, we extend this to the curvature of space-time. The distance between two

Curvature of Space ~

points in space and time separated by daz* = (cdt, dx!, dz?, dx®) is given by

3 3
ds?® = Z Zgu,,(x)dx”d:p”, (1.58)

pn=0rv=0
and )
0“9
OxHox?’

Now, let us get into the gory details! The precise definition of space-time curvature, known as the

Curvature of Space-time ~

Riemann curvature tensor, is given byt

Ry, = e Ol ry,Ih Ty s 1.59
vpo = OxP B or° + Z votap Z vpt oo ( : )
a !

where I is the so-called Christoffel symbol, also known as the affine connection:

rh, = 5 o (G + e o), (1.60)

P2 ox” oxP Oz
The metric tensor with the superscripts, g"®, is the inverse of the metric tensor, in the sense that
Z 9" Gor = 81,
[e%
where 8 = 1 for ;1 = v and zero otherwise.

Question 1.1: For an expanding universe with flat space, the distance between two points in

space is given by, perhaps not surprisingly,
3 3 ' '
di> = d®(t) > ) 6ida‘dal (1.61)
i=1 j=1

where x denotes comoving coordinates. The scale factor, a(t), depends only on time ¢. Then,
the distance between two points in space-time is given by

ds®> = —c2dt® + di?

3 3
= —dt? +a’(t) Y  dyjdatda’. (1.62)
i=1 j=1

t Different definitions of curvature are used in the literature. Here, we follow the definition used by Misner, Thorne,
and Wheeler, “Gravitation” (1973). Steven Weinberg’s recent textbook, “Cosmology,” uses the opposite sign.
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Non-zero components of the metric tensor are
qgoo = —1; Ggis = (I2(t) for i = 1,2,3,
and those of the corresponding inverse are

3 1
00 _ 4. _ _
=1 g“fazi(t)forzfl,l&

This metric is known as the Robertson-Walker metric (for flat space), and describes the distance
between two points in space-time of a homogeneous, isotropic, and expanding universe. For this

metric, non-zero components of the affine connection are Fé‘o and I‘%. Calculate F;O and I‘%. The

answers will contain a, a/c, and 0;;. Once again, our space-time coordinates are z# = (ct, ot 22, 23).

Question 1.2: Einstein’s field equations do not use all the components of the Riemann tensor,
but only use a part of it. Specifically, they will use the so-called Ricci tensor:

RMV = ZR,uau

ory, 81“

- Z < 9z Dx¥ ) * Z (T~ TaT,) (1.63)

and the Ricci scalar:
R=> " ¢"Ru. (1.64)

For the above flat Robertson-Walker metric, non-zero components of the Ricci tensor are Rgy and

R;j. ‘Calculate Roo, Rij, and R.| The answers will contain a, a/c, d/c?, and/or §;;.

Question 1.3: The left hand side of Einstein’s equation is called the Einstein tensor, denoted

by G, and is defined as

1
7g,uZ/R- (1.65)

Guw =Ry — 5

‘Calculate Goo and Gjj.

1.1.2 Stress-Energy Tensor: Right Hand Side of Einstein’s Equation

The precise form of Einstein’s field equation is

8rG
G;w: A T,uz/a (166)

where T}, is called the stress-energy tensor (also sometimes called “energy-momentum tensor”).
As the name suggests, the components of T}, represent the following quantities:

e Tho: Energy density,
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e Ty;: Momentum, and

e T;j: Stress (which includes pressure, viscosity, and heat conduction).

For a perfect fluid, the stress-energy tensor takes on the following specific form:

(X Guau®) (5 gvsu”)

c2

Ty = Pgu+ (p+ P) , (1.67)

where p and P are the energy density and pressure, respectively, and u* is a four-dimensional
velocity of a fluid element. The spatial components of a four velocity, u’, represent the usual 3-
dimensional velocity of a fluid element, while the temporal component, u°, is determined by the
normalization condition of u*:

guuuuuy =—c% (1.68)

Note that the 3-dimensional velocity, u’, does not contain the apparent motion due to the expansion
of the universe, but only contains the true motion of fluid elements.

Question 1.4: In a homogeneous, isotropic, and expanding universe, fluid elements simply
move along the expansion of the universe, and the 3-dimensional velocity vanishes. (In other
words, fluids are comoving with expansion.) Therefore, such a fluid element has u* = 0, and the
normalization condition gives u"

Tij. ‘Calculate Too and T;; for the flat Robertson-Walker metric and comoving fluid. ‘

= ¢. Non-zero components of the stress-energy tensor are Tpy and

Question 1.5: Now, we are ready to obtain Einstein’s equations. First, write down Ggg =
(87G/cM)Tyo and Gi; = (87G/ch)T;; for the flat Robertson-Walker metric and comoving fluid in

terms of a, a/c, d/c?, and /or ;5. Then, by combining these equations, | obtain the right hand side of

ISHRSH Qw‘ gl\-a

The first equation is the Friedmann equation, and the second one is the acceleration equation that
we have learned in class (with ¢ = 1).
1.1.3 Energy Conservation

Combining the above equations for a/a and d/a will yield the energy conservation equation, p +
3%(p + P) = 0. In other words, the energy conservation is already built into Einstein’s equations.

Question 1.6: Alternatively, one can derive the energy conservation equation directly from
the conservation of the stress-energy tensor. In General Relativity, the “conservation” means that
the covariant derivative (rather than the partial derivative) of the stress-energy tensor vanishes.

a7,
0= ZgaﬁTw;ﬁ = Zgaﬂ ( 8;504 _ ZFQBTM/\ — ZF%TAO) . (1.69)
af of A A
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The energy conservation equation is ) _ 3 g™s Toa:;s = 0, while the momentum conservation equation

is Y05 9% Tiays = 0. | Reproduce p+ 3%(p+ P) = 0 from Y 5 9% Toasp = 0.

1.1.4 Cosmological Redshift

Consider a non-relativistic particle, which is moving in a gravitational field with a 3-dimensional
velocity of u’ < c. The other external forces (such as the electromagnetic force) are absent.
According to General Relativity, the equation of motion of such a particle is

du’ -
i Lo B
o + EB Iopuu” =0, (1.70)

where dr = v/ —ds?/c is called the proper time. The four-dimensional velocity is given by ut =
dazt /dr; thus, v = cdt/dr and u' = dz*/dr.

Question 1.7: Using the affine connection for the flat Robertson-Walker metric, rewrite the

equation of motion in terms of %’ = du’/dt, a/a and u’. | Show how u’ changes with the scale factor, a(t).
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Chapter 2

Cosmic Microwave Background

2.1 Basic Properties

The cosmic microwave background is the oldest light that one can ever hope to measure directly.
This light delivers the direct information of the physics condition of the universe when the universe

was only 380,000 years old (which is z = 1090).
The important characteristics of the cosmic microwave background are:

e The spectrum of the microwave background is a blackbody:

2hv3 1
By(Tows) = =5 o/ (kpTous) -1

(2.1)

with the temperature of Toyp = 2.725 K.

107175 | T T T T T ‘;

N i ~ i
L o : -
e £ * Rocket Data (COBRA) E
0 - = Satellite (COBE/FIRAS) ]
N : i
e 1o-19L ® Ground-based B
E g + Balloon-borne ! g
o 1072 ? o / : g E
E - o. ’ ’/ ]
2 . ¢ Spectrum of CMB |
m ; ? T 2hv? 1 1
i ? BV(TCMB) = 2 ehv/(kpToms) — 1 |

10722 L AA L Ll A T

3m 30cm Wavelength 3mm 0.3mm
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e The photons of the microwave background are numerous: their number density is ncyp =
410 em™3,* which is about 2 billion times the number density of baryons. We do not quite
know why baryons are so few compared to photons.

e The distribution of the microwave background on the sky is isotropic to the precision of 1073,
Most of the residual anisotropy, at the level of a few mK, is due to the motion of our Solar
system with respect to the rest frame of the cosmic microwave background, and is called the
dipole anisotropy. After removing the dipole component, we are left with the primordial
anisotropy at the level of 107°: 6ToumB =~ 30 uK.

T(e,(P)=ZIm dim Ylm(e,(p)

Monopole (I=0; mean temperature)

Teme=2.725 K

~

Dipole (I=1; motion of Solar System)

‘ATcme=3.346 mK

Primordial Anisotropy (/=2)

ATcme=30 pK

*This number can be obtained by integrating the distribution function:
d? 1
ncmp = 2 / ( P

27r)3h3 erc/(kpTcmB) — 1

LA (el

2 ch

where ¢(3) ~ 1.202, Toms = 2.725 K, and kg/(ch) = 4.367 cm ™! K.
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e The cosmic microwave background is polarized, but only very weakly. The dominant polar-

2.2

ization pattern is radial/tangential around temperature spots.

Polarization

Temperature

Cold Spot Cold Spot Hot Spot Hot Spot
Simulation WMAP Data Simulation WMAP Data

Evolution of Temperature and Entropy Conservation

2.2.1 Naive Consideration

How does Tomp change with time? There are several ways of getting this.

1. The cosmological redshift reduces the energy of photons as E' o< 1/a(t). The mean energy per

2.

particle, (E), isf

PCMB 2 f (2;ir§§h3 ePC/(kBZ;f(:)MB)—l 711-_;
(E = " = &5 1 = %03 (k'BTCMB) ~ 2-70(kBTCMB)- (2.2)
oMB 2 f (2m)378 epe/(FpToMB) —1 w2

Therefore, we obtain Teyp o 1/a(t).

Use the conservation of the number of photons, ncysV o« novpa®

neMBa® = %U@UBT@\/IB)?’CL3 = constant, giving Teyp « 1/a(t).

= constant. This gives

3. Use the energy conservation, pcmp = %U%TCMB)ZL oc 1/a*(t), giving Toms o< 1/a(t).

These results are valid as long as there is no net creation or destruction of photons.

fThe mean particle energy can also be found from the blackbody formula:

<E> _ fooo dvB,(Tcums)
- foo dy BrTevp) -
0 hv
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2.2.2 Entropy Conservation

Is there a general formula that we can use for calculating the evolution of temperature, even
when there is net creation or destruction of photons? The conservation of entropy provides such
a formula. Roughly speaking, the entropy is proportional to the number of particles, i.e., S =
kpnV = constant. Because photons are much more numerous than matter particles, the entropy
of the universe is completely dominated by that of photons (and neutrinos, whose number density
is similar to the photon number density).

Let us calculate entropy. We begin with the first-law of thermodynamics, TdS = dU + PdV
(where U is the internal energy), and another thermodynamic equation, VdP = HdT /T = (U +
PV)dT/T (where H = U + PV is the enthalpy). By combining these equations, we obtain

U+ PV
s = d <+) . (2.3)
T
Integrating, we get
P
S = % + constant (2.4)

The integration constant should be chosen such that S = 0 for the absolute zero temperature,
T = 0. We set the integration constant to be zero. Here, both U and P contain all the particles in
the universe, including both radiation and matter: U = Ugr + Up; and P = Pr + Py,.

e Radiation. For radiation, we have Ur = prV and Pr = pr/3. We find

4prVvV
= . 2.
Sr 3T (2.5)
Using the mean particle energy, (Er) = pr/ng, one may rewrite this result as
4(ER)
Spr=k |4 ~ 4k V. 2.6
R BNRV X 3]€BT BNR ( )

Therefore, indeed the entropy is given by the number of particles (times kp). More precisely,
by writing the radiation energy density as

72 (kgT)*
=g, , 2.7
PR 309 (ch)3 ( )
we obtain ,
7T2 ]fBT
=kp | —g« | — s 2.
Sr=kp [309 ( 7 > V. (2.8)

As the effective number of relativistic degrees of freedom, g., can change with time, the
entropy conservation, Sr = constant, with V' o ag(t) gives

1
Tox—— (2.9)
g a(t)

Therefore, a simple relation such as 7" « 1/a(t) holds only when the effective number of
relativistic species does not change, g, = constant.
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e Matter. For matter, we have Uy, = %k:BnMVTi and Py = nykpT. We find
5
Sy = EanMV' (2.10)

Again, indeed the entropy is given by the number of particles (times k)%, and nr > ny
(e.g., the number density of photons is 2 billion times that of baryons) guarantees that we
can safely ignore the matter contribution to entropy.

2.2.3 Photon Heating due to Electron-Positron Annihilation

A good example for the temperature change due to the change in g, is the electron-positron anni-
hilation:

e++6_%’y+’y.

When the temperature of the universe was greater than the rest mass energy of an electron,
0.511 MeV, the pair-creation,

YAy et +e,

also occurred; however, when the universe cooled down below 0.511 MeV, the pair creation no
longer occurred.

In addition, particles behave as if they were relativistic when the temperature is greater than
~ m/3; thus, electrons and positrons were sufficiently relativistic when the temperature of the
universe was greater than their rest mass energy.

Now, let us apply the entropy conservation:

ger\ V2
T =T <1> , (2.11)
9x,2

where T7 and T3 are the photon temperatures before and after the annihilation, respectively. The
effective numbers of relativistic degrees of freedom are

7 11
el = 24 - x4d4="—",
9,1 +8>< 5

9«2 = 2>

tHere, we do not include the mass energy in the internal energy.

8This expression, derived from thermodynamics of ideal gas, is only approximate. More rigorous derivation using
the famous Boltzmann’s entropy formula, S = kp In W, where W is the number of possible states, gives the so-called
Sackur—Tetrode equation for non-relativistic, monatomic ideal gas:

5 1

where A = hi\/27/(mkpT) is known as the thermal de Broglie length and m is the particle mass. Note that this
formula is valid only when naA® < 1 (which means that quantum effects are negligible).
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before and after the annihilation, respectively. Therefore, we conclude that the annihilation in-
creases the photon temperature by a factor of (11/4)/3:

1/3
=T <21> . (2.12)

After this, the photon temperature decreased as T" o< 1/a(t).

