
  

 THERMAL HISTORY OF THE UNIVERSE AND EARLY 
GROWTH OF DENSITY FLUCTUATIONS



  

        Evidence for the Hot Big Bang

1) Cosmic Expansion (covered in previous lectures)

2) Big Bang theory can predict the 24% primordial helium 
abundance that is  observed  everywhere

3) Big Bang theory can explain the observed  Cosmic 
Microwave Background  (CMB)  radiation 

4) The distant Universe looks different to the present-day 
Universe (most of the content of this course)

5) We can measure the ages of the oldest stars, and get an 
answer that is close to the predicted age of the Universe



  

The Ages of the Oldest Stars in the 
Universe Measured from Globular Clusters



  



  

                        COSMIC INFLATION

In physical cosmology, cosmic inflation, cosmological inflation, is the extremely rapid 
exponential expansion of the early universe by a factor of at least 1078 in volume, driven 
by a negative-pressure vacuum energy density.] The inflationary epoch comprises the 
first part of the electroweak epoch following the grand unification epoch. It lasted from 
10−36 seconds after the Big Bang to sometime between 10−33 and 10−32 seconds. 
Following the inflationary period, the universe continued to expand, but at a slower rate.

 Why was such a theory proposed?

1) THE HORIZON PROBLEM --In a big bang with only the matter and radiation known 
in the Standard Model, two widely separated regions of the observable universe cannot 
have equilibrated because they move apart from each other faster than the speed of 
light—thus have never come into causal contact.

2) THE FLATNESS PROBLEM -- a fine-tuning problem because the contribution of 
curvature to the universe is so small ((sixteen orders of magnitude less than the density 
of radiation at big bang nucleosynthesis)

3) MAGNETIC MONOPOLE PROBLEM (EXOTIC RELICS PROBLEM) --Monopoles 
are expected to be copiously produced in Grand Unified Theories at high temperature, 
and they should have persisted to the present day, to such an extent that they would 
become the primary constituent of the universe.



  



  

After cosmic inflation ends, the universe is filled with a quark–
gluon plasma. From this point onwards the physics of the early 
universe is better understood, and less speculative.

Hadron epoch Between 10–6 seconds and 1 second after the Big Bang 

Hadrons are particles that feel the strong nuclear force and are combinations of 
quarks. When the temperature cools below twice the nucleon rest mass, 
annihilations dominate creations, and the nucleon density drops dramatically, 
leading to the lepton era.  1 second after the Big Bang neutrinos decouple and 
begin traveling freely through space (cosmic neutrino background).

Lepton epoch  Between 1 second and 10 seconds after the Big Bang

Leptons feel the weak force. This era ends when electon/anti-electron pair 
production stops.

Photon epoch  Between 10 seconds and 380,000 years after the Big Bang
Lasts until photon recombine with atoms (epoch of matter-radiation equality)



  

   What is the Physics of these Transitions?

 Interaction Equilibrium

Calculation of reaction rates from first principles, allow us to calculate the 
time when  equilibrium is broken, and forward (building) processes 
dominate. Reaction time-scale depends on the number density n of
the source component, the cross-section σ for the process, and velocity v 
of the  of the source

Γ =  n <σv>
(angle brackets indicate averaging over the source thermal (momentum) 
distribution at a given energy). <σv> is calculated from quantum physics, 
or accelerator experiments of the proper energy.  The density n evolves
In proportion to a-3.

For example,  electron-positron freeze-out depends on the reaction rate 
of  electron+positron --> γγ. Interaction rates often scale with energy (i.e. 
T) as Γ =Tn.  In the radiation epoch,  T ~ t -1/2  and H=1/(2t) so that the 
number of future interactions Nint = ∫ dt'  Γ(t')  reduces to (n-2)-1 (Γ/H)t.
For n>2, the number of future interactions is greater than 1 if Γ>Ht



  



  

Surface of Last Scattering of the Cosmic 
Microwave Background Radiation



  

 Recombination Process

 As the temperature drops  electrons and protons combine to form 
atoms: e- + p+  <--> H + γ

High photon number density delays recombination through process 
of Thomson scattering:



  

Eventually the number density of sufficiently energetic photons drops 
too low to undo recombinations (electron captures). Thus, final 
electron decoupling occurs about 105.5 years  after the recombination 
epoch.

