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ABSTRACT

We study the stability of poloidal magnetic fields anchored in a thin accretion disc. The two-
dimensional hydrodynamics in the disc plane is followed by a grid-based numerical simu-
lation including the vertically integrated magnetic forces. The three-dimensional magnetic
field outside the disc is calculated in a potential field approximation from the magnetic flux
density distribution in the disc. For uniformly rotating discs we confirm numerically the
existence of the interchange instability as predicted by Spruit, Stehle & Papaloizou. In
agreement with predictions from the shearing sheet model, discs with Keplerian rotation are
found to be stabilized by the shear, as long as the contribution of magnetic forces to support
against gravity is small. When this support becomes significant, we find a global instability
which transports angular momentum outwardly and allows mass to accrete inwardly. The
instability takes the form of a m =1 rotating ‘crescent’, reminiscent of the purely
hydrodynamic non-linear instability previously found in pressure-supported discs. A model
where the initial surface mass density 2(7) and B,(r) decrease with radius as power laws
shows transient mass accretion during about six orbital periods, and settles into a state with
surface density and field strength decreasing approximately exponentially with radius. We
argue that this instability is likely to be the main angular momentum transport mechanism in
discs with a poloidal magnetic field sufficiently strong to suppress magnetic turbulence. It
may be especially relevant in jet-producing discs.
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and outflows.

1 INTRODUCTION

In the formation and evolution of young stellar objects, magnetic
fields are thought to play a key role. Magnetic fields, beside
rotation and thermal pressure, stabilize molecular clouds from
gravitational infall. By magnetic braking, thermal cooling, or
diffusive magnetic processes like ambipolar diffusion, a super-
critical cloud can form. The subsequent collapse, which proceeds
preferentially along the rotation axis and the magnetic field lines,
results in a dense central object, i.e. a protostar and an accretion
disc (Mestel 1965; Shu et al. 1993; see Tomisaka 1995 for a
numerical study). After the first, dynamical collapse we expect the
disc around the central object to be still threaded by a fraction of
the interstellar magnetic flux of the original cloud.

Though microscopic diffusion processes are important for the
evolution of magnetic fields in star-forming regions, effective
diffusion of matter across field lines is also possible through
instabilities driven by the magnetic field itself. In the molecular
cloud cores where the magnetic field is thought to disengage itself
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from the matter, the gravitational and magnetic energy densities
are believed to be of comparable magnitude (see McKee et al.
1993 for a review). This is just the condition under which
magnetic instabilities can operate at rates competitive with the
gravitational collapse rate. It would be somewhat of a coincidence
if microscopic diffusion were always the dominant process, and
effective diffusion by magnetically driven instabilities never
played a role in the entire contraction process from cloud to
star. This is one important reason to study the possible effects of
non-axisymmetric magnetic instabilities in the process of star
formation.

Another reason is provided by the possible connection of
magnetic fields in discs with outflows and jets. A remnant of the
cloud core’s magnetic flux, anchored in the accretion disc,
represents a poloidal magnetic field component with the right
geometry to launch and accelerate disc gas along the magnetic
field lines (Bisnovatyi-Kogan & Ruzmaikin 1976; Blandford &
Payne 1982). P Cygni line profiles in the spectra of young stellar
objects might find their explanation in such disc winds (Edwards,
Ray & Mundt 1993).

In addition to their role in accelerating outflows, poloidal
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magnetic fields anchored in the accretion disc may also play an
important role in the collimation of bipolar outflows and jets
(Blandford 1993; Spruit, Fogglizio & Stehle 1997). We refer to
Hughes (1991) for an extensive introduction into the observations
and physics of beams and jets. For a review and tutorial
introduction to the magnetic acceleration model see Spruit 1996;
for some issues of current interest see Ogilvie & Livio (1998, and
in preparation), or Cao & Spruit (1994, 2000).

The ability of the disc to produce a magnetically accelerated
outflow depends rather critically on the strength and radial
distribution of the poloidal field at its surface. This distribution, in
turn, is determined by the rate at which an advected large-scale
magnetic field in the disc is able to diffuse outward against the
inward drift velocity compressing it.

Van Ballegooijen (1989) studied the radial transport of
magnetic field lines assuming an isotropic turbulent viscosity v,
related to an equally isotropic magnetic diffusivity n by a constant
ratio, the magnetic Prandtl number. Along the same lines, Lubow,
Papaloizou & Pringle (1994) studied the magnetic field dragging
by turbulent processes in an accretion disc which was initially
threaded by an externally imposed magnetic field. The conclusion
from these studies is that inward dragging of an external field is
difficult to achieve, if the assumption of an isotropic magnetic
Prandtl number of order unity holds. It follows that one should
expect to see, in this case, only internally generated fields like
those obtained in numerical simulations (Brandenburg et al. 1995;
Stone et al. 1996).

If the initial magnetic field is sufficiently strong to contribute to
support against gravity, however, as appears to be the case in cloud
cores, it is likely to suppress these dynamo processes, since a
weak-field instability (Balbus & Hawley 1992) is thought to be an
essential ingredient in this kind of dynamo. In this case, which we
shall call the strong field case, the most plausible source of
turbulence in the disc is non-axisymmetric instabilities caused by
the strong magnetic field itself.

One well-known instability is interchange, a local instability
driven by the magnetic field energy, and which plays an important
role in controlled fusion devices and in solar magnetic fields. The
example of solar prominences shows that these instabilities can be
quite efficient in transporting mass across field lines (cf. Priest
1982). Linear interchange instability has been studied previously
by Spruit & Taam (1990) for uniformly rotating discs, and for
differentially rotating discs by Spruit, Stehle & Papaloizou (1995)
and Lubow & Spruit (1995), in a shearing sheet approximation.
The instability appears when the ratio B,/3 of the vertical
magnetic field strength to the surface mass density decreases with
distance from the centre of the disc. Its behaviour is similar to
convection, with the gradient of B,/3 replacing the entropy
gradient.

As in the case of solar prominences, it is the magnetic tension
force caused by the curvature of the field lines in the (r—z) plane
that drives the instability in geometrically thin discs (Anzer 1967;
Spruit & Taam 1992; for a detailed analysis of the magnetic forces
in thin discs see Ogilvie 1997). Since non-axisymmetry is also
crucial, this makes the magnetic field three-dimensional. Our
study thus differs conceptually from the numerical study by
Kaisig, Tajima & Lovelace (1992), where a two-dimensional
cylindrical configuration with vertical magnetic field lines was
assumed. In that case, the only magnetic force is the magnetic
pressure gradient.

A full three-dimensional numerical treatment of the problem is
made difficult by the very large range of characteristic speeds

expected in the problem. Inside the disc, the Alvén speed is not
larger than the sound speed, but in the low density regions outside
the disc it can easily approach the speed of light. We show here
how this difficulty can be turned into an advantage, such that only
a part of the problem needs to be done in three dimensions, while
the numerically most demanding parts can be done using only the
two dimensions in the disc plane.

