Magnetic field amplification in GRB shocks

John Kirk,
Brian Revile*, Peter Duffy*

Max-Planck-Institut für Kernphysik
Heidelberg, Germany

*University College Dublin

Short gamma-ray bursts, Schloß Ringberg, 26 – 30 March 2007
1. Why magnetic field amplification?
 - Phenomenology of electron acceleration
 - Phenomenology of proton acceleration

2. How to amplify fields
 - Weibel instability
 - Non-resonant streaming instability

3. Implications for particle acceleration
The story of ϵ_B

“We put all the physics into p, ϵ_e and ϵ_B”

$$\epsilon_B = \frac{B^2}{8\pi nk_B T} \approx 1\% \text{ (RSN)}$$

$$\approx 1\% \text{ (GRB)}$$
The story of ϵ_B

“We put all the physics into p, ϵ_e and ϵ_B”

$$\epsilon_B = \frac{B^2}{8\pi nk_B T} \approx 1\% \text{ (RSN)}$$

$$\approx 1\% \text{ (GRB)}$$

- Hydrodynamics: $B_\perp \rightarrow rB_\perp$

 \[r = (\gamma + 1)/(\gamma - 1). \]

- MHD: slow mode: B decreases,
 fast mode: less compressive than hydrodynamics

- Relativistic shocks: $B_\perp \rightarrow rB_\perp$

 \[r \rightarrow 3\Gamma \text{ (proper frames)} \quad r \rightarrow 3 \quad \text{(lab. frame/shock frame)}. \]
Why magnetic field amplification? How to amplify fields Implications for particle acceleration

Phenomenology of electron acceleration

The story of ϵ_B

“We put all the physics into p, ϵ_e and ϵ_B”

$$\epsilon_B = \frac{B^2 / 8\pi}{nk_B T} \approx 1\% \text{ (RSN)}$$

$$\approx 1\% \text{ (GRB)}$$

$$\epsilon_B \approx r \frac{V_{A}^2}{V_{s}^2} \approx 4 \times 10^{-4} \text{ (RSN)}$$
The story of ϵ_B

“We put all the physics into p, ϵ_e and ϵ_B”

$$\epsilon_B = \frac{B^2}{8\pi nk_B T} \approx 1\% \text{ (RSN)}$$

$$\approx 1\% \text{ (GRB)}$$

$$\epsilon_B \approx r \frac{v_A^2}{v_s^2} \approx 4 \times 10^{-4} \text{ (RSN)}$$

$$\epsilon_B \approx r \frac{v_A^2}{c^2} \approx 3 \times 10^{-7} \text{ (GRB)}$$
X-ray filaments

- Chandra image of Cas A
X-ray filaments

- Chandra image of Cas A
- Non-thermal X-rays near rim
X-ray filaments

- Chandra image of Cas A
- Non-thermal X-rays near rim
- Filament width given by synchrotron burn-off: $B = 250 - 300 \, \mu G$
X-ray filaments

- Chandra image of Cas A
- Non-thermal X-rays near rim
- Filament width given by synchrotron burn-off:
 \[B = 250 - 300 \mu G \]
- Electrons accelerated to
 \[\gamma = 10^8 \] (Vink 2006)
The CR acceleration problem

Acceleration rate

\[
\frac{\dot{E}}{E} \sim \frac{v_s^2}{\kappa}
\]

Diffusion coefficient \(\kappa = \text{mean-free path} \times \text{velocity}/3\)
The CR acceleration problem

Acceleration rate

\[\frac{\dot{E}}{E} \sim \frac{v_s^2}{\kappa} \]

Diffusion coefficient \(\kappa = \text{mean-free path} \times \text{velocity}/3 \)

Bohm diffusion: mean-free path = gyro-radius

\[E_{\text{max}} \approx 2 \times 10^{13} \left(\frac{ZB}{3 \mu \text{G}} \right) \text{ eV} \]

(Lagage & Cesarsky A&A 125, 249, (1983))
The CR acceleration problem

Acceleration rate

\[\frac{\dot{E}}{E} \sim \frac{v_s^2}{\kappa} \]

Diffusion coefficient \(\kappa = \text{mean-free path} \times \text{velocity} / 3 \)

Bohm diffusion: mean-free path = gyro-radius

\[E_{\text{max}} \approx 2 \times 10^{13} \left(\frac{ZB}{3 \mu G} \right) \text{eV} \]

(Lagage & Cesarsky A&A 125, 249, (1983))

But, knee in CR spectrum is at \(10^{15} - 10^{16} \text{eV} \)
Weibel Instability:

- Growth of current filaments fuelled by streaming
Weibel Instability:

- Growth of current filaments fuelled by streaming
- Short wavelength across stream, long wavelength along it
Weibel Instability:

- Growth of current filaments fuelled by streaming
- Short wavelength across stream, long wavelength along it
- Seen in rel. P.I.C. simulations of $e^+ - e^-$ shocks
Weibel instability

Something from nothing?