Microwave background photons arrive from a recombination “shell”  
rather than a surface of optical depth
                                τ =  ∫ ne  σT dr
Note that the cosmic plasma cooled during recombination, but
photons also are redshifted by different amounts. These two factors 
cancel , so the resulting spectrum is very close to a Planck spectrum 
of single temperature.



  

Planck's law for  
radiation in 
thermodynamic 
equilibrium at a 
definite temperature.



  

The cosmic 
microwave 
background 
radiation is 

isotropic to one 
part in 100,000



  

Most recent CMB map from the 
Planck satellite



  

THEORY OF THE GROWTH OF PERTURBATIONS

We now develop the 
theory of how the tiny 
(1/100,000) density 
fluctuations that we see 
imprinted on the CMB 
radiation at z=1300-1100
 grow to become the 
galaxies we see today.



  

Primary Sources of CMB Anisotropies

 1)  Gravitational (Sachs-Wolfe) perturbations. These arise 
because a photon moving away from a slightly overdense region 
on the last scattering surface loses energy and is red-shifted.

2) Density (adiabatic) perturbations: the coupling of radiation and 
matter results in the compression of the radiation and an increase 
in temperature.

3) Velocity (Doppler) perturbations.: the ionized plasma has a non-
zero velocity. This velocity results in a Doppler  shift in the 
observed frequency of the radiation and a corresponding change in 
temperature.



  

Candidates for what might have initially seeded the structure are:

1.  Amplification of quantum zero-point fluctuations during an
inflationary era. (leads to adiabatic perturbations)
2. “Topological defects” formed in a cosmological phase transition
    (leads to isocurvature perturbations)

Consider an initial density perturbation defined as follows:
                           1+ δ(x) = ρ(x)/ <p>

Adiabatic perturbations:  compress a region containing matter 
and radiation adiabatically. This  would change the matter density 
and the photon number density by the same factor. 
The energy density of matter and radiation respond differently 
to a change in scale factor:  ρm α 1/a3 and ρr α 1/a4.  Thus 
δrad =4/3 δm 



  



  

Isocurvature perturbations:  perturb the entropy density but not 
the energy density. Since the total energy density remains 
homogeneous, there is no perturbation to the spatial curvature and 
                                 ρradδrad= -ρmδm
Examples of iso-curvature perturbations include variations in the 
relative fraction of baryons to photons. This will be a very small 
effect in the radiation-dominated epoch.

Perturbations and causality: let’s imagine that we wanted to 
create a non-uniform density field at some given time in the early 
Universe.
It is impossible to change the mean density on scales larger than 
the horizon at that time, so iso-curvature fluctuations can be argued 
to be more natural. However, inflation vastly expands the horizon 
scale,  allowing fluctuations to be produced on scales larger than 
c/H0, so adiabatic perturbations can dominate if generated early 
enough



  

Isocurvature perturbations:  perturb the entropy density but not 
the energy density. Since the total energy density remains 
homogeneous, there is no perturbation to the spatial curvature and 
                                 ρradδrad= -ρmδm
Examples of iso-curvature perturbations include variations in the 
relative fraction of baryons to photons. This will be a very small 
effect in the radiation-dominated epoch.

Perturbations and causality: let’s imagine that we wanted to 
create a non-uniform density field at some given time in the early 
Universe. It is impossible to change the mean density on scales 
larger than the horizon at that time. However, inflation vastly 
expands the horizon scale,  allowing fluctuations to be produced on 
scales larger than c/H0, so perturbations that are generated early 
enough can still grow.