In the above, we have introduced the magnetic disc model with
the example of protostellar discs. The physics addressed by our
calculations, however, is equally applicable to discs in compact
binaries or active galactic nuclei.

1.1 Poloidal fields versus dynamo-generated fields

The magnetic problem we study is in several ways complementary
to that of the simulations performed by Stone et al. (1996) or
Brandenburg et al. (1995) and Hawley (2000). There the magnetic
fields are generated locally by a dynamo process, which can
already start from a very weak initial field. If a strong field is
present initially, such that the magnetic energy density is
comparable to the thermal energy density, the dynamo process
is suppressed. This limit can be written in the form

B2
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where 2, is the surface mass density and ¢ the sound speed.

A small-scale dynamo process like the magnetic turbulence
seen in these simulations does not create a net flux of field lines
through the disc (Hawley 2000), and the overall field structure is
therefore at least of quadruple order at large distance from the
disc. For advected magnetic field lines, as they are advected
radially and anchored in the disc, the total magnetic flux through
the disc is non-zero. The global structure of the advected magnetic
field, as seen from large distances, is thus close to a dipole
magnetic field distribution. The radial force exerted by such a
field is predominantly the tension force, the magnitude of which
integrated over the disc thickness is B, B, /2. A poloidal field can
in principle exist up to strengths such that this radial force starts
contributing significantly to the support against gravity. This limit
can be written as

BZ
473,
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This limit on B* is a factor Qr/c, larger than the strength in
equation (1) at which dynamo-generated fields are suppressed.
Once strong poloidal fields exist in a disc, they suppress the
magnetic turbulence that would make them diffuse out of the disc
by van Ballegooijen’s argument. There is thus a large range in
parameter space where a poloidal field in a disc would be affected
only by its own internal instabilities. These are the subject of the
present investigation.

2 TWO-DIMENSIONAL DISCS WITH
THREE-DIMENSIONAL MAGNETOSPHERES

We neglect the self-gravity of the disc so that the central star is the
only cause of gravitational force acting on the disc. Following
Spruit & Taam (1990, hereafter ST; see also Tagger et al. 1990 for
a similar discussion) we assume a geometrically thin disc with an
internal velocity field that does not depend on the vertical
coordinate (perpendicular to the disc). The equations of motion
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can then be integrated across the disc, resulting in a two-
dimensional problem confined to the plane of the disc. This plane
can in principle be of an arbitrary time-dependent shape, as in ST,
but we limit the calculations here to the case of a plane disc,
without displacements of the disc surface in the vertical direction
(i.e. without corrugations or ‘bending modes’. For results on such
modes, in the same approximation for the magnetic field, see
Agapitou, Papaloizou & Terquem 1997.)

One may wonder when the approximation of height-indepen-
dent velocity fields in the disc is justified. The assumption clearly
eliminates the possibility of dynamo generation of magnetic
fields, but is appropriate for strong fields in the sense discussed in
the preceding section, namely fields which contribute, more than
the pressure force, to the support against gravity. For such strong
fields, winding-up of field lines inside the disc can be ignored,
because the small amount of differential rotation encountered by
the field line as it crosses from one side of the disc to the other is
not enough to bend field lines significantly. Instead, the differ-
ential rotation across the disc will adjust, because of the magnetic
forces, such that the rotation rate is constant along a field line. In
the thin-disc limit, the amount of differential rotation across the
disc vanishes as H/r, justifying the assumption made (for a
discussion of the thin limit of magnetic discs, from a more
mathematical point of view, see Ogilvie 1997).

Because of the thin-disc limit that was taken, the dominant
magnetic force in the problem is the curvature force caused by the
bend of the field lines crossing the disc (see ST). Outside the disc,
the magnetic forces dominate over fluid forces on account of the
low gas density. We call this region of low plasma [ the
‘magnetosphere’ of the disc (not to be confused with the magneto-
sphere of an accreting magnetic star). We simplify the physics by
assuming the field in this magnetosphere to be current free so that
it is derivable from a magnetic potential ¢. This is justified if the
matter density in the magnetosphere is sufficiently low. The
magnetospheric field is then approximately force free. The case of
the solar corona shows that such a field is in practice also close to
a potential (current free) field. This is a result of the fact that at
low B, ‘forced’ processes (e.g. Parker 1979; for recent numerical
simulations see Galsgaard & Nordlund 1997) are fast and keep the
degree of twisting in the field low.

In this approximation, all currents are confined to the plane of
the disc, and are proportional to the jump in the tangential field
components across the disc. These tangential components (B, B,)
are determined by the normal field component through the
solution of the (three-dimensional) potential problem in the
magnetosphere, for which the normal component B, provides
the boundary condition.

The magnetic forces acting on the fluid in the disc plane are
given by the difference in the magnetic stress acting on the upper
and lower surfaces of the disc. They are proportional to the
product of the tangential and normal components of the magnetic
field at the disc surface (see ST for details).

In the computations, closed inner and outer boundaries are used
for the disc v, = 0, so that no mass or magnetic flux crosses these
boundaries. Thus the total magnetic flux through the disc and the
total disc mass are constant in time.

Apart from the addition of the magnetic force term, the
hydrodynamical problem is the same as in ordinary two-
dimensional disc hydrodynamics. We use an Eulerian grid with
the van Leer (1977) scheme for upwind differencing. An outline of
the model and its basic assumptions has been given previously in
Stehle (1997).
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3 EQUATIONS

To describe the non-axisymmetric disc response resulting from
large scale magnetic fields, we adopt a thindisc approximation in
which the vertical velocity vanishes. We use a cylindrical
coordinate system (r, ¢, z) defined with the origin at the central
mass M. The mass surface density is 3 = ff:: pdz with p=
p(r, ¢, z) as the gas density.

In the thin-disc limit H/r < 1, where H is the disc thickness,
the only contribution of the Lorentz force per unit surface area is
from the magnetic tension of the field lines (ST). This is because
for magnetic fields varying on a length scale L > H, the curvature
force is larger than the magnetic pressure gradient by a factor of
L/H. Then the radial component of the equation of motion for the
disc, assumed to be inviscid, reads
9o, dv, vy v, U 1 9P BB
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where v, and vy = r{) are the radial and azimuthal components of
the velocity vector respectively, and g is the acceleration of gravity
as a result of the central star. B, is the vertical magnetic field
component at disc midplane and [B,] =B — B, = 2B, the
jump of the field vector from above (B)) to below (B) the disc
plane. Neglecting any possible disc warps, it is assumed that the
field geometry is antisymmetric with respect to the disc plane (i.e.
B} =B and B} = —B;, see ST). For use in what follows we
define the magnetic acceleration in radial direction as

gm = B.B /273, 4)
The azimuthal equation of motion is
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The continuity equation is
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A similar equation holds for the vertical component of the
magnetic field in the limit of complete flux freezing:

0B, 1
or B.rv,) —|— ¢
which expresses that the magnetic flux density B, is conserved.
The gas pressure is computed from the vertically integrated
internal energy e assuming an ideal gas for the equation of state,
P = (y — 1)e, with ratio of specific heats . For the computations
reported here, the value y = 1.4 was used. The adiabatic evolution
of the internal energy is given by

— (B;rvg) = (7)

de 1 19
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To close our set of equations we have to determine the inclination
of the magnetic field lines to the surface of the accretion disc, i.e.
we need to derive B;f(r, ¢) and Bj(r, $). Their values determine
the magnetic forces in the equations of motion. By our assumption
of a potential field in the magnetosphere, electric currents only
exist within the plane of the accretion disc, and the vertical
component of the electric current vanishes everywhere.

