
E. Komatsu 1

Critical Tests of Inflation as a Mechanism for Generating
Observed Cosmological Fluctuations in the Universe

Eiichiro Komatsu1(a),(b),(c)

(a)Texas Cosmology Center and the Department of Astronomy, The University of Texas at Austin, 1
University Station, C1400, Austin, TX 78712, USA

(b)Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study,
the University of Tokyo, Kashiwa, Japan 277-8583 (Kavli IPMU, WPI)

(c)Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany

Abstract

Can we rule out inflation as a mechanism for generating the observed cosmological
fluctuations in the universe? There now exists a well-defined approach to rule out
single-field inflation models (using non-adiabaticity and non-Gaussianity); however,
we are yet to find a way to convincingly rule out multi-field inflation models. In this
contribution we will discuss these two methods (particularly non-Gaussianity) as a
way to critically test inflation, as well as the current observational constraints. We
first begin by showing how to rule out single-field inflation models, and then proceed
onto discussing how to rule out multi-field inflation models.

1 Introduction

The idea of cosmic inflation, a period of accelerated expansion in the very early universe, was proposed
more than three decades ago as a solution to the horizon and flatness problems [1–3], and has now become
an indispensable ingredient of the standard model of cosmology. During inflation, the universe expands
quasi-exponentially as

a(t) = a(t0) exp

(
∫ t

t0

H(t′)dt′
)

, (1)

with a slowly-varying H(t). Here, a(t) is the Robertson-Walker scale factor that appears in the unper-
turbed metric as ds2 = −dt2 + a2(t)δijdx

idxj . In order for inflation to occur, it is necessary for H(t) to
vary only slowly; thus, one requires the following “slow-roll parameter” to be small:

ǫ ≡ − Ḣ

H2
≪ 1. (2)

The dots denote derivatives with respect to time.
Not only does inflation make the observable part of the universe homogeneous, isotropic, and flat, it

also provides a natural built-in mechanism for creating quantum fluctuations which seed the observed
large-scale structure of the universe today [4–8]. It is also the latter that makes inflation a testable (and
potentially falsifiable) model of the early universe, as inflation makes specific predictions for statistical
properties of the observed cosmological fluctuations in the universe. We write the perturbed metric as

ds2 = −N2dt2 + a2(t)e2R[eh]ij(dx
i +N idt)(dxj +N jdt), (3)

where N and N i are the lapse function and the shift vector, respectively. We shall call the trace of the
space-space part of the metric perturbation, R, the “curvature perturbation,” and demand det[eh]ij = 1
(hence Tr[h] = 0). In Fourier space, R is related to the perturbation to the 3-dimensional Ricci scalar as

δ(3)R = 4k2

a2(t)R.

It is likely that we need something like inflation (i.e., accelerated expansion of the universe in the
very early time) to dynamically explain homogeneity, isotropy, and flatness of the observable universe.
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2 Testing Inflation

However, one cannot quite rule out inflation using these properties, as one may simply postulate that
these properties arose from the initial condition of our universe, rather than explaining them dynamically
from generic initial conditions.

On the other hand, statistical properties of the observed cosmological fluctuations can be used to test
various models of inflation. In this article, we pose a more general question: can we falsify inflation as a
mechanism for generating the observed cosmological fluctuations in the universe?

2 Ruling out single-field inflation

2.1 Invariant curvature perturbation, “ζ”

Before we discuss more general models of inflation, let us discuss single-field models of inflation. Here,
we define single-field models of inflation as “models of inflation in which one scalar field is responsible for
driving the accelerated expansion of the universe and creating the observed cosmological fluctuations.”
The action for a minimally-coupled canonical scalar field is given by

S =
1

2

∫

d4x
√−g [R− gµν∂µφ∂νφ− 2V (φ)] . (4)

Throughout this article, we shall take 8πG ≡ 1. Single-field inflation models may have a non-canonical
kinetic term or a non-minimal coupling to R. While in this article we shall use this action for carrying
out concrete calculations, our conclusions do not depend on the exact form of the action, as long as it
involves only one scalar field.

