Black Holes and Active Galactic Nucleli




A black hole is a region of spacetime from which gravity
prevents anything, including light, from escaping. The theory
of general relativity predicts that a sufficiently compact mass
will deform space-time to form a black hole. Around a black
hole, there is a mathematically defined surface called an
event horizon that marks the point of no return. The hole is

called "black" because it absorbs all the light that hits the
horizon.



Evidence for Black Holes in the Real Universe

X-ray binaries are a class of binary stars that are luminous in X-
rays. The X-rays are produced by matter falling from one
component, called the donor (usually a relatively normal star) to
the other component, called the accretor, which is compact: a
white dwarf, neutron star, or black hole. The infalling matter
releases gravitational potential energy, up to several tenths of
its rest mass, as X-rays. (Hydrogen fusion releases only about
0.7 percent of rest mass.)
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Galaxy M84 Nucleus

SPACE
TELESCOPE
IMAGING
SPECTROGRAPH

WFPC2
Hubble Space Telescope

PRCS7-12 - 5T Scl OPO - May 12, 1997 - B. Woodgate (GSFC), G. Bower (NOAO) and NASA

Fig.50. Left: Image of M84; Right: Velocity profile across the nucleus of M84 taken with 5TIS
aboard the HST. The estimated black hole mass is about 300 million solar masses.
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The galaxy M31 , our
nearest spiral neighbour
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NGC 3115 Black Hole
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NGC 4258 Black Hole

Water molecules in star-forming regions can
undergo a population inversion and emit
radiation at about 22.0 GHz, creating the
brightest spectral line in the radio universe.
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Nuclear gas disk with masers giving doppler velocities and proper motions.
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Correlation Between Black Hole Mass
and Bulge Mass
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1963 M. Schmidt discovers that the radio source 3C273 can be identified with an optical
point source (stellar) with a jet. The spectrum shows broad emission lines Hs -5, Mgll,
Olll ...which are redshifted by = = 0.178 = v,ad = 17 llll.il%. So, the object was called a
QUAsi StellAr Radio source — QUASAR.

WAVELENGTH ( Angstroms )



eBright, unresolved nuclei of galaxies,
at 10%® erg/s they can outshine their
host galaxy by x100

eContinuum: not black-body
eBroad lines: ~3000km/s

eFound at redshifts z~0...6.5, with a
peak at z~2 - phenomenon more
common in the past

ePhenomenon rare or COMmMon but
short-lived phase:

N ~ 100 - 10.000 ngg,

galaxy




The orbital period of the gas in an accretion disk will change with radius, just
like the orbital periods of the planets in the solar system. This implies that adjacent

rings of gas will rub against each other and be subject to friction which will allow the
gas to move toward the black hole.

This frictional force is responsible for heating the gas in the disk which can then
radiate. The source of the radiant energy is ultimately gravitational and up to about
1020 erg of energy may be released for every gram of gas that is accreted onto a
black hole. (This is several hundred times more efficient than the nuclear processes
occurring in stars.) Most of this energy will be released fairly close to the black hole,
within a radius of typically 1075 cm for massive black hole in a quasar. In order to fuel
a bright quasar, gas must accrete at a rate of up to 10 M_sun yr-1.



Some accretion discs produce jets of twin, highly collimated, and
fast outflows that emerge in opposite directions from close to the
disc. The direction of the jet ejection is determined either by the
angular momentum axis of the accretion disc or the spin axis of the
black hole. They radiate in all wavebands from the radio through to
the gamma-ray range via the synchrotron and the inverse-Compton
scattering process.



10.6. Eddington Limit

If we consider a parcel of atomic hydrogen gas at a distance r from a source of lumi-
nosity L, then the flux at the position of the parcel of gasis F = L/(4 - 7 - %) if we
assume there is no opacity along the line of sight from the source of L to the gas.
The phntnn pressure onto the parcel of gas from the the central source is then

P =

§ L (128)

d-m-c-r2

In general the opacity along the line of sight can be determined as the Thompson

cross section, 1.e.

2
o= 2T ( - ) (129)

Me - €2

were e is the charge of the electron, m, the mass of the electron, and ¢ the speed of
light. (Thompson scattering on electrons is the main source of scattering in this area).

Hence, in order for material to be able to accrete onto the central black hole, the
radiation pressure has to be lower than the gravity, L.e. in order to accrete we need:



L G-M-m
E.i=0,- o F’
e e r?

(130)

with m, the proton mass. Since both, radiation pressure and gravity are proportional

to r—2, there is no equilibrium distance were the two are in balance. We can hence
determine the Eddington limit: the maximum luminosity of an AGN for a given
black hole mass.

4.7-G-m,
& M

= = Lp (131)
O¢
which is in phj,fsir:a] units:
M
— . 4 - —— - —
L =32-10 (Mq) Lo (132)

One can also determine the minimum mass (Eddington Mass) for the central black
hole for a given luminosity:

5
e 5

Note: L, = 4 - 1026 W. With these we get Eddington masses for Seyfert galaxies in
the order of 10° M and for quasars we obtain 10° M !!!!