The current is therefore of the form

jh(r7 ¢> Z) :jh(r7 ¢)6(Z) and jz(r7 ¢7 Z) = 0 (9)
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where 6(z) is the Dirac delta function. A subscript h denotes
vectors parallel to the plane of the accretion disc. Disc winds and
ionized particles in the disc magnetosphere, which are neglected
in our model, will certainly contribute to current flows in the disc
magnetosphere. The calculation of the three-dimensional disc
magnetosphere in force-free approximation is, however, beyond
the present computational feasibility. The assumption of a
potential field for the structure of the disc magnetosphere is
equivalent to assuming that the magnetosphere is sufficiently close
to its minimum energy state.

In the thin-disc limit, the magnetic field at the disc surface
(Bf,B,B.) is connected to the disc currents by

2m 21
+ _ : + ;
B, = ~ B, = I (10)
and
12" (T 0 (rljig) — D 1 1
B.(r, $) =—_J J Mdr’ d¢’ —— J —J')-dl’,
clo Jn, R c R

OF gise
)
where the second term on the right-hand side (RHS) of equation
(11) is the current flow at the disc boundaries, and R is given by
R =7+ —2r' cos(p — ). (12)

Equation (11) is derived from a partial integration of the vector
potential field A in Coulomb gauge so that B =V XA, and
(Landau & Lifshitz 1975)

(27 (rout (4! /
A(r,d)):%JOJ ’(rl’f)dr’dw. (13)

Tin

Given the magnetic flux distribution in the disc B.(r, ¢)

equation (11) has to be inverted to yield the currents jj, in the

disc. The inversion is unique by applying the fact that currents do
not accumulate, divj = 0:

LROen) +};—¢jd, — 0, (14)

This connects the radial j,. and azimuthal j, component of the
current, and has to be solved together with the inversion of
equation (11).

As our accretion disc has a central hole, the solution of the
potential field problem with B,(r, ¢) given in the disc is no longer
unique, since the domain space is multiply connected. To any
solution of the inversion problem (11), an arbitrary multiple of the
solution for B, = 0 can be added. This special solution consists of
closed field lines wrapping through the hole of the disc and around
its outer edge without crossing the disc itself (like the windings of
a ring-core coil). We thus have additionally to specify the number
of field lines which pass through the central hole, i.e. the total
magnetic flux through the hole of the disc (see also Lubow et al.
1994)

2T (Fin
v = J J rB,(r, b,z = 0)drdo. (15)
o Jo
A Fourier Transform of equation (15) shows that only the
axisymmetric component contributes to the magnetic flux through
the disc hole whereas all other components cancel. The degree of
freedom introduced by the presence of a hole thus enters only into
the computation of the axisymmetric component of the field.
Equations (6), (7) and (8) specify the time evolution of X, B,

and e when the velocities v, and vy in the plane of the accretion
disc are known. These follow from Euler’s equations (3) and (5)
which includes thermal, gravitational and magnetic forces. To
solve for the magnetic forces we invert equation (11) with the
differential constraint (14) for the unknown currents, and an
assumed value for the magnetic flux through the hole. Equation
(10) gives the relation between B, By and jg, j, and thus the
magnetic forces are determined. In the next section we show how
we solve the hydrodynamic equations and the magnetospheric
potential problem numerically.

4 NUMERICAL METHOD

We solve the equations on an Eulerian grid with equidistant
spacing in the r and ¢ coordinates. The inner disc rim is at r, =
0.1 roy With 7y, the radius of the outer edge of the disc. The
number of grid points and grid spacing in the radial direction are
n, and Ar = (rou — rin)/n,. We use a staggered grid such that the
scalar quantities 3, B, e are defined at the cell centres and
the vector quantities (v,, v4), (B,.Bg) and (jg, j,) are defined at the
cell boundaries. The equations are used in dimensionless form, as
follows. We take the outer disc radius as the unit of length, and the
inverse of the Keplerian rotation rate at the outer edge as the unit
of time. Thus, the Keplerian velocity at the outer edge is unity, and
the time for one Keplerian orbital period of the outer edge is
T = 2. For all the calculations presented here we use n, X ng =
156 X 128 grid cells in the r and ¢ directions respectively. We also
performed some calculations on a smaller grid of 64 X 64 cells.
Comparing these models to calculations performed with a higher
resolution we only find differences of the order of the applied grid
spacing. We are thus convinced that the models presented here are
resolved sufficiently.

4.1 The hydrodynamic part

The hydrodynamic part of the calculations is carried out with a
natural extension to the scheme described in Stehle & Spruit
(1999).

The equations are written in conservative form. Terms in the
equations are divided into advection and source terms. The
advection from one grid cell to the other is done with the upwind-
differencing scheme of van Leer (1977). Thermal pressure, gravi-
tational forces and compressional heating are calculated following
Stone & Norman (1992). Viscous processes and radiative cooling
from the surface of the accretion disc are neglected.

The induction equation, i.e. equation (7), is an additional
equation compared with the hydrodynamic case. It has the same
forms as the continuity equation, and is treated numerically in the
same way.

The magnetic force is a new term in the equations of motion.
Contrary to the pressure force, which is calculated by a local
derivative, the magnetic forces are given by the bending of the
magnetic fields where they pass through the accretion disc. The
inclination of the magnetic field lines to the accretion disc
depends, however, on the global magnetic field structure in the
magnetosphere and only when this is known can the magnetic
forces be calculated. We introduce the numerical method to
calculate the magnetic forces in Section 4.2.

The time-step is controlled by the Courant—Friedrich—Levy
condition. In addition to the sound speed, there is a magnetic wave
speed in the problem. The wave is compressive, but since the
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restoring force results from the change in the external potential
upon compression of the field lines rather than of the magnetic
pressure itself, it is a dispersive wave. The phase velocity is (ST;
Tagger et al. 1990)

o__B (16)
k 2mk

where k = 2m/A is the wavenumber and A the wavelength. The
group speed, which carries the wave information, is a factor of 2
lower. The highest magnetic wave speed in the discretized
equations is therefore obtained for the highest wavenumber that
can be represented by the grid. By the Nyquist theorem, this is
k = /Ar. The magnetic wave speed oy, that enters the Courant
condition is thus

B,

on = 2m\/25/Ar

A Courant factor of 0.75 was found to be sufficient for numerical
stability. In most cases, however, we find the time-step to be
controlled by the azimuthal velocity v (r;,) at the inner accretion
disc rim. The additional magnetic wave constrains the time-step
only for models where the magnetic acceleration g,,, approaches
the acceleration of gravity g.