  

The physical size of the Hubble radius (solid line) as a function of the linear expansion 
(scale factor) of the universe. During cosmological inflation, the Hubble radius is 
constant. The physical wavelength of a perturbation mode (dashed line) is also shown. 
The plot illustrates how the perturbation mode grows larger than the horizon during 
cosmological inflation before coming back inside the horizon, which grows rapidly during 
radiation domination. 

horizon



  

Primordial density perturbations will subsequently be modified by: 
a) growth by self-gravitation, b) the effect of pressure,
c) dissipative processes.

Preamble: Fourier analysis of density fluctuations:
It is often convenient to consider building up a general field by the 
superposition of many modes. The natural tool for achieving this is via 
Fourier analysis. In three dimensions, the forward and inverse Fourier 
transforms of a  field F are:

Primordial density perturbations will subsequently be modified by a variety of 
physical processes: growth under self-gravitation, the effect of pressure, and 
dissipative processes. The effect is summarized  in the transfer function:

D(z) is the growth factor between redshift z and 
present

δ

δ

δ

δ



  

The form of the transfer function depends on the type of fluctuation 
(adiabatic or iso-curvature) and on the matter content of the universe.
Consider a flat (k = 0) FRW model, where ρ=ρcrit and
                                         H2= 8πG/3 ρ
A spherical region of enhanced density ρ' > ρ within this flat universe will 
also expand with the same Hubble law if its size exceeds the particle 
horizon. The dynamics of the spherical density fluctuation depend only on 
the mass contained within (recall Birkhoff’s theorem), so it evolves as a 
separate entity, like a miniature closed Universe according to:

with k>0.  Subtracting the two equations yields:

In a matter-dominated Universe, ρ α a-3 and in a radiation-dominated
Universe ρ α a -4, so that

and



  

_

 Note that the growth of adiabatic perturbations  is just due to the difference 
in the rates at which the density decreased inside and outside the 
fluctuation as the universe expanded.
In the adiabatic case, gravity causes the mode amplitude to increase; in the 
iso-curvature case the evolution acts to preserve the initial uniform density.

In the standard cosmological model the density fluctuation field is 
assumed (with good observational support) to be a Gaussian 
fluctuation field, i.e., its m-point joint probability distribution obeys 
the multi-variate Gaussian

Here Mij = < δi δj> is the covariance matrix and M-1 is its inverse.



  

The Gaussian nature of the primordial density field is preserved in its 
linear evolution stage, but this is not the case in the nonlinear stage. In 
the real density field, δi cannot be less than −1. This assumption does 
not make any practical difference as long as the fluctuations are  small, 
but it is invalid in the nonlinear regime where the typical amplitude of 
the fluctuations exceeds unity. 



  

On small scales and at early times, a variety of non-gravitational 
processes also affect the way perturbations grow:

1. Pressure
Hydrostatic equilibrium:

where Menc(r) is the enclosed mass, p is the pressure, and ρ(r) is the 
density of the gas. The equilibrium is stable if small perturbations are 
damped and unstable if they are amplified. 

Simple argument: Consider a spherical gaseous region of radius R, mass 
M, and with a gaseous sound speed cs. Imagine that we compress the 
region slightly. It takes a time, tsound =R/cs for sound waves to cross the 
region and re-establish pressure balance, Gravity will attempt to contract 
the system even further, and will do so on a free-fall time
 Tff=1/(Gρ)1/2. The condition for gravitational collapse is tff<tsound, and 
one can express the length scale condition , called the Jeans length as



  

In the radiation era, the Jeans length is always close to the size of the 
horizon. It reaches a maximum value at the matter-radiation equality. This 
defines an important scale, the co-moving horizon size at zeq: 

Beyond this scale, perturbations should be affected by gravity only and we 
would then expect to see a bend in the spectrum of perturbations where 
pressure starts to become important.