During inflation, quantum fluctuations generate scalar perturbations such as δφ and R [4–8], as well
as tensor perturbations, hij [9, 10]. For the linear perturbation, it is convenient to define the following
quantity,

ζ ≡ R− H

φ̇
δφ. (5)

This quantity is convenient because it is invariant under infinitesimal transformation of coordinates [11],
and becomes a constant on super-horizon scales (for which the wavenumber satisfies k ≪ aH) [8, 12].
Also, the action given in Eq. (4) can be expanded to quadratic order in ζ: S = S(0) + S(2) + . . . , where
[13, 14]

S(2) =

∫

d4x ǫ
[

a3ζ̇2 − a(∂ζ)2
]

. (6)

With this variable, the temperature anisotropy of the cosmic microwave background in a direction n̂
in the Sachs–Wolfe limit is given by δT (n̂)/T = −ζ(n̂r∗)/5, where r∗ = 14 Gpc is the comoving distance
to the surface of last scattering, z∗ = 1090. The Poisson equation (in the sub-horizon limit, k ≫ aH)

relates ζ to the matter-density fluctuation, δM ≡ δρM/ρM , in Fourier space as δM,k = 2k2

5H2

0
ΩM

ζkT (k)D(z),

where T (k) is the linear matter transfer function andD(z) is the linear growth factor normalized such that
(1 + z)D(z) = 1 during the matter dominated era. Therefore, a positive ζ gives a negative temperature
anisotropy in the Sachs–Wolfe limit and a positive matter density fluctuation.

2.2 Non-adiabaticity

The curvature perturbation generates fluctuations in matter as well as in radiation. As there is no other
source of fluctuations in single-field models, fluctuations in different energy components must be equal
up to the respective equation of state [15]

δρi
ρi(1 + wi)

= 3ζ
H

a

∫

da

H
, (7)

where wi ≡ Pi/ρi is the equation of state parameter of an energy component i, δρi is the fluctuation in
the energy density, and Pi and ρi are the mean pressure and energy density, respectively. This implies



E. Komatsu 3

that the matter density fluctuation, δρM , and the radiation density fluctuation, δρR, must satisfy the
following adiabatic condition:

δρM
ρM

=
3

4

δρR
ρR

. (8)

This is one of the fundamental predictions of single-field models of inflation. Therefore, detection of a
violation of the adiabatic condition rules out all single-field models of inflation.

However, the adiabatic condition is a sufficient condition for single-field models of inflation: while
detection of a violation of the adiabatic condition rules out all single-field models of inflation, the lack of
detection of a violation of the adiabatic condition does not prove single-field models of inflation. While
multi-field models of inflation usually generate non-adiabatic fluctuations which violate the adiabatic
condition, the adiabatic condition will be restored if the matter and radiation become local thermal
equilibrium with no non-zero conserved quantities [16].

Therefore, detection of a violation of the adiabatic condition has a profound implication for cosmology:
not only does it rule out all single-field models of inflation regardless of details of models, but also it
rules out any scenarios in which matter enters local thermal equilibrium with radiation before any non-
zero conserved quantities are generated. For example, if axions constitute the majority of cold dark
matter particles, then one would expect a violation of the adiabatic condition between the dark matter
fluctuations and radiation density fluctuations, as the currently viable production mechanism for axions
(called the misalignment mechanism) predicts that axions are not in local thermal equilibrium with
radiation after inflation (see Section 3.6.3 of [17]; Section 4.4 of [18] and references therein). Another
possibility is that the baryon number (more precisely B−L, which is a conserved charge in the Standard
Model of particle physics) is produced at the end of inflation by some non-thermal process such as
the Affleck-Dine mechanism [19], well before baryons enter local thermal equilibrium with radiation.
Therefore, detection of a violation of the adiabatic condition between matter and radiation has a profound
implication for the nature of dark matter or the physics of baryogenesis. As these two examples (axion
and Affleck-Dine baryogenesis) require an additional light field (whose mass is much smaller than H
during inflation) which acquires quantum fluctuations on super-horizon scales during inflation, they are
not considered as single-field inflation.

We have used the 7-year WMAP data of temperature and polarization anisotropies to constrain a
violation of the adiabatic condition, and obtained [18]

∣

∣

∣

δρcdm

ρcdm
− 3δργ

4ργ

∣

∣

∣

1
2

(

δρcdm

ρcdm

+
3δργ

4ργ

) < 0.092, (9)

at the 95% C.L. In order to obtain this constraint, we have assumed that there is no correlation between
S ≡ δρcdm

ρcdm
− 3δργ

4ργ
and ζ, which is a valid assumption for axions.

