The cosmic microwave background bispectrum as a test of the physics of inflation and probe of the astrophysics of the low-redshift universe

Eiichiro Komatsu1,2,3 and David N. Spergel1,4

1. Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
2. School of Natural Sciences Institute for Advanced Study 1 Einstein Drive Princeton, NJ 08540, USA
3. Astronomical Institute, Tohoku University, Aoba, Sendai 980-8578, Japan
4. Keck Distinguished Visiting Professor, School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA


Abstract

Why is non-Gaussianity interesting? One of generic predictions from inflationary scenarios is that primordial fluctuations are exactly Gaussian in linear order; however, the non-linearity in the inflation will produce weak non-Gaussianity. Thus, measuring the non-Gaussianity in the cosmic microwave background radiation anisotropy is a probe of the non-linear physics in the very early universe. Since the angular three point function is zero for the Gaussian field, it is sensitive to the non-Gaussianity. We predict its harmonic transform counterpart, the angular Bispectrum, down to arcminutes angular scales, including the full effect of the radiation transfer function. We find that even the Planck experiment cannot detect the primary bispectrum from the inflation, as long as the single field slow-roll inflation is right. Non-linearities in the low redshift universe also produce the non-Gaussianity. We find that secondary bispectra are detectable by both MAP and Planck experiments. The secondary bispectra probe the non-linear physics of the low-redshift universe. Although this could be a contaminant to the primary signal, MAP and Planck experiments are found to be able to separate the primary from secondary effects well. We present a tentative comparison of the primary bispectrum to the published COBE 4 year bispectrum. The data put a weak constraint on the parameter, and the constraint would become much tighter when we use all modes available in the COBE data, and certainly forthcoming satellite experiments. As a conclusion, the bispectrum is a key measure to confirm or destroy the simple inflationary scenario in non-linear order that seems quite successful in linear order.

Home


Please Contact Me !!
Mail: ekomatsu@princeton.edu