The boundary conditions used are solid boundaries at the inner
and outer edges of the disc, i.e. v, = 9dP/dr =0. These are
sufficient for the present calculations in which only the short-term
evolution of the disc is followed. For the longer term evolution,
one would want to use conditions that allow accretion to take
place through the boundaries. This is beyond the scope of the
present study.

an

4.2 The solver for the disc magnetosphere

The magnetic forces are calculated at each time-step from the
magnetic flux distribution B(r,¢) in the disc. This involves two
steps. First, equation (11) is inverted to obtain the currents jj, from
the flux distribution B,. In the second step, the forces BB, /2,
BZB(J; /2w are computed using equations (10), and added to the
hydrodynamic forces.

The inversion of equation (11) has two complications. Because
of charge conservation, the current is not an arbitrary function of r
and ¢, but must satisfy equation (14), i.e. divj = 0. This condition
can be used to eliminate one of the current components j,. and j4 in
favour of the other. Equation (11) can then be read as an integral
equation determining one of the current components in terms of
the vertical field component.

Secondly, the region on which the computations are performed is
not simply connected. The central hole in the computational domain
generates an additional parameter in the potential problem, namely
the net magnetic flux through the hole W. For the present
exploratory calculations, we use fixed boundary conditions. Hence
v, = 0 at the boundaries, and with the induction equation (7) no
magnetic flux enters or leaves through the edges of the disc. This
also implies that W is constant in time. More general boundary
conditions which take account of the advection of magnetic flux
into the hole are possible. These will be needed in more realistic
calculations of discs accreting on to protostars, for example.

4.2.1 Fourier decomposition in ¢

As the equations for the potential problem are homogeneous in the
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azimuth ¢, Fourier transforms can be used in this direction. Since
they are also linear, the Fourier components do not mix, and one
can solve for each of the Fourier components separately. If the
number of azimuthal grid points or Fourier modes is ng, this
reduces the computing effort required by a factor of the order ny
compared with straightforward discretization in ¢. By using
Fourier decomposition, the computing effort for the potential
problem can be kept at a level comparable to the hydrodynamic
parts of the calculation.
Thus we write the magnetic flux distribution as

ng/2
B.(r,$) = B) + Y [B!"* sin(me) + B! cos(me)], (18)
m=1
where B?(r)7 BY*(r) and B7(r) are only functions of r. Similar
equations hold for the currents j,, jg.
The Fourier amplitudes are given by

1 21
BY0) = © | B ) cosimdy do, (19)
0
and similarly for B]"*. Using (11) this becomes
1 Fout (277 (27
B (r) = —J J J dr' d¢pde’
) ¢ Iy Jo Jo

O [rju(r', )] = 84j,(r', ¢')

‘ : 20
X costmd) [r2 + 2 = 2rr' cos(¢p — ¢')]'/? (20)
This can be written as
1 Tout (27
B (r) = —J J dr’' d¢’
mer rin J0
X COS(md),)[ar,(r,j‘t‘) - a(l’/jr]Km(r//V), (21)
where
> cos(ma) ,
K = d'. 2
© .‘0 [1+x2 — 2xcos(¢)]'/? ¢ 22

We evaluate this function numerically. For m =0 it can be
expressed in terms of the complete elliptical function of the
second kind F(x) (Gradstein & Ryzhik 1981),

Ko(x) = 4xF(x) with yx = min(x, 1/x). 23)
Substituting the Fourier expansions of j. and j4 and integrating
over ¢/, we get

Tout

. 1 c s
BI(r) = ;J [0, (rf5) = miy 1K /) dr. (24)

For m # 0 the charge conservation condition (14) can be used to
eliminate j,, which yields

) ) 1 Tout
BI(r) = T™(r,j,) = —J ar’
cr

Tin

X

1 '
(0, ) - maw:"*‘} Kl /1), (25)
m

where 7"(r,j,) is an abbreviation for the integral operator. A
similar equation holds for the B."* component.

The axially symmetric component reads

O (rjyKo(r' [rydr'. (26)

Tin

1
Bl =1°r,j,) = ;J
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The flux through the hole in the middle of the disc is

Tout

Fin 2 Fin
V= Iw(i(p)z’ﬂ'J rB)dr = —ﬂJ J 8,-r(r'j$,)K0(r’/r) dr' dr.
0o ¢ Jo

Fin

27

Equations (25) and (26) are integral equations for the (ny — 1)
Fourier amplitudes j“(r) and j*(r) of the radial current, and the
azimuthal current distribution j?b(r). To solve these, we take finite
differences in r, which turns each of the equations (25) and (26)
into a set of linear algebraic equations. The matrices involved are
fixed in time and need to be inverted only once. If the number of
grid points in r is n,, the computing effort for the potential
problem is therefore of the order n’n, per time-step, or ~n, per
grid point and time-step. Since the number of operations per grid
point and time-step in the hydrodynamic part of the calculation is
a substantial, but fixed, number independent of #,, the computing
expense for the potential problem does not dominate the overall
expense except for very large numbers of radial grid points. In
fact, for a grid of n, X ng = 156 X 128 grid cells the magnetic part
of the calculation takes about 50 per cent of the CPU time.

4.2.2 Discretization in r

The discretization in r of the integrals in (25) and (26) is different
for the non-axisymmetric components (25) and the axisymmetric
component (26). The Fourier amplitudes B of the field are
naturally defined at the same radial positions as the values of the
field B, themselves, i.e. at the centres r; of the cells defined in the
hydrodynamic part of the scheme. To discretize (26), the currents
jg are defined at the boundaries ri 1/, = (ri + rit1) /2 between
these cells. Because of the topology of the domain used (a disc
with a hole), there is one more of such boundaries than there are
cell centres. Since the boundary conditions do not impose
constraints on the azimuthal current at the boundaries, there is
then also one more current ]2) than there are field amplitudes B°.
This additional degree of freedom is balanced by the hole-flux
condition (15), which arises from the same topological property.

4.2.3  The axisymmetric component

To evaluate the integral in (26) we interpolate the current linearly
between the values J? at its grid points;

Jos == DI+, (28)

where x = (r — rj+1/2)/(rj+3/2 — rjz1/2). Inserting this into (26),
BY is a linear function of the currents J?, with coefficients BY;

0.\ — 0 70
Blr) = By}, (29)
J
Evaluation of these coefficients involves integrals of the type

Tb
(r)= J (a+ Br)Ko(r'/r)dr'. (30)
The elliptic function involved in Kj is evaluated by a polynomial
approximation (Abramowitz & Stegun 1984), and the integral is
evaluated by Bulirsch’s algorithm (Press et al. 1995).