As neutrinos decoupled from the plasma before the electron-positron annihilation epoch, the
annihilation did not heat neutrinos. As a result, the annihilation creates a mismatch between the
neutrino temperature and photon temperature, and the mismatch is given by the above factor.
Specifically, the neutrino temperature, 7,, is lower than the photon temperature, 7', by a factor

of (4/11)'/3:
4\ /3
T, =T, (11) (2.13)

The present-day neutrino temperature is 2.725 x (4/11)1/3 = 1.945 K.

i -
i

2.3 Recombination and Decoupling

2.3.1 Opaque Universe

While there were about equal numbers of electrons, positrons, and photons before the annihilation
epoch, the number of electrons after the annihilation epoch is about 2 billion times smaller than
that of photons, as most of electrons annihilated with positrons. (Why there was a tiny excess of
electrons over positrons is still a mystery.) However, this tiny amount of electrons is enough to
keep the universe “opaque,” as they efficiently scatter photons.
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® Free electrons can
scatter photons
efficiently.

® Photons cannot go
very far.

@ proton  z== photon
helium
[ electron

Whether the scattering is efficient or not can be quantified by the ratio of the mean free time
of photons, 1/(ornec), and the Hubble time, 1/H. Here, o7 = 6.65 x 1072° ¢cm? is the Thomson
scattering cross section, and n. is the number density of free electrons. The scattering is efficient
enough to keep the universe opaque if the mean free time is short compared to the Hubble time,
i.e., H/(ornec) < 1. In fact, the scattering is so efficient that the universe remains opaque when
the universe is matter-dominated, for which the Hubble rate is given by H = Hy+/Qn (1 + 2)3. Let

us calculate
H - @ Qn (1 + 2)3 NCMB

(2.14)
OTMNeC c OTNCMB Ne

Using novp = 410(1+42)3 em ™3, novp/ne ~ 2 x 10%, ¢/Hy = 2998 h=! Mpc = 9.25 h=! x 10%7 cm,
and Q,,h% = 0.13, we obtain

3/2
~ 0.9 x 1072 ( 1000) ("CMB/”e) . (2.15)

OTNeC 1+ 2 2 x 109

Therefore, at z ~ 103, the mean free time of photons was still only 1% of the Hubble time, and the
universe was still quite opaque.

2.3.2 Neutral Hydrogen Formation and Decoupling

However, at around this epoch (z =~ 103, or Toms ~ 3000 K), the electron number density rapidly
fell relative to ncms, resulting in the decoupling of photons from the electron scattering. What
happened? At this temperature, the universe was cool enough for electrons to be captured by
protons, forming neutral hydrogen atoms:

p+e — H+n.

Once started, this process rapidly eats electrons, reducing their number density and thus allowing
for photons to propagate freely.
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? a eaclaoms 2 o A ® [recombination]
o0t T e 9 % {1500K  When the temperature
RERA I PR C I R falls below 3000 K,
' ) almost all electrons are
captured by protons
and helium nuclei.

Time-»

[decoupling] Photons
are no longer
scattered. |.e., photons
and electrons are no
longer coupled.

B proton Ehelium [Jelectron === photon

Why 3000 K?

As the ionization energy of hydrogen atoms is 13.6 eV, one might think that the neutral hydrogen
begins to form when the temperature of photons falls below 13.6 eV ~ 1.6 x 10° K. However, in
reality, the formation of hydrogen atoms is delayed until T' ~ 3700 K.

When the temperature is 7 = 1.6 x 10° K, only 15% of photons have energies lower than
13.6 eV. When the temperature drops to T' = 70,000 K, about a half of photons have energies
lower than 13.6 eV. Still, there are so many photons per hydrogen atom to begin with, and thus,
roughly speaking, the ratio of the number of photons to the number of electrons, which is about
a billion, gives a logarithmic correction to the temperature of the hydrogen formation epoch as
T = 70,000 K/In(10) =~ 3400 K. Finally, while a significant amount of hydrogen atoms are formed
at this temperature, photons do not decouple from the plasma until the universe cools down to
T ~ 3000 K.

The first approximation would be to assume that protons, electrons, and hydrogen atoms are
in thermal equilibrium. At this temperature all of these species are non-relativistic, and their
equilibrium densities are given by the non-relativistic limits of the Fermi-Dirac distribution:

2
d3p mp62 + zp_p — Hp 2 mpkpT 3/2
- il _ m — 9elp=mpc®)/(kpT) [ P57 2.16
"p / (2r)3h3 P k5T ° 2mh? , (216)

&p mec® + o — pe o ) (kT
ne = 9 / S : _ gelue—mee?) (i ><_) @)

(2m)3h3 kT 27h?
2
d3p mpc® + 3 — pp ( ) mykpT\ >
_ _ _ m — pra—mpc?)/(kpT) [ "HYBL
Ny / ) exp T de ( 572 ) (2.18)

Now, we also assume that protons, electrons, and hydrogen atoms are in tonization equilibrium,
by which we mean that the reaction p + e~ <> H + v occurs fast enough to reach the chemical
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equilibrium:

tp + He = fip- (2.19)

(Note that photon’s chemical potential is zero.) This condition lets us combine the above 3 number
densities to obtain the so-called Saha equation:

3/2
NpTe _ myp mekpT e—(mp+me—mH)62/(kBT) (2 20)
ng myg 2mwh? ’ '

Here, the mass difference in the exponential is the binding energy of an hydrogen atom, which is
of course equal to its ionization energy:

By = (my +me —mp)c® = 13.6 eV. (2.21)

Since me ~ mp/2000 and m, ~ 1 GeV, we can set m, ~ mpy in the parenthesis in front of the
exponential factor. Finally, the charge neutrality demands n. = n,. We thus obtain

2 3/2
M mekpT\ Y e~ Bu/(ksT) (2.22)
ng 27Th2
Now, define the ionization fraction:
x=_"r (2.23)
Ny +ng

which goes from 1 (fully ionized hydrogen) to 0 (fully neutral hydrogen). The Saha equation now

9 3/2
X1 mekBT \™" _By/(ksT) (2.24)
1—X  ny,+ng\ 2rh?

reads:

The goal here is to solve this equation for X as a function of the temperature, T'. For this purpose,
it is convenient to relate n, + ny to the baryon mass density of the universe. We use the result
from the Big Bang Nucleosynthesis (BBN): 76% of the baryonic mass in the universe after BBN is
contained in protons (and the rest in helium nuclei). Therefore, my,(n, + ng) = 0.76p,. We then
define the time-independent baryon-to-photon ratio:

_ P
mpncMB

n = 273.9(Qh?%) x 10710 (2.25)

which takes on the value n = 6.30 x 10719 for Q,h? = 0.023. Therefore, there are 1.6 billion photons
per baryon. Note that we have used ncyp = 410 em=3(T'/Tp)? with Ty = 2.725 K for computing
the numerical value of n. Putting all the numerical values in, we finally arrive at the following
dimensionless form of the Saha equation:

(2.26)




where T = kpT /By = T/(157894 K). This is a simple quadratic equation, which can be easily
solved for X. The solution is
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Let us find an approximate temperature, Tyec, at which the universe is half neutral, X = 1/2. Then

we have Tri{?el/fmc = 5 x 10%/n, whose numerical solution is Trec = 0.0237, or ‘Trec = 3740 K ‘ Al

It may be illustrative to find Tye. for n = 1 (i.e., equal numbers of baryons and photons). We find

Trec =~ 7900 K; thus, even in the situation where there is one photon per baryon, the temperature
of the universe at the hydrogen formation epoch (where the universe is half neutral) is significantly
lower than the temperature corresponding to the hydrogen ionization energy, 1.6 x 10° K.

Now, with the ionization history calculated, we can re-calculate the ratio of the mean free time
to the Hubble time to find the temperature of the epoch at which photons decouple from the

TWhile it is not very accurate, we may solve this equation iteratively. Taking the logarithm of both sides, we get

B 6
§lnTrec+ ~1 :ln(5><10 )
2 7

rec

The zeroth-order iterative solution would then be obtained by ignoring the first term on the left hand side: Trec =
1/1n(5 x 10°/7), which gives Trec ~ 4300 K for n = 6.3 x 107'°. One may improve accuracy of the solution by
inserting this zeroth-order solution into the first term on the left hand side, and resolving for Tree. In any case, this
analysis shows that the recombination temperature is reduced by a factor of In(1/7).
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electron scattering. We rewrite Eq. (2.14) as
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Indeed, the mean free time becomes comparable to the Hubble time when the temperature of the
universe is | Tyec ~ 3000 K‘, or ‘zdec ~ 1100 ‘ (The solution of H/(opnec) = 1 from the above
equation gives Tye. = 3065 K.) This is the epoch at which the universe became transparent, and
photons began to propagate freely in space. We are detecting photons coming from this epoch as
the cosmic microwave background. This epoch of often called the “decoupling epoch,” or the “last
scattering surface.”

Freeze-out of Recombination

The above equilibrium calculation shows that all of electrons will eventually be captured by protons,
leaving no free electrons at low temperatures. However, as the recombination rate is proportional
to meny, the rate falls rapidly as the number densities go down due to the expansion of the universe.
Eventually the recombination time becomes comparable to the Hubble time, and the recombination
stops. This is the epoch of recombination freeze-out.

The recombination time per proton is given by 1/({orecv)ne), where (oyecv) is given by

In(1/T
(Orecv) = 2.33 x 10714 n;léz) cm® s, (2.28)
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It is convenient to divide this by the speed of light:

o In(1/T)
(Orec)/c = T.77 x 1072 =17 cm?, (2.29)
which is the same order of magnitude as the Thomson-scattering cross section, o = 6.65 x

10725 cm?. Then, the ratio of the recombination time to the Hubble time is given by

H _ Ho /Qu(1+2) 1
(Orec¥)Ne ¢ ((orecv) /c)nemp 0.76nX (2)
B 1.06 x 1073 2725 K\ (6.3 x 1010
 X(T)In(157894/T) < T ) < n ) '

As this ratio is smaller than that for the decoupling (Eq. (2.28)) by a factor of ten, the recom-
bination freeze-out occurs after photons decouple from the plasma. The above ratio

(Eq. (2.30)) crosses unity at ‘T freeze—out = 2700 K ‘, which is lower than the decoupling tempera-
ture, ~ 3000 K.
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We can also calculate the residual ionization fraction of the recombination, i.e., the ionization
fraction left after the recombination freeze-out, by evaluating X (7T") at T' = 2700 K. We find

X (2700 K) = 2.7 x 1074 (2.30)

In other words, after the recombination freeze-out, there remains one free electron per about 4000
hydrogen atoms. This seems like a small amount: however, this small amount of residual electrons
is necessary for forming hydrogen molecules via H +e~ — H~ + followed by H~+ H — Ha+e™.
The hydrogen molecules formed in this way are expected to play an important role in cooling gas
and forming the first generation of stars (Galli and Palla, A&A, 335, 403 (1998)).
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2.4 Temperature Anisotropy

2.4.1 Dipole Anisotropy

The dipole anisotropy at the level of mK is caused by the motion of Solar System with respect
to the rest frame of the cosmic microwave background. Due to the Doppler effect, momentum of
photons of the microwave background appears to be larger in the direction of our motion:
p
_ 2.31
y(1-n-7) 230

where po(n) is the observed momentum of photons coming from a direction 7, p is the momentum
v?/c?)~1/2 is the Lorentz

po(n) =

oley

in the rest frame of the cosmic microwave background, and v = (1
factor. Expanding this expression to the first order in v/c, we obtain

po(h) =~ p <1+ﬁ- 77). (2.32)

C

As expected, when photons are coming from the direction of our motion, i.e., -0 = 1, the observed

momentum takes on the maximum value, po = p(1 4 v/c).
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Now, as the cosmic microwave background is a blackbody, we can relate the change in the momen-
tum of photons to the change in the temperature as
0T _To(h) =T _ po(n)—p

= =f-

T T P

(2.33)

ol

ISince photons are coming toward us, the propagation direction of photons, p, is opposite of the line of sight

direction, i.e., p = —n.

35



This is the formula for the dipole anisotropy. The measured value of dipole in the direction of
motion is §7" = 3.355 & 0.008 mK (Table 6 of Jarosik et al., ApJS, 192, 14 (2011)). The direction
of motion in Galactic coordinates is (I,b) = (263.99 £ 0.14,48.26 + 0.03) (in degrees). This gives
ST/T = 3.355 x 1073/2.725 = 1.23 x 1073. By equating this to v/c, we find**

v = 368 km/s| (2.34)

This velocity should be the vector sum of various components:
U= (Usun — Unw) + (Omw — Lc) + UL, (2.35)
where

1. Usun — Unmw i the orbiting velocity of Solar System with respect to the center of our Galaxy
(Milky Way). This component is known (222.0+5.0 km/s in the direction of (I,b) = (91.1,0)
degrees), and thus can be subtracted.

2. Uqw — ULg is the velocity of our Galaxy (Milky Way) with respect to the center-of-mass of
Local Group of galaxies. As the dominant masses of Local Group are given by Milky Way and
Andromeda Galaxy (M31), which is a nearby galaxy, this component is small (=~ 80 km/s).

3. ULq is the velocity of the center-of-mass of Local Group with respect to the rest frame of
the cosmic microwave background. This component represents the cosmological velocity flow
(called the “bulk flow”).