The luminosity of the quasar is due to mass accretion, i.e. conversion of gravitational
potential energy into kinetic energy. Le. the luminosity is

L=n-M-c* (134)

were 1] is the efficiency of the conversion. Models predict that n ~ 0.1, which com-
pares to the efficiency of hydrogen fusion of only n = 0.007!!!. With these numbers
it is+easy to calculate that a typical QSO with L ~ 10%° W needs mass accretion rates
of M ~ 2M, /yr.

One can use this to determine the Eddington Limit, i.e. the maximum accretion rate
onto the central object for a given black hole mass. This calculates to:

Mg =

M
—7 =22 (mﬁmm) Mo /yr (135)



Are QSOs actually active galactic nuclei?

(i.e. live in galaxy center)
Answer:
whenever on ‘has a chance’ to see a ‘host galaxy’ one does see one

HST imaging COSMOS: Jahnke et al 2007/8_



Seyfert Galaxies: fainter versions of
quasars
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Seyfert Is have spectra
with broad emission lines
and there are clear point-
like central nuclel in the
images of the host galaxy.

In Seyfert Is, there is no
point-like nucleus. The
spectro show strong HIGH
IONIZATION POTENTIAL
emission lines
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The Unified Model

All known classes of AGN are thought to be explainable by the above scheme.
Depending on the viewing angle the observed spectra will look different, leading
to a different classification of the object.
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The Narrow Line Region

NGC 1068, |lI

NGC 1068 (M77) core with HST in O 1

NGC 1068 (M77): Seyfert 2 nucleus at
z = 0.003 (d ~15Mpc), one of the best
studied galaxies in the sky.

Pogge (1988): Extended ionizing
radiation cone from the nucleus of

NGC 1068, along the direction of the
radio jet.




Core of Galaxy NGC 426l
Hubble Space Telescope

Wide Field / Planetary Camera

Ground-Based Optical/Radio Image HST Image of a Gas and Dust Disk
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Surveys of Type Il AGN at Low Redshifts from SDSS
(for detailed analysis of host galaxy properties)
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Accretion

The [Olll] Line Luminosity as a Black Hole Accretion
rate Indicator
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The Starburst-AGN Connection
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More strongly accreting AGN
have younger stellar
populations

The average ratio between
the star formation rate in
the bulge and the accretion
rate onto the black hole is
1000 — remarkably close to
the ratio of bulge mass to
black hole mass.



Most of the accretion today is occurring onto low mass
black holes in galaxies like our own Milky Way ==
Massive black holes formed early on in the Universe and

then stopped growing
log (o/200 km/s)
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Cosmic Evolution of the AGN Activity

e Describe the distribution of accretion luminosities at different
cosmic epochs by the "quasar-luminosity-function” at different
redshifts

Abundance of luminous QS0Os has
decreased by 2 orders of magnitude
since early epochs!

(e.g. SDSS Richards et al 2006)
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What about radio-loud AGN?

Radio Galaxy 3C272.1 = MB84 = NGC4374 copyright (¢) NEAQ 1928
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CONCLUSIONS FROM STUDYING HOST GALAXIES

Present-day Optical (emission-line) AGN
activity is linked to:

1) lower mass black holes

2) galaxies with low mass bulges

3) more powerful AGN found in galaxies with younger
stellar populations

Present-day Optical Radio-AGN activity is
linked to:
1) high mass black holes

2) galaxies with higher mass bulges
3) no apparent dependence on mean stellar age
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STUDYING THE ENVIRONMENTS OF AGN IN SDSS

=D DR4




Galaxy interactions/mergers trigger more star formation, but
apparently NOT more AGN activity

The cross-correlation function star-forming galaxies compared to
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At fixed stellar mass, radio AGN activity is
enhanced in galaxies that sit at the centers of
groups and clusters.
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Ha emission traces filamentary
structure of gas that have been “uplifted”
from the central galaxy
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Figure 6 from B R McNamara and PE ) leen
2012 New ). Phys. 14 055023
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K (keV cm®)

Entropy profiles of
clusters

1000

g
0, LR |

rllrl L L ||'||||| L 1 IIIIIII

Pure cooling
w4 10 keV ¢m?

0f = :

Ecaw = 4PViee [10™ erg]

Central entropy versus

radio power

10

=

=

1y

| 07 <kT eV e 12 |
 12<kT, eV 2 20
| 20k 7keV 2 35
15 < kT, fkeV < 59
P A 4—

& -

A + : _
'y
: a
% coo] cores . non-cool cores
L L4 L ! " |
| 10 100



G(U-T), G(U-R) (mag/dex)
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Central entropy determines whether there

Is star formation in the central galaxy
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A possible picture is emerging
from the data:

Jets from AGN (visible at radio
wavelengths as a result of synchrotron
emission) push gas and metals out of
the central galaxy, and also heat the
ambient gas, preventing from cooling
and forming stars.



Outflows of ionized gas around Type Il quasars also now

seen. These ionized gas “halos™ extend out to radii of 50 kpc

and are very round in morphology. (Greene & Zakamska)
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How do black holes form?

New black hole in

star forming Energy output blasts

away gas clouds,
stopping star
formation

Black hole accretes
remaining gas
unobscured

Dormant black hole,
fuel used up
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(this is an artist's
impression)
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