Similarly, assigning the index i = 0 to the hole-flux ¥, equation
(27) can be written as

¥ =" "B 3D
J

The coefficients Bg- then form a square matrix of dimension
n,+1, relating a vector of magnetic variables, =
[‘If,Bg(rl), ...B?(r,,r)], to the currents

ny

0 __ 0 70

b = § OBiij. (32)
=

Since we use a fixed Eulerian grid, the matrix elements Bg are
fixed and the inversion of the matrix can be performed once and
for all for a given computational grid. This inversion is done by
the LU decomposition method (Press et al. 1995).

4.2.4  The non-axisymmetric components

The procedure for the non-axisymmetric components is very
similar to that for the axisymmetric component, except that ¥
does not appear because it is already determined by the
axisymmetric component. For m 7 0 the currents J), like the
B currents, are defined at the cell centres, so that there is an equal
number of each.

Because we have used a partial integration in deriving (25), and
have used charge conservation to eliminate j,, the integrand in
(25) contains a second derivative with respect to r. In order to
evaluate it at the same order of accuracy as the axisymmetric
coefficients, a third-order interpolation is needed. We choose
cubic spline interpolation between neighbouring grid cells. The
coefficients then involve expressions of the type

"X
a! = } XK (%) dx, (33)
0
with / = 1,2, 3. Coefficients up to m = 64 were evaluated with an
accuracy of 1077

4.2.5 Test calculations

To test the accuracy of our numerical solution of the potential field
problem, we apply the inversion of equation (11) to a known field
configuration. We proceed by first specifying ji(r) analytically.
Then we derive B.(r) from a numerical integration of equation
(11). The integration yields B,(r;) at the grid cell centres r; with an
accuracy of ~10" %, These values are used to invert B, with our
magnetosphere-solver to reconstruct the disc currents jg(riy/2)
and field strengths which are then compared with the original
function values at these points.

An example is shown in Fig. 1. This is an m = 1 mode with the
current distribution

= = ) row — 1)’ (34)

with ri, = 0.01ryy. The reconstructed current distribution matches
the input distribution within an accuracy of 1 per cent, for the 100-
point grid used.

Additional tests of accuracy of the code as a whole were done
by comparing results at different resolutions.

5 UNIFORMLY ROTATING DISCS

The linear stability of uniformly rotating discs with magnetic
fields of the type considered here was studied by ST. The
condition for instability of the interchange type is

BB, d_ (B,
s ( S ) <o. 35)

a
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Figure 1. An example showing the accuracy of the magnetospheric field
calculation for an m = 1 mode. The assumed azimuthal field at the top
surface of the disc By j(r) (dashed line) agrees with the reconstructed
values (solid line) to 1 per cent for this grid with 100 points in r.

Discs where a =0 everywhere are stable to interchange
instability. The derivation of this condition does not take account
of possible global instabilities.

In this section we study two examples, one of a disc that is
stable (model 1) and one that is unstable (model 2) according to
condition (35).

Uniformly rotating discs are set up numerically by modifying
the gravitational potential ®(r) such that magnetic, centrifugal and
gravitational forces are just balanced for the case v4(r) =
constant. While this case is of limited astrophysical interest, it
serves to test the agreement with the predictions from the linear
theory, to check for possible global modes not covered by
condition (35), and to get an impression of the non-linear
development of interchange instability in the present case.

We study the discs in a frame of reference that corotates with
the disc. The corresponding non-inertial terms are added to the
equations in Section 2 (see also Stehle & Spruit 1999). Both
models presented here are advanced in time with zero magnetic
flux through the central hole, i.e. with ¥ = constant = 0.

The uniformly rotating case as defined above is a one-parameter
family, governed by the ratio ¢, of magnetic to the centrifugal
forces:

_ gm) _ (BB )
= (= = > |- (36)
( 8 / max (21TE‘Z)¢

Other parameters such as the amplitudes of the central potential,
the magnetic field strength and the surface density can be scaled
out of the equations. In cases where ¢, < 1 magnetic forces are
unimportant and the disc rotates freely. In the case ¢, — 1
magnetic forces dominate and rotation can be neglected.

In the results shown, the gas pressure included in the
calculations for numerical reasons (Section 3) has only a small
influence.

51 Model 1: d(B./2)/dr =0

According to equation (35), discs with d(B,/3)/dr=0 are
expected to be stable against the interchange instability. The
initial density and magnetic field distributions are specified as
Gaussian humps in r {3(r) ~ exp[—(r — 0.5 rout)z/Az]}, with a
maximum at r = 0.5 roy and width A = 0.1r4y,.
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Figure 2. The time evolution of the kinetic energy Eyin, for the uniformly
rotating model sequence. The duration of one disc revolution at 7y, is 277,
The interchange instability grows on a short, dynamical time-scale
determined by the field strength. The growth rate and the level at which
the kinetic energy saturates increase with field strength.

Models with four different field strengths are followed: a
weakly magnetized disc (c, = 9 X 107#), and one with a high
magnetic support (model la, ¢, = 225). Intermediate cases are
chosen with ¢, = 0.09 and ¢, = 9. We perturb the initial station-
ary, axisymmetric models with a low amplitude [~10’7v¢(r0m)]
point-to-point noise in v,.

We find the extreme cases ¢, — 0 and ¢, — o to be stable. The
total kinetic energy in the radial velocity component. (i.e. Eyjn, =
[32?dF) was constant for the whole calculation of ~15 disc
orbits.

In the intermediate cases (¢, ~ 1), a very weak form instability
was observed, with characteristics different from an interchange.
The energy in the radial motions Ey;, . increased during the first 15
orbits by a factor ~100-1000. A global disc pattern is excited,
showing spiral arms with m ~ 20. The wave saturates at a strength
(By/B;) = 1076-10"*. The waves are of low amplitude and do
not measurably transport angular momentum. After a linear rise
time of some orbits the disc is found to be stationary again, i.e.
9:2(r, ¢) = 0, even though it is now slightly non-axisymmetric.

The exact nature origin of this weak instability is not entirely
clear at the moment. In any case, the amplitude of the motions
observed is low compared with those of the instabilities described
below, and is not relevant for actual accretion discs where the
magnetic support is always less than gravity, ¢, < 1.

5.2 Model 2: d(B./2)/dr <0

Next we study accretion discs where condition (35) predicts the
interchange instability to be present.

We choose 3 = constant and B,(r) decreasing with r as a power
law,

r —4/5
&m=&(r) : (37)
out

With this choice, the instability parameter a has a minimum at
r = 0.2ry,. We expect the instability to first manifest itself near
this radius. As in model 1 we perturb the initial axisymmetric
model with a low amplitude point-to-point noise in v,.
Instability is found in all models of this sequence. Fig. 2 shows
the time evolution of Eyj, = [132?dF for these models. The
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Figure 3. Interchange instability in a uniformly rotating disc with B./3, decreasing outward, and an initially uniform surface density 3 (model 2b). The
instability starts near to the inner edge of the accretion disc, where the magnetic instability parameter a is largest, and spreads over the whole disc in a few
orbits.

model parameters for this sequence are shown in Table 1. At first
Eyin,r increases exponentially. Ey;, . saturates after several orbits
and the subsequent evolution is highly non-linear.