It turns out that the sum of the first two components, i.e., motion of Sun relative to the center-of-
mass of Local Group, has a magnitude (307 km/s) comparable to the measured velocity, but is in
nearly the opposite direction ((I,b) = (105+ 5, —7 +4) degrees; Yahil, Tammann & Sandage, ApJ,
217, 903 (1997)). As a result, the inferred bulk flow component has a large velocity:

vLg = 626 + 30 km/s, (2.36)

in the direction of (I,b) = (276 4+ 2,30 £ 2) degrees (Sandage, Reindl & Tammann, ApJ, 714, 1441
(2010)).

Who is pulling Local Group? One obvious nearby mass concentration is the Virgo clusters of
galaxies (at 16.5 Mpc). After subtracting an estimate of the infall velocity to Virgo (220 km/s) in
the direction of (I,b) = (283.8,74.5) degrees, the velocity of Local Group corrected for the Virgo
infall is

‘ULG =495 + 25 km/s‘ Corrected for Virgo infall (2.37)

in the direction of (I,b) = (275 4+ 2,12 £+ 4) degrees (Sandage, Reindl & Tammann, ApJ, 714, 1441
(2010)). Therefore, Virgo cannot be solely responsible for the motion of Local Group. We still do
not know who is responsible for this velocity.

**Rotation velocity of Earth around Sun, 30 km/s, has been removed from this value, as this component varies
annually.
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Recently, Nusser and David (arXiv:1101.1650) show that the measurements of peculiar velocities
of nearby spiral galaxies within 100 h~! Mpc give the velocity of 333 & 38 km/s in the direction of
(1,b) = (276 £ 3,14 + 3) degrees after correcting for the Virgo infall. This measurement accounts
for most of the velocity inferred from the cosmic microwave background, but is still lower. This
implies that mass concentrations on > 100 h~! Mpc are partially responsible for the bulk flow of
Local Group. It is encouraging that the directions inferred from both methods are in an excellent

agreement.

2.4.2 Sachs—Wolfe Effect

After removing the dipole anisotropy, what remains is the primordial anisotropy. It exhibits
much richer angular distributions than dipole. This component can be divided into 2 contributions:

1. Gravitational effect (called the Sachs—Wolfe effect), and

2. Scattering effect.

This problem can be dealt with most intuitively by following the evolution of momentum of
photons in a clumpy universe. In a homogeneous universe, we know that the momentum just
redshifts away as p o< 1/a; thus, the evolution equation would simply be:

1dp 1da
- 2.38
pdt a dt ( )
However, in a clumpy universe, photons receive gravitational blue/redshifts. The evolution equa-
tion, which you will derive in the homework question, is (with ¢ = 1)
ldp  1lda Y ov  0d

- = .- —, 2.
p dt a dt —~ a ort Ot (2.39)
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Note that we carefully distinguish between the total derivatives and partial derivatives here. The
4% is a unit vector satisfying

S sy =1, (2.40)
]

which gives a direction of momentum. There is a factor of 1/a in the second term because !
denotes the comoving coordinates.

The perturbation variables, ¥ and ®, are the Newtonian potential and the so-called curvature
perturbation, respectively. They are defined by the following perturbed metric:

ds? = —[1+ 20 (a’, t)]dt* + a®(t)[1 + 20(2",1)] Y _ 6ida’da’. (2.41)
ij

For example, for a point mass with mass M, these variables reduce to the familiar forms: ¥ =
—GM/r and ® = -V = GM/r (with ¢ =1).

me (_‘§>

Tip ﬁ)\,jx j— > x

=2 Nel Gah oL Energd-
dr 9% _ I
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Pt ot of

The magnitude of momentum, p, is defined by
P> =Y 9ip'p = —goo(0°)*. (2.42)
]

The last equality follows from the normalization condition of momentum of massless particles,
ZW guwp"p” = 0. From this, one finds that p = /(1 + 2¥)p° ~ (1+ ¥)p°. Note that it is p, rather
than p°, that is directly related to the temperature, i.e., T o p. Finally, from the above definition
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of p and the normalization condition for the unit vector ~* (Zm 5Z~j'yi’yj = 1), one can derive the
relation between p’ and 4 to the first order in perturbation:

P = pzi (1- ). (2.43)

It is convenient to rewrite equation (2.39) using

'yi8\IJ_<3\IJ fyiaqf> o¥ AV 9V

wor ot Taaw) @ ot (2.44)

Then, we obtain

1ldp lda d¥ 0¥ 0d

=t —— = — 2.4
p dt adt dt + ot ot’ (24)

which can be readily integrated to give

to
In(ap)o = In(ap)e + (¥g — Vo) + /t dt %(\P — ), (2.46)

where “O” and “£” denote the “observed epoch” and “emitted epoch,” respectively. Finally, we
rewrite this result using the temperature anisotropy:

ap o< aT (1 + 6;:) . (2.47)

Here, T is the mean temperature and depends only on time. Taylor-expanding the logarithm to

the first order in 07/T, and recalling apTp = agTg for the mean temperature, we finally obtain:
_or
o T

oT to 9
? +(\IIS_\I/O)+/ d

) | 5 (0= 2). (2.48)

£ y It IF A
N2 ‘_QQ
ot
To this, we must add the Doppler terms due to the velocity at emission and observed location:
oT oT to 0 o 4
— == Ve — U dt —(V— v — vd 2.49
I S IRC R SR T )+ 30k o) (249)

The last term, — ’yivéf,, is the dipole anisotropy discussed in the previous section.
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This result has a simple interpretation.

1. There was an initial temperature anisotropy at the last scattering surface, §T/T|¢ (which
remains to be calculated), as well as the Doppler effect, Z’yivg.

2. After the last scattering, photons escape from a potential well, losing energy: 07/T|¢ + Wge +
> 7.

3. While photons are propagating toward us, photons gain or lose energy depending on how
U — @ (= 2V) changes with time, giving 6T /T|¢ + Vg + ftio dt %(‘I’ —®) + Y vk,

4. Finally, photons enter a potential well at our location, ¥, gaining energy. Also, they receive
the Doppler shift due to our local motion, giving 6T/T|¢ + Vg — U + ﬁf dt %(\IJ - )+

7 (v — vh)-

In particular, §T/T|¢ + Vg — ¥ is usually called the Sachs—Wolfe effect, and ftio dt %(‘Il — )
is called the integrated Sachs—Wolfe effect. All of these terms were derived by Sachs and Wolfe
in 1967 (Sachs and Wolfe, ApJ, 147, 73 (1967)).

Adiabatic Initial Condition

How do we calculate the initial temperature fluctuation at the last scattering surface, 67/T|¢? To
calculate this, we must specify the initial condition for perturbations. In principle, this cannot
be known a priori without using the observational data. There are two widely explored initial
conditions:

e Adiabatic initial condition
e Non-adiabatic initial condition

The current observational data favor the adiabatic initial condition, and we have not yet found
any evidence for non-adiabatic initial condition. Therefore, we shall focus on the adiabatic initial
condition.

What is it? This is the initial condition in which radiation and matter are perturbed in a similar
way. It is called adiabatic, as the entropy density per matter particle is constant (unperturbed):

S 3 T3
/a & — = constant, (2.50)
nyr nyr
whose variation gives
T3 oT 57”LM
3— — 2 ) =0. 2.51

Therefore, the adiabatic initial condition corresponds to

ST _ 1onas _ Lop

= = . 2.52
T 3 Ny 3 Pm ( )
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“Non-adiabatic initial conditions” would have §T /T # Spr/(3par)-
As this is the initial condition, it holds only on very large scales, much larger than the horizon

size at the last scattering surface. While it is not obvious or intuitive, on such large scales, as
you derive in the homework question, the density fluctuation during the matter-dominated era is
related to the Newtonian potential as

8
OPM _ oy (Matter-dominated & super-horizon). (2.53)

PM

This gives, on large scales, the initial temperature fluctuation of

or| 1 5PM 2
— = ——Ug. 2.54
T, - | -G (2.54)
Then, the Sachs—Wolfe formula gives
oT 1
—| = -Ue+... 2.55
7|, 3% (2.55)

Therefore, on large scales, an over-density region (i.e., a potential well) appears as a cold spot on
the sky. While the temperature at the bottom of the potential well is hotter than the average
(—%\Il), photons lose more energy (V) as they climb up the potential well, resulting in a cold spot
(=20 + ¥ =10).
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Observing the primordial perturbation via the Sachs—Wolfe effect

As you have seen from the homework problem, ¥ = —® during the matter era, and both ¥ and &
remain constant during the matter era. Therefore, after the decoupling, but before the dark energy
dominated era, the integrated Sachs—Wolfe effect vanishes. In this case the observed temperature
anisotropy toward a direction 7' is given by

oT , 1 o ,
T (n') = g\Ifg — Uy — Zﬁ’(vzg —vp) during the matter era. (2.56)
o i

Here, we have used the fact that the direction of photon, 7%, is equal to —n’.

/__jo ‘,@ va\j“\{(\r Si'ge fé( %ﬁ /f&“»(( /O/ujﬂ« (;‘Zz X\_/‘O?D
» —r LAST Scatterive
n=-y 2=1090 SURFACE

Now, let us consider temperature anisotropy on very large angular scales - the angular scale that
is greater than the Hubble length at the decoupling epoch. As you have seen from the homework
problem, the velocity perturbation vanishes in the large-scale limit, as it is proportional to €, which
is given by (with ¢ = 1)

€

= — 2.
=, (257)

where k is the comoving wavenumber. Let us calculate the angular size of the Hubble length at
z = 1090. The comoving wavenumber, J, is related to k as A = 27/k. The angular size that
corresponds to the half wavelength is then

k k
a

_ M2

0 =
da’

(2.58)
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where d 4 is the comoving angular diameter distance:

z d !/
da=(14+2)Ds=c ; H(Zz/) =14 Gpc for z = 1090. (2.59)
The numerator is the half-wavelength corresponding to the Hubble size:
AH T T
S R 2.60
For Q/h? = 0.13 and Qrh? = 4.17 x 1075, we find
Qarh2(1 Qrh2(1 2
apr = V(L4 2) + Q21422 o Gpe! for z = 1090. (2.61)
3 Gpc
Therefore, the angular size that corresponds to the Hubble length at z = 1090 is
180°
§=—— = 2.8°, (2.62)

T aHd, 46x 14
This means that, for angular scales much greater than 3°, we can ignore the contribution from the
velocity perturbation at z = 1090, i.e., ve, and obtain

oT

| : -
7o (') = g\llg(r*ﬁ’) — Vo + Zﬁlvé on large angular scales. (2.63)

(2

Here, we explicitly show that Wg is a three-dimensional quantity, ¢ = We(x?), and what we
observe is the potential at the last scattering surface whose comoving distance is r, = da(z =
1090) = 14 Gpc. On the other hand, the second term, Vo, is the value of ¥ at our location, which
is just a number, and merely adds a constant to the value of §7'/T over all sky; thus, this is a
monopole term (I = 0). The third term, n - ¥p, is the dipole anisotropy (I = 1) due to our local
motion, which we have studied in the previous section.
Therefore, if we ignore the monopole and dipole and focus on the primordial anisotropy with
[ > 2, we are left with the Sachs—Wolfe term:
oT N 1 i
T . (n') = g\llg(r*n ) on large angular scales and [ > 2. (2.64)
This is an important result - since the angular size is greater than that of the Hubble length
at z = 1090, the temperature anisotropy we observe on this scale is not altered by the physics
at z > 1090. In other words, what we observe on large angular scales must reflect the initial,
primordial perturbation (except for the integrated Sachs-Wolfe effect which we ignore here).
In order to characterize the observed temperature anisotropy, let us consider a patch of the
sky whose center has the direction vector 7§y, and introduce the angular coordinates on this patch,
6= (sin § cos ¢, sin O sin ¢). Furthermore, let us assume that the angular size is greater than 3°, but
is much less than 60°, which corresponds to 1 radian. In this case, § < 1, and thus the angular
coordinates become

g = (6 cos ¢, Osin ¢). (2.65)
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oT
T

2 o
(Ai) = % / (;525T(l)e”'9. (2.66)

(@]

We also Fourier-transform ¥ in 3-d space:
i Pk - ik-x
Ue(z') = (7\11(145)6 . (2.67)

Remember that ¥ is constant during the matter era.
Now, we wish to find the relation between 67(1) and ¥ (k):

OT(l) [ o z-ml/ d*k
T /Me 5] @

. 3 L
_ /d2«9@‘”‘91/ d°k b (R)eiko () iy coso

) eiE-(r*ﬁ)

K
!

3J (2m)3
- e <;ljrl§3¢f<l¥>e“’5“*‘”e““'” sl (2.68)
Here, we have defined k| and k| such that
k= (ki k), (2.69)

where k 1 is the wavenumber vector on the patch, and & is the wavenumber along the line of sight.
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To proceed further, we use the fact that we consider the region in which § < 1 (so that we can

treat a section of the sky as a flat surface):

—

— 5
57;—(’l) /d2 / d k le’*—l) v ik:”T* (COSG ~ 1)
1 ek - - 20 i 5.al
- = ’L(ki_?"**l)'g ik) 7
3/ Gy’ ) [/ e }e
1 [ &k - - .

= 3/ 2 VB |05 . — D e
L[ dhadby s G0 (R =T |
= = k)
3/ Ok U (k) | (2m) 2 e

1 [dhg ! ik
T 32 ) o (kl *,k:”)e o

(2.70)

Finally, there is no way to predict the value of \TI(E) for any given value of k because U is a

random (stochastic) variable. However, what we can do it to calculate its variance, which is called

the power spectrum:
((R)T*(R) = (2n)*Py(k)oy (kK — k),
]_ T~— = T— % —
75 (0T ()T @)y = @r)2CsPa-1).