Where does this constraint come from? On large angular scales where the Sachs–Wolfe approximation
is valid, the temperature anisotropy is given by [20]

δT

T
= −1

5
ζ − 2

5
S. (10)

Therefore, when ζ and S are uncorrelated, their contributions to the observed angular power spectrum
of CMB add in quadrature, increasing the amplitude of the power spectrum on large angular scales,
l ≪ 100. On smaller angular scales, the contribution from S becomes much smaller than that from
ζ. While this change in the CMB power spectrum can be partially canceled by increasing the spectral
tilt, ns, and decreasing the matter density [17], the WMAP data combined with the other astrophysical
data-sets such as the large-scale structure and the local expansion rate constrain the difference between
δρcdm/ρcdm and 3δργ/4ργ to be less than 9%.

This limit provides an interesting constraint on the axion decay constant, fa. Assuming that axions
constitute the majority of cold dark matter particles, we obtain [18]

fa > 3.2× 1032 GeV γ2
( r

10−2

)2

, (11)
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at the 95% C.L. Here, r ≡ 〈hijh
ij〉/〈ζ2〉 is the tensor-to-scalar ratio, and γ ≤ 1 is a “dilution factor”

by which the axion density would have been diluted due to a potential late-time entropy production by,
e.g., decay of some (unspecified) heavy particles, between 200 MeV and the epoch of nucleosynthesis,
1 MeV. Therefore, detection of the tensor-to-scalar ratio at the level of r = 10−2 in the future would
rule out axions constituting the majority of dark matter particles, unless one invokes a super-Planckian
decay constant, fa ≫ Mpl = 2.4 × 1018 GeV, or a significant dilution of axion density due to entropy
production, γ ≪ 1, or both. The current limit on the tensor-to-scalar ratio is r < 0.24 (95% C.L.) [18].
A future satellite mission such as LiteBIRD is expected to detect r down to r = 10−3 [21].

2.3 Non-Gaussianity

2.3.1 Single-field theorem for the squeezed-limit bispectrum

Inflation usually predicts that δφ (hence ζ according to Eq. (5)) is a Gaussian random variable. How
can we use this property to test inflation? It turns out that a deviation from Gaussianity, i.e., non-
Gaussianity, offers a powerful test of inflation [22–25].

Before we discuss general models of inflation, let us first focus on single-field models of inflation.
While the derivation of the main result (Eq. (24)) we present below uses a minimally-coupled slowly-
rolling scalar field with canonical kinetic term and the Bunch-Davies initial vacuum state, the final result
does not depend on these assumptions [14, 26–31].

As H also depends on the scalar-field value and the scalar field contains a perturbation, one may
obtain the following expression (see Section 2.4 of [32]):

ζ = −H

φ̇
δφ− 1

2

∂

∂φ

(

H

φ̇

)

δφ2 +O(δφ3). (12)

Here, we have chosen the “flat hypersurface,” on which R = 0. As ζ is invariant under the change of
hypersurfaces, we are free to choose any hypersurfaces which are convenient for our purposes.

This relation makes ζ non-Gaussian even when δφ is Gaussian.2 Now, going to Fourier space and
computing the bispectrum (Fourier transform of the 3-point function), we obtain (to the leading order)

〈ζk1
ζk2

ζk3
〉 = −

(

H

φ̇

)3

〈δφk1
δφk2

δφk3
〉

−(2π)3δ(k1 + k2 + k3)

(

H

φ̇

)2
∂

∂φ

(

H

φ̇

)

[Pφ(k1)Pφ(k2) + (2 perm.)] , (14)

where Pφ is the power spectrum of δφ: 〈δφk1
δφk2

〉 = (2π)3δ(k1 + k2)Pφ(k1).

In the first line, let us define ζc ≡ −(H/φ̇)δφ. In the second line, one can use this relation to replace
Pφ with the power spectrum of ζc, Pζ(k) = (φ̇/H)−2Pφ(k). We obtain

〈ζk1
ζk2

ζk3
〉 = 〈ζc,k1

ζc,k2
ζc,k3

〉 − (2π)3δ(k1 + k2 + k3)

(

φ̇

H

)2
∂

∂φ

(

H

φ̇

)

[Pζ(k1)Pζ(k2) + (2 perm.)]

= 〈ζc,k1
ζc,k2

ζc,k3
〉+ (2π)3δ(k1 + k2 + k3)

φ̇

2H

∂ ln ǫ

∂φ
[Pζ(k1)Pζ(k2) + (2 perm.)]

= 〈ζc,k1
ζc,k2

ζc,k3
〉+ (2π)3δ(k1 + k2 + k3)(2ǫ− η) [Pζ(k1)Pζ(k2) + (2 perm.)] , (15)

where we have used ǫ ≡ − Ḣ
H2 = φ̇2

2H2 and η ≡ − φ̈

Hφ̇
+ ǫ. Therefore, if δφ (hence ζc) is a Gaussian random

variable, only the second term contributes to the bispectrum. While the second term has been known
since 1990 [33], a complete computation of the first term had not been done until 2003 [14].