The instability causes a significant redistribution of the disc
mass. This is illustrated in Fig. 3, which shows the evolution of the
surface mass density for model 2c. It is seen that the instability
first operates at r = 0.2rq, as expected from the local minimum
of a. A high mode number m = 15 dominates at first. The pattern
of motions resembles that of convective cells or the plumes of a
Rayleigh—Taylor instability. The influence of rotation is evident in
the asymmetry of the plumes. The instability is seen to spread over
the whole disc with time. The small instability cells merge and
grow in size as they drift to larger radii, as is characteristic of
Rayleigh—Taylor instability.

We identify this instability with the interchange instability as
the disc pattern looks very similar to convective cells as predicted
by Spruit et al. (1995), and starts at the point where the linear
analysis predicts the disc to be most unstable.

We conclude that the instability in the uniformly rotating case
sets in as predicted from linear theory and has the non-linear
development of an interchange instability.

6 NON-UNIFORMLY ROTATING DISCS

We now study accretion discs revolving around the gravitational
field of a point mass. According to the linear analysis of Spruit et
al. (1995) and Lubow & Spruit (1995), shear as a result of
differential rotation acts as a stabilizing factor on the interchange
instability. This analysis predicts that instability appears only in
regions of the disc where magnetic forces contribute significantly
to support against gravity. The predicted linear growth is algebraic
(a power law of time) rather than exponential.

Table 1. Parameters for model sequence
2: initial values of the degree of
instability @, = min(a) and the ratio of
magnetic to centrifugal acceleration c, at
r = 0.2rou, and growth rate yg of the
kinetic energy Eyin-

Model number am cy YE
2a —-1.10 1.1 16.4
2b -0.36 0.5 9.6
2¢ -0.16 0.2 6.5
2d -0.05 0.05 34

We study the evolution of two different initial setups. First we
follow a model where the magnetic field decreases as a power of
radius (model 3) and then a case where it decreases exponentially
(model 4). The initial structure of the models is summarized in
Tables 2 and 3. The initial v4(r) is found from the radial force
balance between magnetic, gravitational and centrifugal forces.
We then perturb v, by point-to-point low amplitude noise and
follow the subsequent disc evolution numerically. As before all
models are calculated with zero magnetic flux through the central
hole of the disc, ¥ = 0.

6.1 Model 3: B,~r “* and 3 ~r 37

For the initial state in model sequence 3 we choose a surface
density varying as 3 ~ r~%2. In order to contain the effects of the
instability within the computational domain as much as possible,
we choose a magnetic field distribution with strength vanishing
towards the boundaries (Fig. 4).
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The degree of support against gravity by the magnetic field, as
measured by the ratio g, /gg7 increases with radius and has a
maximum at 0.85ry, (Fig. 4d). The parameters of the model
sequence are summarized in Table 2. The parameter R specifies
the mean magnetic flux per surface mass:

— .[discBZ dr

R = .
.J"clisc2 ar

(38%)

and can be used to compare model calculations.

Instead of interchange type instability, we find in all three cases
that the initial setup is unstable to a global, non-axisymmetric
instability. The wave pattern of the instability can be traced from
one edge of the disc to the other (see Fig. 7). Initially the kinetic
energy Eyin, grows exponentially on a dynamical time-scale. The
initial growth rate, as given by gy, , = dIn Eyin,/dt, is largest for
the disc with the highest magnetic support.

Fig. 5 shows the time evolution of the power

J”rfom [(B;nC)Z 4 (BlZnS)Z] 1 /Zr dr
J\'_.““lB(Z)r dr

T

Py =

(39)

Table 2. Parameters for model sequence 3. The relative support of
the disc by magnetic forces (gm/gg)max. the initial growth rate
YEkin» the ratio R of the total magnetic flux through the disc to
the total mass, and the mass accretion rates in units of the total
disc mass Mg;s. per time unit 7.

Model number  (gm/€)max  YEkinr R M(r < 0.3rou)
3a (1/T < 35) 0.32 27.1 093 20 1074MdiSC/T
3a (1/T ~ 40) L7107 Myioo/ T
3b 0.14 69 063 1210 Myu/T
3c 0.035 0.96 0.31 ~4 1076Mdisc/T

Table 3. As Table 3, but for model sequence 4.

Model number (gm/gg)max Y Ekin,r R M(r < 0~3roul)
4a 0.36 5.8 3.0 8.7x107°MIT
4b 0.16 3.7 20 62x10°°MIT
8
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in Fourier mode m of the field strength B,, integrated over the
whole disc, and relative to the axisymmetric component m = 0. In
all three calculations we find that the modes m = 1-4 grow
equally fast. The relative power saturates nearly at the same level,
independent of the degree of magnetic support. The relative power
in the first 4 modes is similar. For the calculation with the highest
magnetic field strength, however (model 3a), the m = 1 compo-
nent dominates for a period of about 15 orbits around 7/T = 40
(the numerical time unit 7 = 1/Qqy, Where Q, is the orbital
frequency at the outer edge).

Fig. 6 shows the evolution of the mass in the inner disc (1, <
r < 0.3r,y) in units of the total disc mass Mg;s.. Mass piles up in
the inner part of the disc — the faster it piles up, the higher the
magnetic support. This is accompanied by an outward transport of
angular momentum by the magnetic instability. For model 3a we
find a roughly linear increase of the inner disc mass with time
corresponding to an accretion rate Mise(r < 0.3rou) =
2 X 10_4Mdisc/ T, but superimposed on this trend is a much
more active ‘outburst’ around # = 40. During this active episode
the accretion rate is about 10 times higher (i.e. for 35 < ¢/T <
40). Fig. 5 shows that during the outburst P, is larger by at least a
factor 3-5 compared with the other modes, and by a factor of ~10
larger than in the preceding phase. The snapshots in Fig. 7 show
that a strong m =1 spiral wave, travelling outward from a
crescent-shaped disturbance in the inner disc, is present during the
outburst.

The time-scale for mass accretion in model 3a is longer, by a
factor 10°~10*, than the dynamical time-scale. For discs with less
magnetic support the mass accretion time-scales are so long that
we have been unable to follow their evolution beyond the initial
development of the instabilities.