(2.71)
(2.72)

The angular power spectrum of the temperature anisotropy, Cj, is an observable quantity.
Therefore, the remaining task is to relate the observable, Cj, to the power spectrum of ®, Py (k).
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The result is

1 dk [ 12 2
C = 97“3 /27TP\IJ ( E + k‘l . (2.73)

Note that the small-angle approximation, § < 1, corresponds to [ > 1, as these are related via
7r
l=—. 2.74
y (274)
In terms of £ and r,, we have
k
1 Gpc
For example, the multipole that corresponds to the wavenumber of the Hubble horizon size at
2z =1090, aH = 4.6 Gpc™!, is
lg = 64. (2.76)

Therefore, the argument given here is valid only for 1 < | < 64.

Now, we must make an assumption about the form of Py (k). We now believe that primordial
fluctuations were generated during the period of inflation - an exponential expansion of the universe
during a tiny fraction of a second after the birth of the universe. As you will learn from Bhaskar
toward the end of this course, inflation predicts the following power-law form of the initial power
spectrum:

Py (k) oc k™4, (2.77)

where n; is called the spectral tilt. The current data give (Komatsu et al., ApJS, 192, 18 (2011))
ns = 0.968 £ 0.012 (68% CL). As for the normalization of Py (k), we usually parametrize it as

272 ™t
Py (k) = =5 A% (ko) | — 2.
w(k) = —5 Al 0)(k0> : (2.78)
where ko is some arbitrary pivot wavenumber which is often taken to be ky = 2 Gpc™' =

0.002 Mpc™!, and A2 (ko) is the normalization.
The special case is ng = 1 (which is called the Harrison-Zel’dovich-Peebles spectrum, and
is close to the observed value, ns = 0.968 & 0.012), for which

2m 1
This motivates our writing
2c, 1 1 k3 Py (k)

Since this quantity does not depend on [, this spectrum (with ns = 1) is called the scale-invariant
spectrum. Note also that k%Py (k) does not depend on k. For ng # 1, we have ff

2c; 1 I\ VT3 = ny)/2]
B =t () Y T (289

2 9

"This formula cannot be used for small I (such as [ = 2) because we have treated our patch of the sky as a flat
surface, which allowed us to use the familiar Fourier transform. For the full-sky treatment, we must take into account
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We are not quite done yet. While ¥ (and hence ®) is constant during the matter era, they change
as the universe transitions from radiation-dominated to matter-dominated. They also change as
the universe exits the inflationary period and becomes radiation dominated. Therefore, Py (k) that
we determine from the observation of the microwave background, which is Py (k) during the matter
era, cannot be directly compared with the prediction from inflation.

Fortunately, there is an easy solution for this problem. On very large scales, k < aH, there
exists a conserved quantity called ¢, which is defined as

i v
(zcb—%V:@—— (2.85)
€

the fact that the sky is a sphere. For this purpose, we must use spherical harmonics decomposition rather than the
Fourier transform. In any case, the exact result in the Sachs—Wolfe limit is

C = % / k*dk Py (k)i (krs)
27 o 1 aT[B—n)/2 Tl + (ns —1)/2]
= g A G T T )2 T+ (5~ )2 (2.81)
For ns =1,
O =2 LAz (2.82)
TS T I :
W:éﬁw(ko) for ng =1 (2.83)

For | > 1, we indeed recover the flat-sky result, 12C;/(2mw) = A% (ko)/9. This result explains why people tend to plot
I(14+1)Ci/(2m) against I.
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This quantity remains constant on k < aH regardless of the contents of the universe. It is ¢ that
is predicted by theories of inflation. Now, if we plug in the large-scale solution for the velocity

perturbation during the matter era that you find from the homework problem, V = —%e@, we find
2
(=d+ gCIJ = gfb = —g\II during the matter era. (2.86)
Therefore, the Sachs—Wolfe formula is modified to
T . 1 .
A () = = () (2.87)
and ) .
1=C 1 .5 I \™ " /7T[(3 —ny)/2|
— = —Az(k — —_— 2.88
or 25 ko) (kor*> 2 T[(4—ns)/2] (2:88)
The current data give (Komatsu et al., ApJS, 192, 18 (2011))
AZ(ko) = (2.43£0.09) x 1077, (2.89)

One should be impressed by these results! Using the observation of the cosmic microwave
background, we were able to measure the amplitude and the scale-dependence of the
initial perturbations generated during inflation. Studying the high-energy world before the
Big Bang became a real sciencel!
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2.4.3 Gravitational Waves

So far, we have studied how gravitational potential, ¥, produces anisotropy in the cosmic microwave
background. However, this is not the only source. Another source of temperature anisotropy is
the gravitational waves. Gravitational waves stretch space, causing photons to redshift or blueshift
depending on the phase of gravitational waves. This stretching of space is described by the ten-
sor metric perturbation, h;j(z',t). The metric that includes h;j(z’,t) on top of the Friedmann-
Robertson-Walker background is given by (with ¢ = 1):

ds® = —dt* + a*(t) Y _[6;5 + hij(a',t)]da'da’. (2.90)
ij
This metric perturbation, h;;(x%,t), is the gravitational wave itself. In other words, it is h;;(z',t)
that propagates as a wave. Gravitational waves have the following properties:

1. Gravitational waves are transverse (just like electromagnetic waves). Therefore, they do
not distort space along their propagation direction, but only distort space in the direction
perpendicular to their propagation.

2. Gravitational waves have two polarization states (just like electromagnetic waves).

3. Gravitational waves (gravitons) are spin-2. (For comparison, electromagnetic waves (pho-
tons) are spin-1.) Therefore, h;j is a rank-2 tensor field, whereas electromagnetic waves are
described by a vector potential, A°.

As an example, let us take a single plane wave as a gravitational wave propagating in z direction
b . 3 .
(z = 2?). We have h;; 37" Because h;j is transverse, we must have

> khi; = k*hiz = 0. (2.91)

J

As the metric is a symmetric tensor, h;; is also symmetric, i.e., h;; = hj;. Using this information,
we can write:

hi1 hi2 0
hij=| hia ha 0 |. (2.92)
0 0 O

However, since h;; has only two polarization states, h11 and hoo must be related somehow. This
relation can be found by noting that gravitational waves change the shape of space, but do not
change the size. In other words, it shears space, but does not expand or contract it. This means
that the determinant of d;; 4 h;; is unity:

det(éij + hij) = (1 + hn)(l + h22) — h%Q =1. (2.93)
To first order in h;;, this condition gives

hi1 + hos = 0. (2.94)
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Therefore, h;; is a traceless tensor, >, hi; = 0.
We conventionally write the components of h;; propagating in z direction as

hy hy O
hij=| hy —hy 0 |, (2.95)
0 0 0

where hy and hy represent two linear polarization states of gravitational waves. As one may guess
from this matrix, a wave would distort space along x and y directions when hy # 0 and hx = 0, and
it would distort space along 45° degrees when hy = 0 and hyx # 0. This means that hy and hy are
not invariant under coordinate rotation. On the contrary, for clock-wise rotation of coordinates
by an angle ¢, hy and hy transform as

i Wy | _ [ cos2¢ —sin2¢ h
<h>< )_><h/>< >_(S1H2¢ COS2¢ ) <h>< )7 (296)

or equivalently hy +ihy — 'y £ih/, = e*?®(hy +ihy). Therefore, gravitational waves are indeed
a spin-2 field.

How would gravitational waves produce temperature anisotropy? Suppose that we have a
gravitational wave propagating in z direction.

1. If photons are propagating in the same direction (i.e., z direction), then there would be no
change in temperature, as a gravitational wave does not distort space along its propagation
direction.

2. If photons are propagating in z direction, then there would be redshift (67" < 0) if hy > 0
(because space is stretching in x direction), and blueshift (67 > 0) if A4 < 0 (because space
is contracting in x direction).

3. If photons are propagating in y direction, then there would be blueshift (67 > 0) if h+ >0
(because space is contracting in y direction), and redshift (67" < 0) if hy <0 (because space
is stretching in y direction).

4. If photons are propagating in 45° direction, then there would be redshift (67" < 0) if Ay > 0
(because space is stretching in 45° direction), and blueshift (67" > 0) if i < 0 (because space
is contracting in 45° direction).

5. If photons are propagating in 135° direction, then there would be blueshift (67 > 0) if hy >0
(because space is contracting in 135° direction), and redshift (67 < 0) if hy < 0 (because
space is stretching in 135° direction).

In general, as you derive in the homework problem, hl] changes momentum of photons as

1dp a 1 L
5&2_5_52}”” v, (2.97)
ij

where as usual 4 is the unit vector for a propagation direction of photons.
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Once again, by converting momentum to temperature anisotropy, and recalling 7' = —v* where 7/
is the line-of-sight unit vector, we obtain
oT 0T

7, " =T

) 1 ., . [to . )
(ﬁl)—izqaw /t dt hyj (r(t)A', 1), (2.98)
& Y £
]

where we have made explicit that h;; depends on spatial coordinates and time, and that xt = Alr(t)
where r(t) is the comoving distance to the time ¢. Note that this formula is valid for h;; propagating
in any directions (not just z direction).

We now need to know how h;; changes with time. For this purpose, we need to solve Einstein’s
equation for h;;. This can be done in a straightforward way: Einstein’s equation is (with ¢ = 1)

1
Ry — 59w R = 871G T, (2.99)

We simply calculate the left hand side of this equation using the metric given by equation (2.90),
with the transverse (3_; Ohi;/ dx7 = 0) and traceless (3, hj; = 0) conditions. The result is remark-
ably simple:
1
—imhi]‘ == 87TG5T¢]', (2100)

where 075; is the linear perturbation to Tj; that would affect gravitational waves, and [h;; is

Dhij = g'u’uhij;w/. (2101)
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For a perfect fluid, 67;; = 0, and thus we have an equation describing waves propagating in vacuum:
Ohi; = 0. (2.102)

For the Friedmann-Robertson-Walker metric, this equation becomes

.. i 1
hij + 3ghij - ﬁvzhij =0 (2'103)
By Fourier-transforming h;;:
hii (2, t) = di"ﬁ(/& t)e? 2 e (2.104)
() z I - (27_(_)3 (] 9 € I .
the wave equation becomes
= 1< 2
For a matter-dominated universe, a o 2/3, the solutions of this equation are
. 3 (k (K
b 0) = 4306 LDy D, (2.106)

where A;; and B;; are constant matrices (which represent initial conditions) and 7 is defined as

dt 2/3,1/3
= | —= t 2.107
n /a(t) 3t0 ) ( )

which is, in a flat universe, related to the comoving distance as r(t) = ng — n(t) (with ¢ = 1 and
no = 3tp is the present-day value). The functions j; and y; are the spherical Bessel functions of the
first and second kind, respectively:

sin(z)  cos()

h@) = —; =, (2.108)
yi(z) = —Cozgx)—smx(x). (2.109)

In order to determine the initial conditions, let us take the limit of £ — 0. We find

S . Bk
hij(k',t = 0) = Ay (k') — Byk) 3). (2.110)
(kn)
The second term blows up as ¢ — 0, which is unphysical. Therefore, we take B;; = 0 as the initial
condition. The final form of the solution during the matter era is then

- , 3 (k
hj (K, 1) = Ay (k) ?’Jlk(nn) (2.111)
and its time derivative is
P kAij (k") 3ja(kn
hij(k' ) = — aZt() ) k( ) (2.112)
n
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where
Jo(z) = (3 - 1> sin(x) — % cos(x). (2.113)

3 oz

With this result, we can finally write the temperature anisotropy as

(A7) Z e / d3k Ay /to Ldth(kﬁ)eiﬁ-ﬁr(t)
t

e alt) kn

. N To ) A
7 Z AJ/ dk Ay k/ de(x)e”f'”(mo—m), (2.114)
X

oT 5T

T

??‘l

(i) =

(@)

5T

where x = kn. Since ja(z)/x peaks at x ~ 2, the integral over x is dominated by the modes with
kn ~ 2, with higher k£ modes highly suppressed. This will be reflected on the shape of the angular
power spectrum of temperature anisotropy from gravitational waves.

1
‘ 3%(sin(x)/x**3-cOs(X)/x™2) —
3*((3/x**4-1/x**2)*sin(x)-3*cos(x)/x**3)

0.6 - \ ]

02 \ 4

3jy (kn)/(kn) [solid]; 3jp(kn)/(kn) [dashed]

-0.2 I I I I I I I

Calculation of C; from equation (2.114) is a bit involved, so let us just give the result:

_(+2)! [dk o 3ja(kn) jilk(no — )]’
Cl_(l—2)!/2wph(k) [/ng ki kn  k*(no —n)? (2115

where Py, (k) is the power spectrum of each polarization state of the gravitational wave:
(hy (R (F)) = (o ()R () = (2m)* Pa(R)O5) (F — K). (2.116)

Similarly to what we have done for the scalar perturbation (gravitational potential contribution),

we usually parametrize Py, as

2m

Pu(k) = —3 AZ(k0)<:0>m, (2.117)
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and n; is called the tensor spectral tilt. We then define the so-called tensor-to-scalar ratio,

r, defined by
AN (ko)

.= A) (2.118)

where a factor of four is there for a historical reason.
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Simple single-field inflation models predict a relation between the tensor tilt and the tensor-to-scalar

ratio as
2119)

Therefore, using this relation, we have only three parameters for characterizing the primordial
perturbation spectra produced by inflation: A¢(kg), r, and ns. Among these, r is particularly
important because a detection of non-zero r means a detection of primordial gravitational wave
created during inflation. Many experts think that the detection of r would be a proof of inflation.
Currently, we have not detected r, and the latest limit on r is (Komatsu et al., Astrophysical
Journal Supplement Series, 192, 18 (2011))

|7 <024 (95% C.L.)]| (2.120)
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This constraint comes from the temperature anisotropy spectra that we have learned so far. Since
the gravitational wave spectrum adds power to lower multipoles (mainly [ < 50), it tilts the total
power spectrum. This effect can be absorbed by increasing ng (which will make the contribution
from ¢ at low multipoles smaller), and thus there is a positive correlation between ns and r. This
gives a fundamental limit on r = 0.1 we can reach by using the temperature power spectrum alone.
In order to break this correlation, one must use not only the temperature power spectrum, but only
the power spectrum of polarization of the cosmic microwave background.
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2.5 Polarization

The cosmic microwave background is weakly polarized. Polarization is generated by Thomson

scattering, and thus it is generated at the last scattering surface (z = 1090) and during the epoch

of reionization (z < 15).