2As shown in [32], this result agrees with a modern calculation of ζ on large scales using the so-called “δN formalism”
[33], according to which ζ is related to δφ on the flat hypersurface via (for single-field models)

ζ =

∫ φ̄

φ̄+δφ

H

φ̇
dφ = −

H

φ̇
δφ −

1

2

∂

∂φ

(

H

φ̇

)

δφ2 +O(δφ3). (13)

Also see [34, 35].
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Before we discuss the first term, let us introduce the so-called “squeezed configuration,” where one
of the wavenumbers is small. As the power spectrum roughly scales as Pζ(k) ∝ k−3 (or more precisely
Pζ(k) ∝ kns−4 with ns = 0.96±0.01 [18]), the second term is maximized in the squeezed configuration. Let
us take k3 to be the smallest wavenumber. The squeezed configuration then corresponds to k3 ≪ k1 ≈ k2.
In this limit, the second term goes to (4ǫ− 2η)Pζ(k1)Pζ(k3).

In order to compute the first term, one needs to expand the action (Eq. (4)) to the third order in
terms of ζc (see Eq. (3.13) of [14]):

S(3) =

∫

d4x 4ǫ2Ha5ζ̇2c ∂
−2ζ̇c. (16)

Then the first term is given by (see Eq. (4.2) of [14]):

〈ζc,k1
(t)ζc,k2

(t)ζc,k3
(t)〉 = −i

∫ t

t0

dt′〈[ζc,k1
(t)ζc,k2

(t)ζc,k3
(t), Hint(t

′)]〉, (17)

where t0 is the time at which initial conditions are specified. The interaction Hamiltonian, Hint, is given
by
∫

dt′ Hint(t
′) = −S(3). Now, let us expand ζc into the creation and annihilation operators,

ζc(x, t) =

∫

d3k

(2π)3

[

akuk(t)e
ik·x + a†

k
u∗
k(t)e

−ik·x
]

. (18)

One then obtains

〈ζc,k1
(t)ζc,k2

(t)ζc,k3
(t)〉 = i

8ǫ2

H2

(

1

k21
+

1

k22
+

1

k23

)

uk1
uk2

uk3

∫ η

η0

dη′

(η′)3
u′∗
k1
u′∗
k2
u′∗
k3

+ c.c. (19)

where η =
∫

dt/a is the conformal time.
How should we choose the mode function, uk? This must be a solution to the equation of motion

obtained from the quadratic action, S(2), given in Eq. (6): (a2ǫu′
k)

′ + k2a2ǫuk = 0, where the primes
denote derivatives with respect to the conformal time. We choose the following normalization of the
mode function:

uk(t) =
H2

φ̇

1√
2k3

(1 + ikη)e−ikη, (20)

which gives its conformal-time derivative as u′
k = H2

φ̇

√

k
2ηe

−ikη . The power spectrum, Pζ(k), is given by

Pζ(k) = |uk(η → 0)|2 = H4

φ̇2

1
2k3 .

This choice of the mode function is a reasonable one (although it is not the only one - more later) in
the following sense: when the wavenumber is large, modes should see a flat, Minkowski space. We know
how to quantize a massless scalar field in Minkowski space, and the mode function of a massless scalar
field in the vacuum state (ground state/minimum-energy state) in Minkowski space is given by 1√

2k
e−ikt.

Let us take k → ∞ limit of Eq. (20):

uk(t) → −H

φ̇

ie−ikη

√
2ka(t)

. (21)

Therefore, this gives a mode function for a scalar field fluctuation in the high-k limit as δφk → 1√
2ka

e−ikη

(up to an unimportant phase factor i). Taking the Minkowski limit (a → 1), one reproduces the mode
function of a massless scalar field in the vacuum state in Minkowski space. This choice is called the
Bunch-Davies initial vacuum state.