Weibel Instability:

- Growth of current filaments fuelled by streaming
- Short wavelength across stream, long wavelength along it
- Seen in rel. P.I.C. simulations of $e^+ - e^-$ shocks
- Saturation at low amplitude in e-ρ plasmas?

Lyubarsky & Eichler (2006)
Weibel Instability:

- Growth of current filaments fuelled by streaming
- Short wavelength across stream, long wavelength along it
- Seen in rel. P.I.C. simulations of $e^+ - e^-$ shocks
- Saturation at low amplitude in e-p plasmas? *Lyubarsky & Eichler (2006)*
- May help thermalize electron component
SNR shocks

- Diffusive shock acceleration: CR density constant downstream, falls off exponentially upstream.
- In plasma frame, CR streaming speed \approx shock speed.
Why magnetic field amplification?

How to amplify fields

Implications for particle acceleration

Non-resonant streaming instability

SNR shocks

- Diffusive shock acceleration: CR density constant downstream, falls off exponentially upstream
- In plasma frame, CR streaming speed \approx shock speed

CR density

Upstream

Downstream

Modification of low freq. wave modes unimportant \rightarrow

Alfven waves grow at the CR cyclotron resonance
Bell’s (2004) instability

- But, shorter wavelength modes with
 \[r_{\text{thermal}}^{-1} > k > r_{CR}^{-1} \]
 strongly modified.
- Plasma uncompensated: helicon/whistler-type modes
- Strong, nonresonant growth driven by “uncompensated” current.
Nonlinear development

Saturation expected when

$$\left| \vec{k} \wedge \vec{B} \right| \approx \frac{4\pi}{c} j_{\text{CR}}$$

$$\Rightarrow \frac{B^2}{8\pi} \approx \frac{1}{2} \frac{v_{\text{CR}}}{c} U_{\text{CR}}$$

SNR shock: $v_s/c = 1/50$, $M_A = 200$, $\beta \approx 1$:

$$U_{\text{CR}} \approx M_A^2 B_{\text{ISM}}^2 / 8\pi$$

$$\Rightarrow B_{\text{shock}} \approx 30 B_{\text{ISM}}$$

Acceleration to $> 10^{15} \text{ eV}$?
Relativistic case

- Relativistic proton beam $\Gamma_b \gg 1$
- Warm electron/proton plasma $kT/m = \Theta < \Gamma$
- Charge neutrality, zero net current

\[\Rightarrow \omega^2 \chi \approx -\frac{\omega'_p^2 \omega'}{\epsilon \omega_c} + \frac{\omega'_p^2 \omega'}{\epsilon \omega_c - \omega'} + \frac{\omega^2}{v_A^2} + \frac{\omega'_p^2 \omega}{\epsilon \omega_c^3} \left(k^2 - \omega^2 \right) \langle \gamma^2 v_{\perp}^2 \rangle \]

- Plasma current
- Beam response
- Thermal effects
Relativistic case

Cold plasma, $\epsilon = -1$: purely growing modes, max. growth rate

$$\text{Im}(\omega) \approx \frac{n_b}{n_p} \omega_p$$

at

$$k_\parallel \approx \frac{n_b \omega_p}{2 v_A n_p}$$

Thermal effects reduce current drive when

$$k_\parallel > \frac{\omega_p v_A}{c} \left(\frac{n_b}{4 \Gamma n_p \langle \gamma^2 v^2_\perp \rangle} \right)^{1/2}$$

i.e.,

$$\Theta > \frac{v^2_A}{c^2} \sqrt{\frac{n_p}{\Gamma n_b}}$$
Non-resonant streaming instability

Relativistic case

\[v_A = 2 \times 10^{-5}, \Gamma = 10, n_b/n_p = 1/3, \epsilon = -1, \epsilon = +1 \]
Similar to cosmic ray scattering in SNR shocks, where a nonresonant, current driven instability is important. Bell (2004), Pelletier, Marcowith et al (2006)
Non-resonant streaming instability

Relativistic case - summary

- Similar to cosmic ray scattering in SNR shocks, where a nonresonant, current driven instability is important. Bell (2004), Pelletier, Marcowith et al (2006)
- Short wavelength turbulence generated, \(k_\parallel \approx \frac{n_b \omega_p}{n_p v_A} \). Strong amplification of seed magnetic field
Relativistic case - summary