The evolution of the disc pattern as seen in B, is shown in Fig. 7.
The corresponding images of the surface density X are found in
Stehle (1997). It is seen that the global instability starts with rather
high mode numbers, m = 5-8 (Fig. 7a). Subsequently the waves
are wound up (Fig. 7b) and it is only later that the modes m = 14
become dominant. After about 30 orbits of the outer disc edge, a
prominent m = 1 spiral arm develops. It causes mass accretion
rates 10 times higher than during the preceding phase. The relative

Strong magnetic fields in accretion discs

B,(t

0

8

6

4+ ]
2

0

0.0 0.2 0.4 0.6 0.8

r/rou(

1.0

0.40

0.30 d
0.20
0.10

0.00

-0.10

0.0 0.2 0.4 0.6 0.8
r/rout

1.0

Figure 4. The initial axisymmetric condition of model 3a. (a) Initial surface mass, (b) magnetic field and (c) azimuthal velocity distribution. The ratio of the

magnetic (g,,) and gravitational (g) accelerations is shown in (d).
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Figure 5. Growth of the instability for model sequence, showing evolution
of the power P, in the first four Fourier modes, relative to the power in the
axisymmetric mode. Curves are shifted vertically by factors of 10 since the
saturation levels are nearly the same. The power in the four modes is
comparable, except during the hump at #/7 ~ 40 in model 3a (‘outburst’)
when m = 1 dominates.
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Figure 6. The evolution of the mass in the inner disc (riy < r < 0.3ryy)
for models of sequence 3. Only model 3a shows a significant mass
accretion towards the central star. It shows a period of enhanced accretion
around ¢ = 40 during which a prominent m = 1 spiral arm is present, cf.
Figs 5 and 7.

strength in the m = 1 component is largest near the inner disc
edge. At r = 0.2r,, a prominent crescent-shaped field strength
enhancement shows up (best seen in Fig. 7¢). It is accompanied by
a similar enhancement in the surface density (Stehle 1997). The
crescent rotates approximately with the local orbital rate. An
m =1 wave travels outward from this rotating crescent. The
maximum of the crescent moves in to smaller radii (compare Figs
7c and e), where the rotation rates are higher. The outwardly
travelling wave correspondingly becomes more tightly wound.
This behaviour is very reminiscent of a purely hydrodynamic
form of global instability observed in hot, partially pressure-
supported discs (Blaes & Hawley 1988; Rozyczka & Spruit 1993).
This instability takes place only when the degree of support
against gravity by pressure becomes noticeable, and it also takes
the form of a crescent rotating at the local orbital rate. It generates
shock waves that travel outwards and inwards. These waves cause
the mass in the disc to spread, while the angular momentum lost
by the crescent causes it to spiral in towards the centre, behaving
much like a solid object in doing so. Though the waves in the

present calculation are rather different from hydrodynamic shock
waves, we suspect that the same mechanism is at work. The
peculiar behaviour of the crescent mode and the fact that it
appears only at certain phases suggests that it is a basically non-
linear phenomenon, not related directly to the linear global modes
of the system. The nature of this phenomenon warrants further
study.

With time, mass piles up near to the inner and outer edge of the
accretion disc. The effect of the instability is thus much like that
of viscous spreading, but it must be stressed that this is a result of
a global transport of angular momentum by the spiral wave, which
cannot be reduced to the action of a local viscosity. After
approximately 10 outer disc orbits, during which the m =1
component dominated, its relative strength compared with the
other modes decreases again and the phase of high mass accretion
rates is finished (Fig. 7f).

At the end of the outburst the disc density distribution has
completely changed. It now decreases approximately exponen-
tially with radius rather than as a power law. The same is true for
the B, distribution (Fig. 8).

The dissipation taking place during the redistribution of mass
and magnetic flux causes the disc to heat up, so that the gas
pressure increases over its initial low value. At the end of the
calculation the Mach number of the orbital motion in the inner
disc has decreased to values of 5-10.

For the calculations performed with less magnetic support than
in model 3a, the mass accretion rates are too low for significant
redistribution of mass to occur over the 50 orbits we were able to
follow. It is thus unclear if discs with less magnetic support also
show outbursts, or if a threshold in the magnetic field strength
exists, below which the outburst mechanism cannot operate.

Since the outburst was a transient but obviously very effective
transporter of mass and angular momentum, one wonders what
caused its decline. After the outburst the degree of support of the
disc against gravity by the magnetic forces has decreased
substantially. Since the amplitude of all the global waves seen
in our results increases sharply with the degree of magnetic
support, it is possible that the outburst declined because the
crescent instability operates only at sufficiently high degrees of
support. This view is consistent with the properties of the purely
hydrodynamic crescent instability.

Another possibility is that an exponential dependence on radius
is perhaps a more stable configuration, towards which the
instability tends to develop. To test this possibility, we investigate
in the next model a sequence of discs where 3 and B, decrease
exponentially with radius.

6.2 Model 4: B, ~ exp(—r) and X ~ exp(—r)

The final disc structure of model 3a motivates us to study the
stability of accretion discs where the initial magnetic field and
surface mass density decrease exponentially with radius. In this
sequence we study two such cases, which differ only in the initial
field strength. In model 4a we choose a field with magnetic
support (gm/8)max = 0.36 at maximum and in model 4b we
choose one with (g,,/€)max = 0.16 at maximum. The initial
structure of model 4a is shown in Fig. 9.

We take B./3 = constant for the whole disc. 3(r) and B.(r)
decline linearly to zero at the inner edge. The initial axisymmetric
distribution is again perturbed in v, by a low amplitude point-to-
point noise.
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Values for the ratio R are listed in Table 2 for model 3 and in
Table 3 for model 4. A comparison of these values shows that the
total magnetic flux through the disc in model 4 is higher than in
model 3, for the same degree of magnetic support. This difference
is partly caused by the rapid decline of the magnetic field strength
towards the disc edges in model 3 and partly from the fact that
d(B,/3)/dr > 0 for the initial distribution in model 3.

Fig. 10 shows the time evolution of the relative power Py, in the
Fourier modes m = 1-4, for models 4a and 4b. In both models the
relative power P, again increases initially on a short, dynamical
time-scale, and the mode strength at which they saturate is similar
to what we observe in model sequence 3. As expected from model
3a, at times after the outburst Pp—; is comparable to Py,—3 and
Pm—4, but significantly weaker than Pp—,. The m =2 mode
appears to be the dominant mode during most time of our
integration.

Even though R is significantly higher than in model 3, the mass
accretion rates at the inner part of the disc are small compared to
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model 3. The time-scale to clear the disc mass completely at these
rates is now about 10° outer edge orbits. This can be seen in Fig.
11, where we plot the evolution of the mass in the innermost part
of the disc, M(r < 0.3ryy) in units of the total disc mass M ;. (see
also Table 3). It is also interesting to note that the mass accretion
is now much less dependent on the strength of the magnetic field.
The low values for M(r < 0.3r,) are accompanied by a low level
of power in the m = 1 mode. This agrees with model 3, where the
highest mass accretion rates are also found at a time where Pp,—; is
large.

In Fig. 12 we show the radial velocities of model 4a at ¢/T =
51.1, the time where we stopped the integration; Fig. 13 shows the
azimuthally averaged surface density (2) at that time.