The way Thomson scattering generates can be understood easily by recalling the dipole radia-

tion.
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Now, let us place an electron at the origin of coordinates, have some temperature anisotropy
around it, and calculate the polarization pattern produced by that electron. It is easy to imagine
this problem by thinking about it from a point of view of the electron at the origin.

Consider the Sachs—Wolfe effect, 6T /T = %\Il, with U being a plane wave going in z direction.

0T (7 1
Y_Sn) = §A cos(kz cosf), (2.121)
where A > 0 is a constant representing the amplitude of W, and @ is the usual polar angle measured
from the z direction. The origin (z = 0) is hotter (67" > 0).
The polarization produced by a scalar perturbation (such as ¥) scattered by an electron is given
by

ariv = Yo0.0) [0 00y, (2.122)
a-w = Y0 [0 0pr0.6) (2.123)

Here, Y} is the spherical harmonics, and 2Y;™ is the spin-2 harmonics. For [ = 2 and m = 0, we

/5

YY) = - 20 -1 2.124
15 |

Yy = ,/ﬁsm%, (2.125)

oY) = LY. (2.126)

have

Note that, in general, _ Y, = (—=1)™*5(,Y,7™)*.
The reason why ) + iU is described by spin-2 harmonics is that () £ iU is the spin-2 quantity.
For a clock-wise rotation of coordinates by an angle ¢, @ and U transform as

Q Q \ [ cos2p —sin2p o)
<U>_><U/)_<sin2<p cos 2¢ )(U)’ (2.127)

or equivalently Q + iU — Q' + iU’ = e*?%(Q 4 iU). Therefore, gravitational waves are indeed a
spin-2 field.
First of all, it follows from _2Y20 = 2Y20 that U = 0. Then, the () polarization is given by

1 1 1 2m
Q = ——\/6 15 sin? 6 dcos 0= A cos(kz cos 0) Yy (0 do
2
10 327 -1 3 0

= iAjg(kz) sin? 0. (2.128)

Therefore, an observer at § = 0 does not see any polarization, while an observer at 6 = 7/2 sees
the maximum polarization with Q > 0 (polarization in the north-south direction). All of this can
be understood graphically (see the next page).
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PROBLEM SET 2

1.1 Cosmic Microwave Background - I

While the speed of light is kept for completeness below, you may set ¢ = 1 if you wish.

1.1.1 Propagation of photons in a clumpy universe

How does the momentum of photons change as photons propagate through space? First, every
photon suffers from the mean cosmological redshift, and thus its magnitude, p, will decrease as
p x 1/a. In addition, as photons pass through potential wells and troughs, they gain or lose
momentum. Finally, not only the magnitude, p, but also the direction of momentum, ~, will
change when photons are deflected gravitationally.

We can calculate the evolution of four-dimensional momentum, p* = da* /d\, using the following
geodesic equation:

dp* .
Tt ZF’ 5p°p” = 0. (1.129)

Here, ) is a parameter which gives the location along the path of photons. Using p° = d(ct)/dA\,
one may rewrite the geodesic equation in terms of the total time derivative of p*:

dpt B
p p ZP” ppp (1.130)

In order to calculate F’;B, we need to specify the metric. To describe a clumpy universe, we
perturb the Robertson-Walker metric in the following way:

ds? = —[1+ 2W(t,2")|Pdt* + a®(t)[1 + 20(t,2")] D _ 6;5da’da’. (1.131)
ij
Here, U is the usual Newtonian potential (divided by ¢? to make it dimensionless), and ® is called
the curvature perturbation. For this metric, all of the components of I‘gﬂ are non-zero.

From now on, we will assume that the magnitudes of these variables are small: |¥| < 1 and
|®| < 1, and calculate everything only up to the first order in these variables.

Question 1.1: | Calculate FOO, ng’ F”, Ff)o,

may use the short-hand notation such as

and T %k up to the first order in ® and W. | You

U]’

. Ov ov
V=G0 VT o

The components of the metric and its inverse are given by

L 1 L
goo = —(1+2¥); ¢% =—(1-20); g =a*(1+29)5;;; g7 = —(1—20)3". (1.132)
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Question 1.2: | Write down the geodesic equations in the following form:

dpo
dt
dpi
dt

up to the first order in ® and ¥. The final answers should not contain ), j (5Z-jpipj . You can eliminate
this by using the normalization condition for momentum of massless particles, > of gagpapﬂ =0,
which gives, for the above perturbed metric,

a®» dip'y = (1- 28 +2W)(p°)%. (1.133)
ij

Question 1.3: Now, we want to derive the evolution equations for the magnitude of momentum,
p, and its direction, 7*. First, we define the magnitude as

P’ = Zgz‘jpipj- (1.134)

)

Also, we normalize the direction such that

> Gy =1 (1.135)
ij

u

Using this information, ‘write p in terms of pg and ¥ | and |write 4° in terms of p, p’, a, and ®
up to the first order in & and W.

Question 1.4: ‘Write down the geodesic equations in the following form:

dp
E ceey
d’yi

o e

up to the first order in ® and W. The answers should not contain p° or p’. Whenever you
find them, replace them with p and ~%, respectively. You can check the result for the deflection
equation, dy'/dt, by making sure that the result satisfies >, 7dy*/dt = 0. (You can derive this by
differentiating the normalization condition, }_,; 8797 = 1, with respect to time.) Note that the
total time derivative of a variable is related to the partial derivatives as, e.g.,

dd . dz’ . cp’
dt + ZZ dt + Zﬁ 0 (1.136)
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1.1.2 Perturbed Conservation Equations For A Pressure-less Fluid

Consider the stress-energy tensor for a perfect fluid. We then take the limit that the pressure is
much less than the energy density, which would be a good approximation for a non-relativistic
fluid. The stress-energy tensor for such a pressure-less fluid is

(X guau®) (5 gv5u”)

c2

Ty =p . (1.137)
As usual, u# = dz#/dr is a four-dimensional velocity and 7 is the proper time.
Suppose that the fluid is moving at a non-relativistic physical three-dimensional velocity of
Vi < c. By “physical” velocity, we mean
dz’

"=au' = : 1.1
Vi=au a— (1.138)

We also expand the energy density into the mean, p, and the fluctuation around the mean, §:
p=p(l+9). (1.139)

These perturbation variables, § and V' /¢, are small in the same sense that ® and ¥ are small. There-
fore, we shall expand everything only up to the first order in ®, ¥, §, and V?/c. For example, T;;
is of order (V/c)?, and thus can be ignored. On the other hand, Tp; is of order (V/c), and thus
cannot be ignored unless it is multiplied by other perturbation variables.

Question 1.5: Expand the following conservation equations up to the first order in &, W, §,
and V?/c:

1. Energy conservation equation, » of g8 Toa;p =0
2. Momentum conservation equation, 3 g8 Tia:p =0

Use the conservation equation for the mean density, ﬁ+3% p = 0, to eliminate the mean contributions

from the above equations, and then ‘rewrite these equations in the following form:

1.1.3 Large-scale Solutions of Einstein Equations During Matter Era

The energy and momentum conservation equations contain four unknown perturbation variables,
5, Vi, W, and ®. Therefore, we cannot find solutions unless we have (at least) two more equations.
Such equations are provided by perturbed Einstein equations. Don’t worry - you are not asked to
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derive them (though I would not stop you from deriving them). Here are the two equations that
can be derived by combining perturbed Einstein equations:H

K2 - anG [~ 34V
U o= —3. (1.141)

Here, ®, ¥, §, and V are all in Fourier space, i.e., ® = é(E, t), U = @(E, t), 6 = S(E, t), and
vV = V(E, t), and k is the comoving wavenumber vector. They are related to the original
variables in position space by, e.g.,

U(k,t) = / Br(T, t)e *7, (1.142)
Bk - o i
W71 = / R0 (1.143)

Here, k-i= > j 8;;k'z7. For example, the left hand side of the first perturbed Einstein equation,
(k? /a?)®, came from the Laplacian of ®:

1o, . 1 Bk~ - 9 ik
—V%® = — [ — V2eik
a? (1) a? / (2m)3 (. ) ( ©

a2

N——

where V2 = > i 5’7%, and k? = > i Sijkikd. Alsci, V in the right hand side of the first
perturbed Einstein equation is defined as V(k,t) = ik - V(k,t) (where k = k/k is a unit vector),

ie.,

N 3L -
V.V@t) = /(;Tk)?)V(k,t)-

(
— /ﬁﬁ(é,t)-(iéeig'f) (1.145)
= /(dgkkf/(l%,t)e“g'f. (1.146)

Here, V-V = Yk Vﬁ

Now, let us use the above four equations to find solutions for ¥, ®, V', and 4. From now on,
we shall drop the tildes on variables in Fourier space for simplicity. It is convenient to change the
independent variable from t to the scale factor, a. Finally, let us define the following variable:

e(a) = L, (1.147)

a

HTo those who wish to derive these results: the first equation can be obtained by combining perturbed Goo =
(877G/c4)T00 and Gg; = (87rG/c4)T0i, while the second equation can be obtained from the traceless part of G;; =
(87G/c*)Ty;.
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which goes as € o< y/a during the matter-dominated era. This quantity is useful, as it is much less
than unity for fluctuations whose wavelength is longer than the Hubble length (ahorizon size):

e < 1 for super-horizon fluctuations, k < aH/c,

where H = a/a is the Hubble expansion rate. Therefore, we can find large-scale (long-wavelength;
super-horizon) solutions by consistently ignoring higher-order terms of e.

Question 1.6: Using the Fourier-space variables and €, show that the energy- and momentum-

conservation equations | can be re-written as follows |:

y o= YV sy (1.148)
a C
!
1
Vi IV ey (1.149)
C a C a

where the primes denote derivatives with respect to a.

Question 1.7: Using ® = —¥, we now have the following three equations for three unknown
variables:
v
§ = —SX 39, (1.150)
ac
v’ 1v
o= =t o, (1.151)
c ac a
3 3V
2
o = —(d+— ). 1.152
‘ 2 ( * ec> ( )

Once again, during the matter era, € < y/a. Solve these equations on super-horizon scales, € < 1,

and | show that non-decaying solutions are given by‘

0 = 20, (1.153)
Vv 2

— = ——ed. 1.154
& 3 ( )

By “non-decaying solutions” we mean the solutions that go as o a”™ where n > 0. Finally,

show that ® (and hence W) is a constant and does not depend on «a in the super-horizon limit ‘

Hint: you cannot ignore € when two different variables are involved, e.g., A+ eB # A, because
you do not know a priori how A compares with B. You can ignore the terms of order € only when
you are sure that € is compared to order unity, e.g., A" + % + e% ~ A+ %.

Do not use Mathematica to solve these coupled differential equations! Use your brain, please. ‘
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PROBLEM SET 3

1.1 Cosmic Microwave Background - II

While the speed of light is kept for completeness below, you may set ¢ = 1 if you wish.

1.1.1 Temperature Anisotropy From Gravitational Waves

Gravitational waves stretch space as they propagate through space. This deformation of space is

characterized by the following metric:

ds®> = —c2dt® + GQ(t) Z((sij + hij)d:cidxj,
ij
where h;; is the so-called tensor metric perturbation. (On the other hand, ® and ¥ that we
have dealt with before are called “scalar metric perturbations”.) The tensor metric perturbation is
symmetric (hi; = hj;), traceless (325, hyi = 0), and transverse (Z?:l %’;‘f =0).
At the first-order of perturbations, scalar and tensor perturbations are decoupled, and thus we

can ignore the scalar perturbations when analyzing the tensor perturbations.

Question 1.1: Write down the geodesic equation for p = (3_; gi;p'p?)Y/? with the metric
given above, up to the first order in h;;. Then, by integrating the geodesic equation over time,

‘ derive the formula for the observed temperature anisotropy from gravitational waves as

g+/t:0dt (..)

where (... ) should contain only hz] and 4 (where 4° is the unit vector of the direction of photons,

oT

_ T

O T

T

satisfying >, j 52.].71,),3' = 1). Hint: you should check the result by making sure that you can recover
a part of the scalar integrated Sachs—Wolfe effect, —, by using the scalar metric perturbation,
hij = 2®6;5. (You cannot recover the terms containing ¥ because goo = —1 for the above metric.)

From now on, set %T‘g =0.