- Similar to cosmic ray scattering in SNR shocks, where a nonresonant, current driven instability is important.
- Short wavelength turbulence generated, \(k_\parallel \approx n_b \omega_p / n_p v_A \).
 Strong amplification of seed magnetic field
- Saturates when ambient plasma heats to “shock” temperature
Non-resonant streaming instability

Relativistic case - summary

- Similar to cosmic ray scattering in SNR shocks, where a nonresonant, current driven instability is important. Bell (2004), Pelletier, Marcowith et al (2006)
- Short wavelength turbulence generated, \(k_\parallel \approx n_b \omega_p / n_p v_A \). Strong amplification of seed magnetic field
- Saturates when ambient plasma heats to “shock” temperature
- Nonlinear evolution uncertain...
Particle transport

Average field orientation: \(B_{\parallel} = B'_{\parallel}, \quad B_{\perp} = \Gamma_{\text{shock}} B'_{\perp} \).
Large \(\Gamma \Rightarrow \) perpendicular shocks.
Begelman & Kirk 1990
Particle transport

Average field orientation: $B_{\parallel} = B'_{\parallel}$, $B_{\perp} = \Gamma_{\text{shock}} B'_{\perp}$.
Large $\Gamma \Rightarrow$ perpendicular shocks.
Begelman & Kirk 1990

Particle overtaken in small fraction of a gyration
Particle transport

Average field orientation: \(B_\parallel = B'_\parallel, \quad B_\perp = \Gamma_{\text{shock}} B'_\perp. \)

Large \(\Gamma \Rightarrow \) perpendicular shocks. \cite{BegelmanKirk1990}

Particle overtaken in small fraction of a gyration

\(N_{\text{cross}} \leq 3 \) for \(\Gamma \to \infty \)

\cite{Lemoineetal2006}
Particle transport

Average field orientation: $B_{\parallel} = B'_{\parallel}$, $B_{\perp} = \Gamma_{\text{shock}} B'_{\perp}$.
Large $\Gamma \Rightarrow$ perpendicular shocks. \cite{begelman1990}

Particle overtaken in small fraction of a gyration
$N_{\text{cross}} \leq 3$ for $\Gamma \to \infty$
\cite{lemoine2006}

Short-wavelength turbulence needed
First-order Fermi at relativistic shocks

- Average field strong \Rightarrow no stochastic acceleration:
 - Random B-field, Niemiec & Ostrowski (2006)
First-order Fermi at relativistic shocks

- Average field strong \Rightarrow no stochastic acceleration:
 P.I.C simulations, *Spitkovsky (2006)*
 Random B-field, *Niemiec & Ostrowski (2006)*
- For GRBs incoming B irrelevant ($\epsilon_B \approx 0.01$)
First-order Fermi at relativistic shocks

- Average field strong \Rightarrow no stochastic acceleration: P.I.C simulations, Spitkovsky (2006)
 Random B-field, Niemiec & Ostrowski (2006)
- For GRBs incoming B irrelevant ($\epsilon_B \approx 0.01$)
- Non-resonant instability may provide short wavelength $k_{\text{max}} = n_b \omega_p / 2 n_p v_A$ scattering mechanism
First-order Fermi at relativistic shocks

- Average field strong \Rightarrow no stochastic acceleration: P.I.C simulations, Spitkovsky (2006)
 Random B-field, Niemiec & Ostrowski (2006)
- For GRBs incoming B irrelevant ($\epsilon_B \approx 0.01$)
- Non-resonant instability may provide short wavelength $k_{\text{max}} = n_b \omega_p / 2 n_p v_A$ scattering mechanism
- Standard asymptotic result $p \approx 2.3$ then applies
First-order Fermi at relativistic shocks

- Average field strong \Rightarrow no stochastic acceleration: P.I.C simulations, Spitkovsky (2006)
 Random B-field, Niemiec & Ostrowski (2006)
- For GRBs incoming B irrelevant ($\epsilon_B \approx 0.01$)
- Non-resonant instability may provide short wavelength $k_{\text{max}} = n_b \omega_p / 2n_p v_A$ scattering mechanism
- Standard asymptotic result $p \approx 2.3$ then applies
- Standard synchtron theory applies provided

$$\frac{k_{\text{max}}}{k_{\text{synch}}} = \frac{m_e}{4\Gamma m_p} \left(\frac{\Gamma n_b m_p}{B^2/8\pi} \right) = \frac{m_e}{4\Gamma m_p \epsilon_B} \ll 1$$
Conclusions

- Amplification required in GRB, SNR, RSN…
- Suitable mechanism identified. Nonlinear evolution not yet clear
- Standard acceleration theory and radiation mechanisms apply