The pattern shows tightly wound spiral arms which can be
traced from one edge of the accretion disc to the other. The radial
velocities are rather small, of the order of 1072 of the orbital
velocity at the outer edge of the disc. The mass redistribution has
been strongest for r = 0.7ry, where it has taken only a few binary

1.20E+01
8.9BE«+CO

6.01E+20

8.31E+0C

Figure 7. Snapshots of the evolution of model 3a. Instability sets in with rather high m. Later the modes m = 1-4 are strongest until at #/T ~ 35 the m = 1
component becomes dominant. During the presence of the m = 1 mode the mass accretion toward the central object is enhanced. The outward travelling
m = 1 spiral is generated by a rotating crescent-shaped enhancement which drifts inward with time.
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orbits. This is just the region where the magnetic support was
strongest. In comparison, the mass redistribution in the inner
regions is small.

In both sequences 3 and 4 the redistribution of mass and
magnetic flux appears to be closely related to the degree of
support against gravity by the magnetic field configuration. It
appears in regions where g./g exceeds 5-10 per cent. The
comparison also shows that, unlike interchange instability, the
global instability that causes this redistribution is not directly
related to the flux-to-mass distribution B/3.

7 CONCLUSIONS AND DISCUSSION

We have studied, by numerical simulation, the stability of
accretion discs threaded by strong large-scale magnetic fields,
assuming that the discs are geometrically thin. The simulations
solve the magnetohydrodynamics (MHD) equations for a
vertically averaged accretion disc in the (r, ¢) plane. The disc
magnetosphere is calculated in the potential field approximation,
i.e. we treat the disc as a current sheet and assume the magnetic
field outside the disc to be current free. This approximation allows
us to follow the evolution of a three-dimensional field configura-
tion with the computational effort of a two-dimensional simulation.

—4 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
r/ Tout

Previous analytical studies by Spruit & Taam (1990) predicted
that uniformly rotating discs would show an interchange-type
instability, a local instability that appears at any location where
the magnetic field B, decreases with radius more rapidly than the
surface density 3. To test this prediction, as well as the stability of
the numerical method, we first computed discs with initially
uniform rotation. The results agree with the analytic stability
condition and growth rates. No additional non-local forms of
instability were found in the simulations of initially uniformly
rotating discs. The non-linear development of the instability
agrees with that expected of an interchange instability like
convection or Rayleigh—Taylor.

Linear analysis (Spruit et al. 1995; Lubow & Spruit 1995)
predicts that differentially rotating discs with approximately
Keplerian rotation are much more stable than uniformly rotating
discs. It predicts that instability of the interchange type occurs
only when the local shear rate is less than the growth rate of the
instability in a uniformly rotating but otherwise identical disc. For
smooth distributions of B, and 3, with r this is equivalent to the
condition that the magnetic forces contribute significantly to the
support of the disc against gravity (Spruit et al. 1995). Such discs
are strongly magnetized in the sense that v, > (UH, where v, is
the Alfvén speed at the midplane of the disc and H is the disc

InZ

—1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
r/ Tout

Figure 8. The distribution of B,/B, and In %, at the end of model calculation 3a (/T = 62.4). The surface density decreases exponentially and the inclination

of the magnetic field lines towards the outer disc edge decreases.
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Figure 9. (a) The initial surface density, (b) magnetic field and (c) azimuthal velocity distribution of model 4a. B.(r) ~ 2(r) ~ exp(—r). Panel (d) shows the
initial ratio of magnetic to gravitational acceleration in the model. See text for further details.
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thickness. The importance of this prediction is that it suggests that
even quite strong poloidal magnetic fields might still be stable in
an accretion disc.

To see if this prediction holds up in a full numerical simulation,
we have performed a sequence of calculations for discs with
approximately Keplerian rotation, in which the magnetic con-
tribution to support against gravity ranges from a few per cent to
36 per cent. At these values, the linear results predict a weak form
of interchange instability, with perturbations slowly growing as a
power of z. In contrast with the uniformly rotating case, however,
no evidence of this form of instability was found in the
simulations. Instead, a new, global, exponentially growing form
of instability appears. It takes the form of tightly wound spiral
arms which can be traced from one edge of the accretion disc to
the other. This instability was found both in cases where the
magnetic field and the surface mass decrease with radius as a
power law (model sequence 3) and where they decrease
exponentially (model sequence 4). Its presence seems to depend
primarily on the degree of magnetic support of the disc; its
amplitude is a steep function of this quantity.

The instability acts similar to viscous spreading in the sense that
an outward angular momentum transport takes place which allows
mass accretion from the outer to the inner regions of the disc.
Mass accretion is of the order of 1070=107* M i /T, where Mg,
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Figure 10. The relative power P,(#/T) for the modes m = 1-4 in model 4.
The values for model 4b are vertically shifted by multiplying P,, by 0.1.
Pr—> is most dominant and the Py,—; component is weaker during most
time of the integration.
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Figure 11. The evolution of the mass in the inner disc M(r < 0.3ryy) in
model 4. The accretion time-scales are large compared to model 3.
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is the total disc mass and T is the Kepler time-scale 1/() at the
outer edge of the accretion disc.

In the case with the highest degree of magnetic support, an
additional, more violent form of instability is observed. It takes
place during a limited period of ~10 disc orbits. The mass accretion
rate in this episode is 10 times higher than the long-term average in
the simulation. During this time the disc is perturbed by a strong
one-armed spiral wave, excited by a density enhancement rotating
at the local orbital frequency at the location of highest magnetic
support. At the end of the outburst the surface density and the
magnetic field distribution in the disc decline exponentially with
disc radius and the subsequent mass accretion is less efficient.

The time-scale for the redistribution can be rather large
compared to the dynamical time-scale. Especially for discs with
low magnetic support, this time-scale is so large that, extrapolat-
ing the results from the simulation, the final configuration would
be obtained only after some 1000—100 000 disc orbits. Only when
the magnetic support of the disc is of the order of the gravitational
or centrifugal forces, does the time-scale become small enough
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Figure 12. Radial velocity amplitudes at the end of model calculation 4a
(t/T = 51.1). Unit of velocity is g kepler(Four)- The tightly wound spiral
arms can be traced from one edge of the disc to the other.
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Figure 13. The azimuthally averaged surface density ((r)) at the end of
the calculation #/T = 51.1 (full line), compared with the initial distribution
(dashed line). Significant redistribution of mass has taken place only in the
outer parts of the disc.

o



600  R. Stehle and H. C. Spruit

that the redistribution of the disc mass proceeds on time-scales of
several 10-disc orbits.

With the present results we cannot establish if the instabilities
found can also lead to instability and redistribution of mass and
angular momentum at lower degrees of magnetic support, or if that
is limited to stronger fields. The difference between these
possibilities is of obvious importance for accretion on longer
time-scales. If the instabilities found here generally require
magnetic support exceeding a few per cent, quite strong poloidal
fields might exist in the inner regions of accretion discs.

In the protostellar context, such strong fields may also be
relevant for the problem of binary formation (cf. Sigalotti & Klapp
2000).
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