Now, all we need to do is to insert the mode function given by Eq. (20) into Eq. (19) and perform
the integral. We shall take the initial conformal time to be infinite past: η0 → −∞. In order to suppress
the exponential terms such as ei(k1+k2+k3)η0 , we shall go slightly to the complex plane: η0 → −∞(1− iǫ)
(this ǫ is not the slow-roll parameter, but just denotes a small number). This corresponds to suppressing
excited states and choosing the vacuum [36]. While the result of this computation is a bit complicated,
it simplifies to

〈ζc,k1
ζc,k2

ζc,k3
〉 → (2π)3δ(k1 + k2 + k3)2ǫPζ(k1)Pζ(k3), (22)
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in the squeezed configuration [14]. Therefore, in the squeezed configuration, single-field models of inflation
predict

〈ζk1
ζk2

ζk3
〉 → (2π)3δ(k1 + k2 + k3)(6ǫ− 2η)Pζ(k1)Pζ(k3). (23)

Remarkably, the combination of the slow-roll parameters that appears on the right hand side is equal to
1− ns at the first order in the slow-roll parameters [37]. Thus, we write

〈ζk1
ζk2

ζk3
〉 → (2π)3δ(k1 + k2 + k3)(1 − ns)Pζ(k1)Pζ(k3) (24)

This is called the consistency condition of single-field inflation models.
While we have used the (i) action for a minimally-coupled scalar field with canonical kinetic term,

(ii) slow-roll approximation, and (iii) Bunch-Davies initial vacuum state to derive the above consistency
condition, a remarkable fact is that this result holds for all single-field inflation models regardless of the
above three assumptions [14, 26–30]. Therefore, detection of a violation of this condition would rule out
all single-field inflation models regardless of the details of models. This is the single-field theorem for the
squeezed-limit bispectrum.

2.3.2 Local-form bispectrum and observational limits

How can we measure the squeezed-limit bispectrum and test Eq. (24)? Inspired by the consistency
condition, let us define [38]

6

5
fNL ≡ Bζ(k1, k2, k3)

Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1)
, (25)

where Bζ is defined by

〈ζk1
ζk2

ζk3
〉 = (2π)3δ(k1 + k2 + k3)Bζ(k1, k2, k3). (26)

In the squeezed limit, we find fNL → 5
12 (1 − ns) = O(10−2). While in general fNL should depend on

wavenumbers in a complex way, a momentum-independent fNL is called the “local-form bispectrum.”
This provides a good template for testing the single-field consistency condition.

The local-form fNL (which is independent of wavenumbers) can be measured experimentally [39–41],
and thus detection of the primordial bispectrum signal of order fNL ≫ O(10−2) would rule out all single-
field inflation models. The limit on fNL from the WMAP 7-year CMB data is fNL = 32± 21 (68% C.L.)
[18]. Therefore, the current data are consistent with single-field inflation models. The Planck data are
expected to reduce the error bar by a factor of four [38].

2.3.3 Non-Bunch-Davies initial state

However, there is an important subtlety: all single-field models predict the amplitude of the squeezed-
limit bispectrum given by 1 − ns (as explained above) only in the exact squeezed limit, k3/k1 → 0. On
the other hand, we can measure k3/k1 down only to 1/1500 using anisotropies in the cosmic microwave
background (whose map can be used to extract information about primordial fluctuations from l = 2 to
3000 where l = kr∗); and down to 1/1000 using the large-scale structure of the universe where we have
access to k ≈ 10−3 to 1 Mpc−1. It may be possible to reach k3/k1 ≈ 10−8 using the so-called µ-type
distortion of the thermal spectrum of the cosmic microwave background [42, 43]. The question is then,
“what happens if k3/k1 is small but finite?” If there are models of inflation which produce a negligible
bispectrum signal in k3/k1 → 0 (so that it does not violate the consistency condition) but produce sizable
signals in small but finite k3/k1, then it may produce a signal in the measured local-form fNL.

Recently, Creminelli, D’Amico, Musso and Norena [31] have shown that all single-field inflation models
with the Bunch-Davies initial state give

〈ζk1
ζk2

ζk3
〉 = (2π)3δ(k1 + k2 + k3)

[

(1− ns) +O(k23/k
2
1)
]

Pζ(k1)Pζ(k3), (27)

when k3/k1 is small but finite. The correction to the consistency condition is thus small, as long as the
initial state is the Bunch-Davies state. Therefore, this leaves a deviation from the Bunch-Davies initial
state, a non-Bunch-Davies initial state, as the only source of a significant local-form fNL.
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How do we choose a mode function to describe a non-Bunch-Davies initial state? One reasonable
starting point would be a Bogoliubov transform of the Bunch-Davies mode function:

ũk(t) = αkuk(t) + βku
∗
k(t), (28)

where uk is the Bunch-Davies mode function given by Eq. (20). The commutation relation of creation
and annihilation operators demands that the Bogoliubov coefficients, αk and βk satisfy |αk|2− |βk|2 = 1.
As we still have a situation in which the spacetime must approach the Minkowski space in the high-k
limit, the mode function must approach uk(t) in the high-k limit. In other words, we must satisfy