The Jeans analysis assumes a tightly coupled baryon-photon plasma. There 
are two situations where this is inappropriate:
1) DARK MATTER  may undergo “free streaming”  At early times, dark 
matter particles will  undergo free streaming at the speed of light, and so 
erase all scales up to the horizon, a process which only stops when the 
particles go non-relativistic. This is important for neutrino-dominated models.

2) At early times the plasma is very optically thick, but as the universe 
expands the mean free path for photons increases and the photons tend to 
leak out of the sound waves and then damp out, smoothing the 
inhomogeneities in the photon-baryon fluid. This process is termed Silk 
damping (not important in DM-dominates models)



  

Evolution of two perturbations to the ΛCDM homogeneous big bang model. Between 
entering the horizon and decoupling, the dark matter perturbation (dashed line) grows 
logarithmically, before the growth accelerates in matter domination. On the other hand, 
between entering the horizon and decoupling, the perturbation in the baryon-photon fluid 
(solid line) oscillates rapidly. After decoupling, it grows rapidly to match the dominant 
matter perturbation, the dark matter mode.



  

Transfer function for different models



  



  

Measurement of acoustic oscillations imprinted in 
galaxy distribution



  

 Evolution of density perturbations into the non-
linear (δρ/ρ > 1) regime

Two approaches: APPROXIMATE METHODS and NUMERICAL 
SIMULATIONS

1. SPHERICAL COLLAPSE

The galaxy cluster Abell 1989 seen in optical 
light and in X-rays



  

Consider the idealised case 
of
a spherical volume where the 
density is infinitesimally 
higher than the cosmic mean.

Our density perturbation will then evolve like a closed universe
with Ωm = 1 +δ . As we saw in lecture 2, the scale factor a(t) of 
such a universe reaches a maximum value amax and then 
decreases again—in other words, our perturbation will grow to a 
maximum size r=rmax at time t=tmax and then collapse.



  

The Friedmann equation for a closed Universe:

has a parametric solution in terms of a development angle θ:

           so that

and

   with

the development angle θ is a scaled form of the ‘conformal time’
(the time travelled by a photon since the Big Bang)



  

The maximum size which the perturbation will grow is given by

 Which is satisfied at θ= 0, π and 2π. θ=π corresponds to the time 
of turn-around when the over-density reaches its maximum size 
before collapsing. At this time t=tmax, we have

and, more generally



  

The constants A and B are related through the enclosed mass

by the simple relation A3=GMB2

In the linear regime, we can follow the growth of the perturbation
by using the Maclaurin expansions for cosθ  and sinθ , to yield

The leading order, r = Aθ2/2 and t = Bθ3/6, just gives the 
expansion of the background (i.e. outside the volume including 
the overdensity) universe where



  

Our overdensity grows according to the equations:

which can be combined to give the linearised scale factor of our
closed Universe:

Again, the first term is just the expansion of the background 
in a flat matter dominated universe. Including both terms in 
the square brackets gives the linear theory expression for the 
growth of a perturbation.



  

In matter-dominated universes, the mass-energy density varies as
 a-3.Throughout the evolution of the perturbation, the following relation holds:

Substituting this into the previous equation where aback is given by the 
leading order term, and with the substitution (1 +δ)−1/3  ~  1 − 1/3 δ valid 
for δ<< 1, we have:

Of course, turnaround also represents the breakdown of linear theory.
The actual nonlinear density contrast at turnaround is

This again just considers leading order terms.

         So at t= tmax:



  

After turnaround, the evolution of the overdensity mirrors the 
expansion phase until the object collapses at t = 2tmax. At this time 
the linear density contrast has become

Thus, a linear density contrast 
δC ~1.7 corresponds to the 
epoch of complete gravitational 
collapse of a spherically 
symmetric perturbation.
This value of  δc~ 1.7 is used in 
analytical treatments of the 
growth of structure in the 
universe, such as the Press-
Schechter formalism.
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