Question 1.2: Consider a gravitational wave propagating in the z (= x3) direction. For this
special case, the components of the tensor metric perturbation are given by

h+ hx 0
hij=| hx —hy 0 |,
0 0 0
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where hy and hyx denote two linear polarization states of a gravitational wave. Using polar coor-
dinates for the propagation direction of photons with respect to the gravitational wave:

7% = (cos ¢sin @, sin ¢ sin 6, cos 6),

in terms of [ hydt, [ hydt, and trigonometric functions.

rewrite the equation for %T ‘ o

Z(=2/

Question 1.3: A gravitational wave with h+ > 0 stretches space in x direction, while that
with hy > 0 stretches space in 45° direction (see the figure below). This stretching of space
causes gravitational redshifts and blueshifts in the corresponding directions. Using this picture,

‘ give physical explanations for the result obtained in Question 1.2. ‘ (In other words, now that you

have an equation, how much physical interpretation can you get out of this equation?) For example:
in which cases do you find hot (AT > 0) or cold (AT < 0), and why?; compare the results for 6 =0
and § = /2, and give a physical explanation for the difference; compare the results for ¢ = 0, 7 /4,
/2, and 37/4, and give a physical explanation for the difference. Use graphics as needed. It is
easier to think about this from a point of view of photons: if you were a photon, how would you
experience redshift or blueshift, depending on the angle between your propagation direction and
the direction of the gravitational wave, or depending on the azimuthal angle?
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Question 1.4: As it is evident from the above figure, a gravitational wave produces a quadrupo-
lar (I = 2) temperature anisotropy. To see this more clearly, it is convenient to define the following
circular polarization amplitudes, hgr (right-handed) and hy, (left-handed), as

1

hy = —(hr+hp), 1.155
+ \/5( rR+hr) (1.155)
i
hy = —(hr—nhr). 1.156
x \/5( r—hr) ( )
Using hgr and hp, and the definitions for spherical harmonics, Y;™, with [ = 2:
15 ~
Y552(0,4) = ] oo sin? hetH? (1.157)
327
+1 5 . +ig
Y5 (0,0) = (£1) 3r sin 0 cos fe™"?, (1.158)
T

Y2(0,4) = ,/%(mos?e—n, (1.159)

in terms of fﬁRdt, fﬁLdt, and Y5".

rewrite the equation for %T ’ o

1.1.2 Polarization From Gravitational Waves

Thomson scattering of a quadrupolar temperature anisotropy by an electron can produce linear
polarization. In terms of the Stokes parameters produced by a scattering, Q(6,¢) and U(6, ¢),
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there is a formula relating the temperature quadrupole to polarization by a single scattering:

o V6 m ST| = oo o -

Q+iU = —7 3 24(0.9) / 45| 0.9 6.5) (1.160)
; _ \/6 m oT n A\ymEig 7

Q- = {5 3 00 [ | 0.60 6.0 (1.161)

where dQ = d cos édg?), and oY, is a spin-2 harmonics given by

[ 5
Y2 = a1 T cos )2et2?, (1.162)
5 .
LY = S+ 2129, 1.1
2Y; 647r( cosf)“e (1.163)

Note that an electron is at the origin, and photons are scattered by this electron at the origin
into various directions, (6, ¢). In other words, these are the Stokes parameters of polarization that
would be observed by observers at various directions from this electron.

Now, to simplify the analysis, let us assume that we have Ahg = [ hgdt and Ahy = / hydt at
the origin, and similarly define the linear polarization amplitudes of gravitational waves:

Ah.

-8l

(AhR-f-AhL) (1.164)

Ahy

(AhR — Ahy). (1.165)

Question 1.5: | Calculate Q(6, ¢) and U(0, ¢) in terms of Ah, » and trigonometric functions.

Question 1.6: ‘ Give physical explanations for the results obtained in Question 1.5.| For ex-
ample: compare ) and U at 6 = 7/2 and ¢ = 0, and explain the origin of the difference; compare
the results at different ¢, and give a physical explanation for the behavior. Use graphics as needed.
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For this problem, it is easier to think about this from a point of view of an electron at the ori-
gin: if you were an electron scattering photons into various directions, what polarization would
you produce depending on the scattering direction and the direction of the gravitational wave, or
depending on the azimuthal angle?
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Chapter 3

Large-scale Structure of the Universe

In this chapter, we shall learn how matter density fluctuations grow and how structures are formed

in an expanding universe.

3.1 Evolution of Density Fluctuations

3.1.1 Matter Era
Super-horizon solutions

As you saw in the homework problem, the evolution of matter density fluctuations during the
matter era is given by the following 3 equations (with ¢ = 1):

e Energy (Mass) Conservation:
§ =V - 30, (3.1)
a

where € = k/a = k/(aH) x y/a during the matter era, and the primes denote partial deriva-
tives with respect to a, i.e., 8’ = 9d/0da.
e Momentum Conservation: )
€

Vi=—-V—--0. (3.2)
a a

2 _ 3 v
o= [0+ (3.3)

e Einstein Equation:

Then, we have seen that, on super-horizon scales (¢ < 1), the solutions are given by

d = 2® = constant, (3.4)
2

V = —geq) x Va, (3.5)

® = constant. (3.6)
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These super-horizon solutions were important when computing temperature anisotropy, as the
large-scale temperature anisotropy (Sachs—Wolfe effect and Doppler effect on angular scales larger
than about 3 degrees) is given by these solutions.

Sub-horizon solutions

On the other hand, when studying the large-scale structure of the universe (such as the clustering
of galaxies), we are always dealing with the scales much smaller than the horizon size. Therefore,
let us take the opposite limit, € > 1, and find solutions. In this sub-horizon limit, the equations
become

Vo= —%V—é@, (3.8)
3
P = 55. (3.9)

These equations can be solved easily, and the growing-mode solutions are

2
5§ = 562@o<a, (3.10)
2
Vo= e va, (3.11)
® = constant. (3.12)

There are 3 important observations one can make:

e The matter density perturbation, d, is constant outside the horizon, but it grows linearly with
a inside the horizon.

e The solution for the matter velocity perturbation, V', is the same in the super-horizon and
sub-horizon limits, and grows as y/a at all scales.

e & (= —V) is constant both in the super-horizon and sub-horizon limits, and thus it is constant
at all scales.

3.1.2 Radiation Era
Super-horizon solutions

How the matter density perturbations grow during the radiation era? As the energy density in
radiation is much greater than that in matter during the radiation era, we need to take the radiation
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energy density perturbation in Einstein equation:

€

§ = —=V -39 (3.13)
a
3 b 3V
o = ° (5R y Mg > , (3.15)
2 PR €

where € = k/a = k/(aH) x a during the radiation era. Here, dp is the fractional perturbation
in the radiation energy density, pr the mean radiation energy density, and pps the mean matter
energy density. As usual, § is the fractional perturbation in the matter density.

First, let us look at the super-horizon (e < 1) solutions. On super-horizon scales, the radiation
perturbation dr and the matter perturbation J are related by the adiabatic initial condition:

J = %53 (super horizon). (3.16)

Since pyr/pr < 1 during the radiation era, this simply means that the term involving pys/pgr in
Finstein’s equation can be ignored. Therefore, on super-horizon scales, we have

€

§ = —aV—3<I>’ (3.17)
Vo= Lty _ % (3.18)
a a
3/4. 3V
2 = (254 1
€ 5 <35+ ; >, (3.19)

where we have used dgp = %5 .
Using the same technique we used for the matter era, we can solve these equations to find the
super-horizon solutions during the radiation era:

9
j = §<I> = constant, (3.20)
1
V = —ieq) x a, (3.21)
® = constant. (3.22)

Therefore, similarly to the matter era, ® and ¢ remain constant outside the horizon during the
radiation era. However, the values of ® and § are not the same as those during the matter era. In
other words, the values of ® and § change when the universe becomes matter dominated.

To see this, recall that, on super horizon scales, there is a conserved quantity ¢ given by

|4
This quantity is given by
1 3
=0+-0=-90 3.24
(=2+50=32, (3.24)
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during the radiation era. In other words, ® = %( during the radiation era. By comparing this to
the matter-era relation, & = %C , we find

9
®(matter era) = 1—0<I>(radiation era), (3.25)

and g
d(matter era) = 55(radiation era), (3.26)

on super horizon scales.

Sub-horizon solutions

Next, let us consider the sub-horizon solutions. The relevant equations are

€

/ — —
¢ o= -5, (3.27)
V- iy fo (3.28)
a a
3 PM
2 _ = [
2o — QGR+PR®. (3.29)

Now, on sub-horizon scales, the adiabatic condition does not have to be held because it is the
initial condition, and the density perturbations can evolve away from the initial condition inside
the horizon.

Interestingly, on sub-horizon scales during the radiation, we can ignore dr compared to %5,
despite that % > 1. This is because radiation cannot cluster (cannot form clumps) inside the
horizon due to a large amount of pressure it has (recall that the radiation pressure is given by
Pr = pgr/3, which is comparable to the energy density). In other words, the distribution of
radiation is quite smooth inside the horizon, and it does not contribute very much to ® compared

to the matter density perturbation. As a result, we can write

A Vi (3.30)
a
1

Vo= —cv- o, (3.31)
a a
35 3

2o = MMy 95 (3.32)
2 pr 2 agq

where agq is the scale factor at which py = pr. (Recall ppr o 1/a® and pr o< 1/at.)
By combining these equations, one finds

5// + 16/ _ 3
a 2aagq

§=0. (3.33)

This is not quite straightforwardly solvable, so we use a trick: defining y = §/a, we rewrite this
equation in terms of y:

3 1 3 a
T 2= (12 )y=0. 3.34
Y +ay~+a2< 2aEQ>y (3.34)
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Since we are considering the radiation era, we can ignore a/apq < 1.

3 1
y" + oy + —y=0. (3.35)
a a

A

.+ % Ina. Therefore,

d=A+ Bln(a/arq) (3.36)

The solution is y =

where A and B are integration constants. While the matter density perturbation grows linearly
with a during the matter era, it grows only logarithmically during the radiation era. This
has a very important implication, which we shall learn in a moment.

The other solutions are given by

B 1
v = 242, (3.37)
€ a
3 a In(a/agpq)
o = 3 ange? [A+ Bln(a/arq)] —Q (3.38)

As @ inside the horizon decays during the radiation era, the small-scale perturbation (which
entered the horizon earlier) is suppressed relative to the primordial one. It is conven-
tional to characterize this effect by using the so-called transfer function:

d(k
T(k,a) = _oka) (3.39)
(I)primordial
Since ® becomes constant at all scales after the matter-radiation equality, the shape of T'(k, a) gets
frozen after the matter-radiation equality. Therefore, from now on, we shall simply write it as T'(k)

without time dependence.

0 > = @ ( & A

i
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3.2 Matter Density Power Spectrum

3.2.1 Shape

In most cases, the large-scale structure is characterized by the power spectrum of matter density
fluctuations, P(k,t):

(5(k,1)5* (k. 1)) = (2m)36D) (F — B P(k, 1). (3.40)
Using Einstein’s equation during the matter era,

—

- 3
e (k, t)®(k,t) = S0k, 1), (3.41)
we can relate P(k,t) to the power spectrum of ®:

4
Pk =3 (CL’;) Po(k,t). (3.42)

As we have seen before, on super horizon scales, it is convenient to relate ® to the conserved
quantity ¢. During the matter era, we have ® = %C . Finally, we need to take into account the
matter density evolution during the radiation era using the transfer function. The final result is

40 kN 9 2r? AN
P = |l ) x52o5 A — T?(k)D?
(k1) 9 <aH> X 5513 g(ko)<k0> (k)D*(t)

7('2 ns—1
_ MA?(%) <:0> T2(k)D(1). (3.43)

Here, D(t) is a time-dependent function giving the amount of growth of §. During the matter era,
D o a. Therefore, on very large scales where the transfer function is approximately unity, the
scale-invariant power spectrum (ns = 1) yields the matter density power spectrum of P(k) o k.
Then, P(k) peaks at k = apqHrq ~ 0.01 Mpc~!, and then decreases toward large values of k. The
small-scale limit is given by P(k) o [In(k)]?/k? (for ns = 1).

Therefore, in principle, if one can measure the matter power spectrum accurately, one can
determine the parameters such as Ag and ns. As we learn later, the growth function D(t) also
encodes important cosmological information. However, the accuracy of the measurement of P(k)
is not yet good enough compared to the cosmic microwave background, and thus the information
on Ag, ng, etc., is dominated by the microwave background data.
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3.2.2 Baryon Acoustic Oscillation

Up until now, we have ignored interactions between matter and radiation. Since photons and
electrons interact efficiently via Thomson scattering, it is conceivable that this interaction leaves
some signatures in the microwave background as well as in the matter power spectrum.

Once we include interactions between matter and radiation, we can no longer treat these com-
ponents separately. As a result, the equation system becomes a bit more involved.

Since electrons and baryons (protons and helium nuclei) are also interacting efficiently via
Coulomb interaction, we can treat photons and baryons as a coupled fluid. We should not forget
also dark matter, which provides most of the gravitational potential during the matter era.

Then the relevant equations are
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e Energy Conservation:

) k .
op = —-Vp—3d, (3.44)
a

. k )

bp = —~Vp -3, (3.45)
. 4k .

5, = —ooV,—4d 4
» S Vy — 4P, (3.46)

where dp, dp, and , are the dark matter, baryon, and photon densities, respectively. Since
we consider the matter-dominated era, we shall ignore ®.

e Momentum Conservation:

) ; k
Vo = —2vp - "o, (3.47)
a a
. 1 k e
Vg = —ZVB - E(I) + orn (V'y - VB)> (348)
. 1k k
V»y = 15(57 — E@ + UTne(VB - V’)’)7 (349)

where R is the baryon-to-photon energy density ratio defined as

w

P (3.50)

R .
4p,

e Einstein’s Equation:

kQ
E(I) = 47G (ppdp + pBOB) , (3.51)

where we have ignored the radiation contribution in the right hand side because we are
considering the matter-dominated era.

Now, while there are many equations, one can simplify the equation system considerably when
the coupling between photons and baryons is very efficient. In such a case, baryons and photons
basically move together, i.e., Vg = V.