αk → 1, βk → 0, for k → ∞. (29)

In other words, we do not modify the ultraviolet behavior of the mode function, but only modify the
infrared behavior of the mode function. The new state corresponds to a state with “particles,” with the
occupation number given by Nk = |βk|2 [44]. Of course, the occupation number must vanish in the high-k
limit: Nk → 0 for k → ∞. The power spectrum of ζ is now given by

Pζ(k) = |ũk(η → 0)|2 =
H4

φ̇2

1

2k3
|αk + βk|2. (30)

As the current observation suggests Pζ(k) ∝ kns−4 with ns = 0.96± 0.01 [18], the factor |αk + βk|2 must

not vary strongly with k. This motivates our writing the occupation number as Nk ≈ N0e
−k2/k2

cut , where
N0 is a constant and kcut is some ultraviolet cutoff scale of the theory.

The bispectrum for this new mode function can be obtained by simply replacing uk with ũk in Eq. (19):

〈ζc,k1
(t)ζc,k2

(t)ζc,k3
(t)〉 = i

8ǫ2

H2

(

1

k21
+

1

k22
+

1

k23

)

ũk1
ũk2

ũk3

∫ η

η0

dη′

(η′)3
ũ′∗
k1
ũ′∗
k2
ũ′∗
k3

+ c.c. (31)

Taking k3 ≪ k1 ≈ k2 (but not taking k3 → 0), we find [43]

〈ζc,k1
(t)ζc,k2

(t)ζc,k3
(t)〉 → (2π)3δ(k1 + k2 + k3)2ǫPζ(k1)Pζ(k3)

1

|αk1
+ βk1

|2
1

|αk3
+ βk3

|2

×ℜ
{

Fααα

(

1− ei(k1+k2+k3)η0

)

+ Fααβ

(

1− ei(k1+k2−k3)η0

)

+2
k1
k3

[

Fαβα

(

1− ei(k1−k2+k3)η0

)

+ Fβαα

(

1− ei(−k1+k2+k3)η0

)]

}

,(32)

where

Fααα ≡ (αk1
+ βk1

) (αk2
+ βk2

) (αk3
+ βk3

)α∗
k1
α∗
k2
α∗
k3

−
(

α∗
k1

+ β∗
k1

) (

α∗
k2

+ β∗
k2

) (

α∗
k3

+ β∗
k3

)

βk1
βk2

βk3
(33)

Fααβ ≡ (αk1
+ βk1

) (αk2
+ βk2

) (αk3
+ βk3

)α∗
k1
α∗
k2
β∗
k3

−
(

α∗
k1

+ β∗
k1

) (

α∗
k2

+ β∗
k2

) (

α∗
k3

+ β∗
k3

)

βk1
βk2

αk3
(34)

Fαβα ≡ (αk1
+ βk1

) (αk2
+ βk2

) (αk3
+ βk3

)α∗
k1
β∗
k2
α∗
k3

−
(

α∗
k1

+ β∗
k1

) (

α∗
k2

+ β∗
k2

) (

α∗
k3

+ β∗
k3

)

βk1
αk2

βk3
(35)

Fβαα ≡ (αk1
+ βk1

) (αk2
+ βk2

) (αk3
+ βk3

)β∗
k1
α∗
k2
α∗
k3

−
(

α∗
k1

+ β∗
k1

) (

α∗
k2

+ β∗
k2

) (

α∗
k3

+ β∗
k3

)

αk1
βk2

βk3
. (36)

The exponential factors in the first two terms of Eq. (32) vanish by taking the limit η0 → −∞(1− iǫ). On
the other hand, one has to be careful about the exponential factors in the last two terms, as k1 − k2 + k3
and −k1+k2+k3 are also very small in the squeezed limit. One may ignore the exponential factors when
k1 − k2 + k3 etc. are finite; otherwise one has to retain the exponential factors.