We rewrite Eq. (5.48) as

VB = V’y - (VB + g‘/B + @)
OTNe a a
. a k
~ V- <V7 + v+ a@) . (3.52)

Here, since we assume that the difference between Vp and V, is small, we have replaced Vp with
V, in the right hand side. We then use the photon momentum conservation equation, Eq. (5.49),
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in the right hand side:

VB = V,— Ufne [i567 + gvy +orne(Ve — Vv)}
G+RVe =GRy - [tk ]
Ve = V,— 1—{—RRUT17L6 [1115&/ + ZV’Y]
orne(Ve —V,) — —1fR [i’; : ZVW] . (3.53)

Now, using this in the photon momentum conservation equation, and using the photon energy
conservation equation V., = —%%5% we arrive at the following differential equation for the photon
energy density:

1+2Ra. 1 k2 4 k2

b — 0 = ——
"Y' 1TRa ”+3(1+R)a2 T 3a?

®. (3.54)

This is a wave equation for d,; thus, a coupling between baryons and photons results in the acoustic
oscillations in the photon density perturbations. Since baryons and photons are coupled, the same
oscillations must also be present in the baryon density perturbations as well. Indeed, the acoustic
oscillations have been observed both in photons (microwave background) and the distribution of
matter (galaxies).
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Acoustic Oscillations in CMB

To have a deeper understanding of the structures of the acoustic oscillation, let us focus on the
regime where the oscillation frequency is much greater than the expansion rate of the universe. In
this case, the wave equation simplifies to

B} 1 k2 4 k2
by + 3

1R " 32 (3:55)
(1+R)

Since & = 0 during the matter era, one may rewrite this equation in a suggestive way:

0% [1 k22 1
22 [457 - (14 R)(D} + 2 [457 -1+ R)@} =0, (3.56)
where ¢, is the speed of sound:
1 1
2 _
¢t = = — . (3.57)
] 35
3(1+ R) 3(1+ —4/35)

Note that this speed of sound is less than that for the relativistic fluid, ¢? = 1/3. This is due to
the coupling to baryons: the inertia of baryons reduces the speed of sound of photon-baryon fluid
relative to that of the relativistic fluid. The solution to the above wave equation is

1
157 = (14 R)® + Acos(krs) + Bsin(krs), (3.58)

where rg is the sound horizon defined by

b dt
ry = —cs(a) = 147 Mpe, (3.59)
0 a
for the cosmological parameters best-fit to the WMAP data and ¢, is the decoupling time.
How do we determine the integration constants, A and B? We determine these coefficients by
noting that, on super horizon scales, these solutions should match the adiabatic initial condition:

1 1 2
157 = §5m = gCID on super-horizon scales (kc; < 1) (3.60)
Therefore,
2 1
A = 3<1>—(1+R)<I>_—<3+R> o, (3.61)
= 0, (3.62)
and
1 1
157 =1+R)P - <3 + R> ® cos(krs). (3.63)
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Since p, o< T*, we can relate 1—1157 to 6T /T as ;1157 = 0T /T. Moreover, since the observed temperature
anisotropy is the sum of 67'/T at the bottom of the potential well and the potential ¥, we write,
using ¥ = —®

1 1
157 +¥ =—-RU+ (§ + R) U cos(krs). (3.64)

Since what we observe is the power spectrum, which is the temperature squared, we may plot this
result squared as a function of kr;. We then notice that the 1st peak to the 2nd peak ratio goes up

as one increases R; thus, the 1st peak to the 2nd peak ratio can be used to determine the baryon
density!
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Acoustic Oscillations in Baryons

We have seen that a coupling between photons and baryons induces acoustic oscillations in the
distribution of photons. How about baryons?
By repeating a similar analysis, one can obtain the wave-like equation for baryon density fluc-

tuations:

1+2Ra- 1 k23 k2
0B+ 575 5% = 3
3(1+R)a%4 a?

op + P, (3.65)

1+R a

Note that we have d, instead of dp in the third term on the left hand side, and thus it is not quite
the wave equation for 6. However, we know that, on super horizon scales, the adiabatic initial
condition gives %57 = 0p. Therefore, with this initial condition, the baryons have the same acoustic
oscillations as photons.

The most remarkable thing about this equation is that baryons acquire a significant speed of
sound, ¢; = 1/4/3(1 + R), via a coupling with photons. If baryons were not coupled to photons,
their speed of sound would be simply given by ¢, = /T/m,. For the decoupling temperature,
T ~ 3000 K ~ 0.26 eV, this is tiny: c¢; ~ 2 x 107°. So, the coupling between baryons and photons
changes the behaviour of baryons completely.

This oscillation is imprinted on the power spectrum of galaxies today, and is often called the
baryon acoustic oscillations (BAO).
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Since we know the value of 75 (from measurements of the CMB anisotropy), we can use BAO
of the matter power spectrum at a given redshift to determine the angular diameter distance and
the expansion rate at that redshift. Namely:

1 r
00 = 5 .
BAO T4 2Da() (3.66)
reH (z
0ZBAO = c( ), (3.67)

where 000 and dzpao are the observed angular separations and redshift separations corresponding
to rs. From these, it is clear that we can measure D4(z) and H(z) separately - BAO is the standard
ruler that we discussed in Section 1.5! Therefore, in order to fully utilize the power of BAO, we

must consider the power spectrum in 2-dimensional space: angular directions and redshift direction.

3.2.3 2-dimensional Power Spectrum: Alcock-Paczynski test

When discussing the power spectrum of matter density fluctuations (traced by, e.g., galaxies), P(k),
it is important to realize that we cannot directly measure the wave numbers, k. In order to go to
Fourier space, we first need to know 3-dimensional positions of galaxies; however, in order to know
those, we must know the angular diameter distances and the expansion rates, as our observables are
the angular coordinates and redshift coordinates, rather than the actual 3-dimensional positions.
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As a result, the observed power spectrum would not be a function of k, but would always be a
function of two wave numbers: kj and k. (Of course, k = | /kf_ + kﬁ) However, the underlying

matter power spectrum, P(k), must be isotropic and depend only on the magnitude of k, and thus
we can use this property to determine D H. This is precisely the Alcock-Paczynski test that we
studied in Section 1.5. Combining BAO and AP is a powerful method for measuring D4 and H.

The AP Test: How That Works

® Da: (RA,Dec) to the transverse separation, rperp, to the
transverse wavenumber

® Kperp = (2TT)/rperp = (2TT)[Angle on the sky]/Da

® H: redshifts to the parallel separation, rpar,, to the
parallel wavenumber

® Kpara = (2TT)/rpara = (2TT)H/(cAz)

If Da and H are . , If Da and H are
If Da is wrong: If H is wrong:
correct: wrong:

kpara | , , ‘
Kperp Kperp Kperp Kperp
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Shoji, Jeong & Komatsu, Astrophysical Journal, 693, 1404 (2009)

BAO-only vs BAO+AP Test
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3.2.4 2-dimensional Power Spectrum: Redshift Space Distortion

However, things are not so simple. Motion of galaxies adds a complication. While we rely on
the measured redshifts for inferring the locations of galaxies along the line of sight, the measured
redshifts are in fact the sum of the cosmological redshifts and peculiar velocities. Namely, when
galaxies moving toward us, they appear to be closer to us than they actually are, and when galaxies
are moving away from us, they appear to be farther away than they actually are. This has an effect
of increasing the clustering of galaxies (hence the power spectrum) along the line of sight on large
scales, and decreasing the power spectrum on small scales. (See the diagram below.) The large-
scale effect is called the Kaiser effect, while the small-scale effect is called the fingers-of-God
effect. The latter is still too complicated to model reliably, so we shall focus only on the Kaiser
effect.

As you derive in the homework, the observed power spectrum in redshift space is related to the

underlying power spectrum in real space as

2\ 2
Pops(k, k) = (1+ f”) P(k) (3.68)

on large scales (Kaiser effect). Here, f is the logarithmic derivative of the growth of density
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fluctuations:
dlné

! dlna’

(3.69)

For the directions perpendicular to the line of sight, k| = 0, the observed power spectrum is equal
to the underlying spectrum:

Pops(k, k= 0) = P(k). (3.70)

For the directions parallel to the line of sight, &k = k, the observed power spectrum is enhanced
relative to the underlying spectrum:

Pas(k. by = k) = (1+ f2P(R) (3.71)

One can use this property to extract the information on the growth of structures. For a universe
dominated by matter, f = 1; however, for a universe containing matter and dark energy, such as
the universe that we live in, f decreases toward low redshifts, providing an important information
on the effect of dark energy on the growth of structures.

Redshift Space Distortion

overdensity &4
ch)/ 6 A
6~ G % ¢ O & § &
g L

a

4

L20125QQ) O
20.12SQQ) O,

redshift space

4
real space redshift space

ki (h Mpc ™)
ky (h Mpc ™)

00 05 10 15 20
ky (h Mpc ")

This effect has been measured routinely from large-scale structure surveys. The measured values
of f are consistent with the predictions from the standard ACDM model. The plots shown below
are taken from the latest paper on “Wiggle Z” survey (Blake et al., arXiv:1104.2948).
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3.3 Non-linear Evolution of Matter Density Fluctuations

During the matter era, the linear matter density fluctuation, &, grows as § « a. However, this
analysis is valid only for § <« 1, and thus cannot be used to follow the evolution of non-linear
density fluctuations that would eventually form objects such as galaxies.

Specifically, when 0 > 1, density fluctuations collapse gravitationally and form “halos” (i.e.,
gravitationally bound objects). Galaxies are hosted by these halos. Since the total matter must be
conserved, the fact that some regions have § > 1 implies that other regions have § < 1. From the

definition, § = p/p — 1, the minimum value of ¢ is 6 = —1. These empty regions (or nearly empty
regions) correspond to “voids.”
Q- 022 Now=lineay” Guguril,
= ) —_—
: i S« e
10\ S oW S
A Lveay G A Ao

o
ANlaxile s
/

The exact treatment of non-linear processes is difficult, and we usually use computer simulations
(such as N-body simulations) to study the formation and evolution of halos. Before we go into
some of the results obtained from simulations, it is useful to work out a simplified case known as
the spherical collapse.

Consider a spherical region with mass M and radius r. Due to the expansion of the universe,
initially 7 > 0. As the mass enclosed within r must be conserved, we have M = 0. During the

matter era, the equation of motion is given as the usual Newtonian formula*

o GM (3.72)

r

Multiplying both sides by r and integrating, we get

1 GM
2 =

: +E, (3.73)

where E is an integration constant. This should be quite familiar to you: (kinetic energy) +
(potential energy) = E, where E is the total energy. Now, since we wish to analyze the case where

*Once again, the same result is obtained from General Relativity. There is a correction to this equation when we
have components with a large pressure, such as radiation and dark energy.
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the expansion of this region eventually stops, turns around, and collapses, we shall consider the
case where F < 0. The solution to this equation is known as the cycloid and is given as

r = A(l —cosf), (3.74)
t = B(f—sind), (3.75)
A = GMB? (3.76)

where A and B are constants, and we have chosen the zero point of time such that ¢ — 0 as 8 — 0.
The evolution of matter density within this region is given as a function of a new parameter 6:

Mo 3
i3 4nGB2(1 — cos )3

p= (3.77)

Now, in order to calculate 6 = p/p — 1, we need to know how the mean density p depends on 6.
We do this by recalling that, from the Friedmann equation,

81G 41
H>=—"—""fp=_— 3.78
3 P= 9@ (3.78)
during the matter era. Therefore,
1 1
D — = ) 3.79
P~ 6nGt2 ~ 61GB2(0 — sin0)? (3:79)
By taking the ratio,
9 (6 —sinf)?
0= — .
2 (1 —cosf)? (3:80)

This is the result. The collapse time corresponds to # = 27, at which § goes to infinity. Does
really go to infinity in practice? No. This is an artifact of spherical symmetry: in reality, a finite
angular momentum makes it impossible for particles to go straight down to the center » = 0, and
thus an object with a finite size would be formed.

It is instructive to take an early-time limit, # < 1. We find

3 2
0~ 2—00 (0 <1). (3.81)

As ¢ < 1 for this case, we should be able to recover the linear evolution, § « a o t¥/3. Looking at
equation (5.75), t o< 6% for § < 1, and thus we indeed recover § o< t2/3 o 62,
The time at which a density fluctuation collapses (6 = 2m; § — 00) is given by

te =27 B. (3.82)

While § goes to infinity at ¢ = t., what would be the value of § if we assume the linear evolution?
Using 6 = (3/20)0% and t ~ (B/6)6° for § < 1, the linear evolution is given by

3 76\,
L /3
oL = 55 ( ) £2/3, (3.83)

89



Por forhabn in MaTliLdomn @A Univerre
i

Non— lwear  Bva [Tt J% A Shericad

Then, inserting the collapse time, t. = 27 B, into this result, we obtain

127)2/3
e =6 (te) = 3(2”0) ~ 1.686 (3.84)

Why is this result interesting? While non-linear evolution of density fluctuations is generally
quite complicated, the linear evolution is known. Now, suppose that we have some initial density
fluctuations that are small, as a function of spatial coordinates (dini(Z) < 1). These fluctuations
evolve in time. Some of them collapse, and some of them do not. More specifically, some density
peaks collapse. In real-world picture, these collapsed regions have very high density. On the other
hand, in the corresponding linear world, these collapsed regions have d7,(Z) > . ~ 1.686. This is a
nice property, allowing us to calculate the number of collapsed objects at a given time.
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3.4 Mass Function of Collapsed Halos

How do we calculate the number of collapsed objects at a given time, as a function of masses? The
idea is the following:

Real ( Now-[Tvea) Picture. |

S VAU R
q ( Pegiee?

> 5{11&2,

(;Hf‘fkﬂ/ ﬁ@y,\ow %mmf_
/i mr/f - octapol i C>/ bz

Suppose that the distribution of initial density fluctuations, diyi(Z), is given by P(dini). Then,
the distribution of linearly-evolved density fluctuations, dr,, should also obey the same probability
distribution function, P(d). Then, a fraction of the volume occupied by the collapsed regions is
given simply by

P(>5,) = /5 T a5 (o). (3.85)

This should be related to the number of collapsed objects at a given time. But how? To make
progress, we must specify the form of P(d;). The current data (especially the cosmic microwave
background) strongly suggest that the initial fluctuations obey a Gaussian distribution to high
precision, which is consistent with the standard prediction of inflation. While it is possible that
some level of non-Gaussianity (departure from a Gaussian distribution) were present, for this lec-
ture we shall ignore non-Gaussianity and assume that the initial fluctuations obeyed a Gaussian
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distribution. Then, the linearly-evolved density fluctuations also obey a Gaussian distribution:

6—5%/(20%)
P(6r) = Vanor (3.86)

with ffooo dépP(6r) = 1. Here, a% is the variance of density fluctuations.
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We have to pause here. How are peaks related to objects? In order to answer this question, we
must recall that the above discussion on d. relied upon the spherical collapse model - we started
by discussing the evolution of a spherical overdensity region with mass M. When the fluctuation
was linear, this region had the mass density that is close to the mean mass density of the universe.
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Therefore, the initial comoving radius of this region was given by

3M 0.135 M 1/3
- —40M .
R <4W,5M> 0 Mpe (QMh2 1013 M®> : (3:87)

where we have used py; = 2.775 x 101Qh% Mz Mpc™2 (which is the present-day mass density
of the universe). Therefore, for galactic scales (M = 10'? M), R = 1.9 Mpc; for clusters scales
(M = 10 My), R = 19 Mpc. Again, note that this is not the real radius of objects observed
today with a given mass. Rather, this is the radius that objects would have, if they had the mean
mass density of the universe today. This is the most relevant radius when we talk about the linear
density fluctuations. These regions then expand, turn around, and then contract to form objects
with physical radii much smaller than R given above.

The next step is to find overdense regions that have a certain mass M. In order to do this,
we need to “bin” the density fields with the corresponding radii R. Namely, we first average the
density field as

. 1 o o
(%) = —5 47rR / drép(z +7), (3.88)
[7I<R
where R = < 4%‘3{%), and see if the averaged 0 exceeds the critical overdensity J.. The Fourier

transform of dp is related to that of the original linear density field 7, as

Salf) = / B 5p(F)e— R

= /ds . R3/ d3r /dgk oK (F+7) ,—ik-&
s W<R

= 47rR / d3 /dSk‘/ 5(3 E/)SL(]%’/)eiE-F
"|<R

= 4 k d3r eEF
( )47r3RB *|<R
= o.(k) 11% / / dp ek
3
- - [35
= 9 (k:)[ R )], (3.89)

where j1(z) = sin(x) /22 — cos(x) /z is a spherical Bessel function of order 1. Therefore, the Fourier

transform of dp is the Fourier transform of 7, times the “window function” given by 3 l(kR)
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The variance of the averaged density field dg is then given by
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This integral can be estimated roughly as

k3P (k
o~ (2 ) . (3.90)
2% k=R
This means that, for a power-law power spectrum of P(k) o< k™, the variance scales as
0% ox R™mH3) o pp=(m+3)/3, (3.91)

For example, the large-scale limit of the power spectrum is P(k) o< k™, and thus 0% o< M —(ns+3)/3
M~4/3. The small-scale limit of the power spectrum is P(k) o« k™ ~*(Ink)?, and thus 0% o
M~(s=1/3 ~ MO (except for a logarithmic factor). Finally, as o2 is proportional to the power
spectrum, its growth is given by the growth of mass density fluctuation squared, i.e., U%% x D?,
where D x a during the matter era.
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The above figure shows o as a function of M = 47pyR3/3 in units of A=t M. The upper and
lower curves correspond to z = 0 and z = 10, respectively. From this figure, one finds that, at
z = 10, a 1-0 fluctuation corresponding to M = 10* h=! M, has not yet reached the critical
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overdensity, d. ~ 1.686. This does not mean that these masses have not collapsed yet - according
to a Gaussian distribution, there are fluctuations exceeding 1-o fluctuations. They are just not
very common. At z = 0, 1-o fluctuations corresponding to M ~ 10" h=! M exceed 4., and thus
typically collapsing halos at z = 0 have M ~ 10'3 h=! M, and halos more massive than that (such
as clusters of galaxies) can be collapsing but are still rare.

With these, one can now calculate the mass function of halos, dn/dM, which is the “comoving
number density of collapsed halos per unit mass interval at a given time.” This can be calculated
as (Press & Schechter, Astrophysical Journal, 187, 425 (1974))

_77P(> 50) (3.92)

Plugging in a Gaussian form of the probability distribution function, we can calculate the derivative:
dn ovm d &

e )
dM M dM Js, " mog

_ _pu d [T dx
M dM 5c/oR 2T
— —1
Py dog 1 52/0202)
_ Puy 2/(20%) 3.93
M dM o (3.93)

6_52}%/(20?{)

—x2/2

(&

This is the mass function.

Now, let us check this mass function. Under the assumption that all the mass in the universe
are enclosed in halos, the mass function times mass integrated over masses should be equal to the
mean mass density of the universe, i.e.,

o dn
dM M — = pr. 3.94
/ = (394)

Is this satisfied by the above mass function? A straightforward calculation shows that

e dn 1
dM M—— = —py, 3.95
/0 = (3.95)
and thus the above formula fails to account for a half of the mass in the universe! Press and
Schechter, who came up with the above formula, then arbitrarily multiplied the above formula by
a factor of two, and came up with the formula now known as the “Press-Schechter mass function”:

= -1
dn _ pus dog [2 s2/00%)
v~ M am Vx

(3.96)

The arguments which have led to this formula are arguably simplistic - a spherical collapse - and
even requires a fudge factor of two. However, a remarkable thing about this formula is that it gives
more-or-less correct form of the mass function derived from N-body simulations.

Many research groups have been trying to find a better formula for the mass function. A big
motivation for getting a correct mass function is that the mass function is an observable quantity,
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and thus it can be used to infer the values of 012%. Since it is proportional to the growth rate,
U%z o« D?, the mass function can be used to infer D as a function of redshifts which, in turn, can
be used to infer the nature of dark energy.

The latest fitting formula for the mass function is given by Tinker et al., Astrophysical Journal,
688, 709 (2008):

dn PM dal_%l OR\ @ .2
dn _ pudog' , Toomy=e ] oo |
aM M dM ( b ) tle (3.97)

where A = 0.186, a = 1.47, b = 2.57, and ¢ = 1.19. The comparison between Tinker et al.’s mass
function and Press-Schechter mass function at z = 0 is given below.
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log(1/0)
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The mass function has been derived from observations of the number of massive clusters of galaxies.
Chandra Cosmology Project led by Alexey Vikhlinin (Vikhlinin et al., 692, 1060 (2009)) has yielded
an impressive agreement between the cluster number counts and the prediction from the standard
ACDM model, as shown below.
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PROBLEM SET 4

1.1 Large-scale Structure of the Universe

1.1.1 Growth of Linear Density Fluctuations

Let us consider a universe containing matter and dark energy. Assuming that dark energy is a
cosmological constant, the Friedmann equation gives

8tG [ pmo
HQ:—(—+ ) 1.98
3 PR ( )
where ppro is the present-day value of the matter density, and pa is the energy density associ-
ated with a cosmological constant (which is, of course, constant). How would the matter density
fluctuations evolve in such a universe?
On the sub-horizon scales,

k
=" >1 1.99
‘=l > 5 (1.99)
the evolution of the matter density fluctuations obeys the following equations:
5 = -, (1.100)
a
1
Vo= —~v - o, (1.101)
a a
4G ppro
2 _

The primes denote derivatives with respect to a. Here, the right hand side of Poisson’s equation
(the third equation) contains only the matter density fluctuation, as a cosmological constant is
spatially uniform and does not contribute to ®.

Question 1.1: ‘Combining equations (3), (4), and (5), obtain a single differential equation for ¢.

The answer should contain only §, H, a, and their derivatives with respect to a. Once you obtain
the desired equation, you should check that the solutions to that equation in the matter-dominated
limit are given by § = Cia + Cs/a®/?, where C; and Cj are integration constants. Hint: You can
relate pyro to H'.

Question 1.2: ‘Show that one of the solutions to the equation obtained above is § o« H.|This

is a decaying solution.

Question 1.3: ‘Show that another solution is given by‘

§ o H/(;l];)S (1.103)

This is a growing solution.
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Question 1.4: Take the above growing solution, and define a new quantity, g = g. This
quantity must approach a constant during the matter era. Adjust the integration constant such
that ¢ — 1 during the matter era. Writing the expansion rate as

H = Ho/Qu(1 + 2)3 4+ Qa, (1.104)

where 1 4+ z = %, make a diagram showing the evolution of g as a function z from z = 0 to 3‘ for

Qp = 0.27 and Qp = 0.73. The difference between g = 1 and g computed here is due to the effect
of dark energy.

1.1.2 Redshift Space Distortion: Kaiser Effect

While the underlying power spectrum of density fluctuations, P(k), should only depend on the
magnitude of k£ owing to isotropy of the universe, the observed power spectrum can depend on
directions of k. This is due to the effect of peculiar velocity of matter (say, galaxies), and is called
the Kaiser effect (N. Kaiser, Monthly Notices of Royal Astronomical Society, 277, 1 (1987)).

The Kaiser effect arises because we make observations in redshift space, rather than in real
space. Specifically, we infer the location of galaxies along the line of sight from observed redshifts.
However, redshifts receive contributions from both the cosmological expansion and peculiar velocity

along the line of sight:
Zobs = Zreal 1 lﬂa (1105)
a c
where v =7+ 0. As a result, galaxies moving toward us appear to have smaller redshifts and to be
closer than they actually are, while galaxies moving away from us appear to have larger redshifts
and to be farther than they actually are.
As we learned in Section 1.5, the difference in redshifts is related to the comoving separation

between two galaxies along the line of sight as
or| = —. 1.106
Tl i ( )

Therefore, observationally inferred comoving separation along the line of sight is different from the
real comoving separation by
Yl
5r\\,obs = 57““7rea1 + TH (1.107)
On the other hand, nothing would happen to the directions perpendicular to the line of sight.
This can be summarized as coordinate transformation. The coordinates in redshift space, s,

and those in real space, 2*, are related by

st o= b (1.108)
s = 27 (1.109)
3 3, Y

— L 1.110
s x +aH’ ( )

where we have chosen the line of sight direction as the 3-direction. How does this affect the observed

power spectrum?
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Question 1.5: Since this is merely coordinate transformation, the mass within a unit volume
must be conserved regardless of the choice of the coordinate system. We have

psd’s = pydiz, (1.111)

where ps and p, are the mass densities in redshift space and real space, respectively. Expanding

these into perturbations,
p(1+65)d%s = p(1 + 6,)dx. (1.112)

Note that the mean density, p, is the same in both real space and redshift space. From this, we

obtain

1
= m(H—&x)—l, (1.113)

where |J| is the determinant of the Jacobian matrix:

0s

dst 9st Bs!
a—‘;l 8—; 8% . ( 1.1 14)
9s3 95 0s®
ozl 0z2 023

<
Il

By expanding equation (16) up to the first order in perturbations (including density and velocity),

find the relation between ds, d,, and v||.| Note that v depends on spatial coordinates x!, whereas

H does not but it depends only on time. Hint: does the result you obtained make sense? What
are the conditions for ds < d; or ds > 9,7 Can you explain why they are so?

Question 1.6: Now is the time to go to Fourier space. Use

Ik - g
68 = /(271_)3 58,]; e N (1115)
&’k - ik
~ Pk iz
v = /(27‘(‘)3 ’UE (& , (1117)
(1.118)

and write the relation between 5 and &, in Fourier space.” Here, 7 = (v!,v2,v3) and v = v3.

We need to relate v to d,. For this, we can use the mass conservation equation:

) 1.
0y +—-V-7=0. (1.119)
a
Fourier-transforming this, one finds
< ik -
5367,3 + - U= 0. (1.120)

If you are careful, you might wonder why we can expand 8, using = coordinates, rather than s coordinates. This
is OK up to the first order - since Js is already a perturbation, the difference between = coordinates and s coordinates
would appear only at the second order.
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This equation is satisfied if

0, i (1.121)

Sy

_iak 5
%2

As we have seen from the previous section, 53; i evolves by the same factor at all scales (all k), so

we may write (5 g o< D. Then,

D - dIn D «
-=—) »=H 1.122
x,k D Tk dlnag ®k ( )
From now on, let us write
dln D
= 1.123
/ dlna ( )
so that .
U= me%SI P (1.124)
By putting these altogether,
i R\
55,12 = (1 + fk2> 517’,;, (1.125)

where k| = k3 for k = (k', k2, k3). The modification of density fluctuations in redshift space due
to the peculiar velocity effect is known as the redshift space distortion, and is often called the
Kaiser effect. Because of this, the observed power spectrum depends on k:

2\
Py(k, k) = <1+f]€2) Py(k). (1.126)

This is a nice result, as one can use the dependence of the observed power spectrum on k| to
extract the information on the growth of structures via f. As we have seen in the previous section,
D (hence f = dInD/dIna) changes if there is dark energy, and thus this information can be used
to study the nature of dark energy.
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