Using Fααα + Fααβ = (|αk1
+ βk1

|2 + 2iℑ(α∗
k1
βk1

))|αk3
+ βk3

|2 and Fαβα = Fβαα for k1 = k2, we
obtain

〈ζc,k1
(t)ζc,k2

(t)ζc,k3
(t)〉 → (2π)3δ(k1 + k2 + k3)2ǫPζ(k1)Pζ(k3)

×
{

1 + 4
k1
k3

ℜ
[

Fαβα

(

1− eik3η0

)]

|αk1
+ βk1

|2|αk3
+ βk3

|2

}

. (37)
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Do we recover the single-field consistency condition in the exact squeezed limit, k3 → 0? To recover
this, one needs to show 〈ζc,k1

(t)ζc,k2
(t)ζc,k3

(t)〉 → (2π)3δ(k1 + k2 + k3)2ǫPζ(k1)Pζ(k3) for k3 → 0,
provided that a scale-dependence of |αk + βk|2 can be ignored.3 The second term in Eq. (37) goes to
−4k1η0ℑ[Fαβα]/(|αk1

+βk1
|2|αk3

+βk3
|2) as k3 → 0. One can show that ℑ[Fαβα] → ℑ[α∗

k1
βk1

] for k3 → 0,
αk3

→ 1, and βk3
→ 0; thus, this term does not quite vanish in the exact squeezed limit. This is puzzling,

and how can this result be reconciled with the single-field theorem requires a further investigation.
A remarkable result from Eq. (32) is that, for a non-Bunch-Davies initial state, the bispectrum in the

squeezed configuration can pick up another factor of k1/k3 ≫ 1, changing the behavior of the bispectrum
in this limit from 2ǫPζ(k1)Pζ(k3) to 8ǫk1

k3
Pζ(k1)Pζ(k3){ℜ[Fαβα(1 − eik3η0)]/(|αk1

+ βk1
|2|αk3

+ βk3
|2)},

provided that k3η0 = O(1) (i.e., a mode corresponding to k3 is still inside the horizon at the initial
time η0). This behavior has been found first by Agullo and Parker [45]. This suggests that, unless
βk (hence the occupation number of “particles” in the initial state) is very small, a non-Bunch-Davies
initial state can change the behavior of the bispectrum in the squeezed configuration dramatically. This
leads to profound observational consequences for the bispectrum of the cosmic microwave background
temperature anisotropy [46], the scale-dependent bias of galaxies [43, 47], and the µ-type distortion of the
thermal spectrum of the cosmic microwave background [43]. Therefore, the bispectrum in the squeezed
configuration can be used to learn about the initial state of quantum fluctuations during inflation.

How does this affect our ability to rule out single-field inflation models using the bispectrum? While
a non-Bunch-Davies initial state produces a significant bispectrum in the squeezed configuration, more
generally it produces large signals in the so-called “co-linear” configurations, for which the sum of the
magnitudes of two wavenumbers is equal to the magnitude of one wavenumber, e.g., k1 = k2 + k3, etc.
[48, 49]. Obviously this includes the squeezed configuration, k3 ≪ k1 ≈ k2. Therefore, once we find a
large signal in the squeezed configuration (say, by measuring the primordial local-form bispectrum of order
fNL ≫ 1), we should check whether we find similarly large signals in the other co-linear configurations
for which k3 is not small. If we do find signals in the co-linear configurations, we would conclude that
the initial state is not in the Bunch-Davies initial state (and inflation can still be single-field). If we do
not find signals in the co-linear configurations, we would rule out all single-field inflation models.

3 Ruling out multi-field inflation

Let us suppose that we find the primordial local-form bispectrum of order fNL ≫ 1 without corroborating
signals in the co-linear configurations where k3 is not small. Single-field inflation models are gone - what
should we do?

As single-field models are gone, we must be led to multi-field models of inflation. In order to calculate
ζ from multi fields, one must extend Eq. (12). This can be achieved by using the δN formalism [34, 35]:

ζ =
∑

I

NIδφ
I +

1

2

∑

IJ

NIJδφ
IδφJ +O(δφ3), (39)

where N is the number of e-folds (not to be confused with the lapse function) calculated as a function of
multiple scalar fields at the epoch of the horizon crossing: N ≡

∫

Hdt = N(φI), and NI ≡ ∂N/∂φI and
NIJ ≡ ∂2N/∂φI∂φJ . Here, we evaluate δφI on the flat hypersurface. One can check that this formula
yields the known single-field result (Eq. (12); also see footnote 2) by noting that, for single-field models,
N =

∫

H
φ̇
dφ, N1 = −H

φ̇
, etc. (N1 has a negative sign because the derivative is taken with respect to the

initial field value at the epoch of the horizon crossing, rather than the final field value.)
In this section, we shall ignore contributions from 〈δφIδφJδφK〉, as they are usually sub-dominant

(slow-roll suppressed) for the local-form bispectrum. Using the definition of the local-form fNL given in
Eq. (25), one finds, to the lowest order [35]

6

5
fNL =

∑

IJ NIJNINJ

(
∑

I N
2
I )

2
. (40)

3If a scale-dependence of |αk + βk|
2 cannot be ignored, then one needs to check that the squeezed limit bispectrum

reproduces 1− ns given by

1− ns = 6ǫ − 2η −
d ln |αk + βk|

2

d ln k
. (38)
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For a given model of multi-field inflation, it is possible to compute fNL from this formula; thus, one can
constrain multi-field inflation models by comparing this formula to the measured value of the primordial
local-form fNL.

However, can we ever rule-out multi-field inflation using non-Gaussianity? Clearly the bispectrum
alone cannot rule out multi-field models. Now is the time to go beyond the bispectrum and consider the
trispectrum (four-point function). The δN formula (Eq. (39)) yields, to the lowest order, the following
trispectrum:

〈ζk1
ζk2

ζk3
ζk4

〉 = (2π)3δ(k1 + k2 + k3 + k4)

×{τNL [Pζ(k1)Pζ(k2) {Pζ(k13) + Pζ(k14)}+ (11 perm.)]

+
54

25
gNL [Pζ(k1)Pζ(k2)Pζ(k3) + (3 perm.)]

}

, (41)

where kij ≡ |ki + kj |, with τNL and gNL given by [50, 51]

τNL =

∑

I(
∑

J NIJNJ)
2

(
∑

I N
2
I )

3
, (42)

54

25
gNL =

∑

IJK NIJKN INJNK

(
∑

I N
2
I )

3
. (43)

Now, let us look at fNL and τNL. As both of these depend only on the first derivative, NI , and the
second derivative, NIJ , there may be a universal relation between them. To see this clearly, let us change
variables:

aI =

∑

J NIJNJ

(
∑

J N2
J)

3/2
, (44)

bI =
NI

(
∑

J N2
J)

1/2
. (45)

Then, Cauchy-Schwarz inequality,
(

∑

I

a2I

)(

∑

J

b2J

)

≥
(

∑

I

aIbI

)2

, (46)

yields the following Suyama-Yamaguchi inequality [52]:

τNL ≥
(

6fNL

5

)2

(47)

While this inequality has been derived only for the leading-order contributions from Eq. (39) (i.e.,
(1st)2×(2nd) for fNL; (1st)

2×(2nd)2 for τNL), we have shown that they hold even when including higher-
order contributions (e.g., (2nd)3 for fNL; (2nd)

4 for τNL; etc) [53, 54]. This is a powerful relation - one
may potentially rule out all multi-field inflation models if we find a violation of this relation observation-
ally. For example, if Planck finds fNL = 30 (which is the central value obtained from the WMAP 7-year
data), then it should also find τNL ≥ 1300, which is about 5-σ level compared to the 1-σ uncertainty
of τNL expected from the Planck data [55]. In other words, if fNL = 30 is confirmed by Planck, we’d
better find τNL also! For follow-up studies of the Suyama-Yamaguchi inequality from rather different
perspectives, see [56, 57].

Finally, let us comment on an alternative view on the Suyama-Yamaguchi inequality reported by [58].
They show that the definitions of fNL and τNL alone yield an inequality between these two quantities,
which does not rely on physics but relies only on statistics:

τNL ≥
(

6fNL

5

)2

−∆τNL, (48)

where ∆τNL depends on experiments. For Planck, for example, ∆τNL is 10 times as large as the 1-σ

uncertainty of τNL expected from Planck [58]. Therefore, detection of a violation of τNL ≥
(

6fNL

5

)2

would challenge inflation as a mechanism for generating the observed fluctuations.
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4 Summary

We have discussed how to rule out single-field inflation models using non-adiabaticity and non-Gaussianity
of primordial fluctuations. In particular, non-Gaussianity can be a powerful tool to rule out not only
single-field models but also multi-field models. Specifically, all single-field inflation models predict that
fNL → 5

12 (1 − ns) in the exact squeezed limit, k3/k1 → 0. For a small but finite k3/k1, a non-Bunch-
Davies initial state can yield a significant fNL; however, this signal must be accompanied by the other
co-linear configurations (e.g., k1 = k2 + k3) in which k3 is not so small. Finally, once single-field models
are excluded, one can use the Suyama-Yamaguchi inequality between the local-form bispectrum and
trispectrum amplitudes, τNL ≥ (6fNL/5)

2, to test multi-field models. Detection of a violation of this
inequality potentially rules out all multi-field inflation models (although this statement is not as definitive
as that for single-field models).

We would like to thank Jonathan Ganc for reading the manuscript and for useful comments. This
research is supported in part by NSF grant PHY-0758153.
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