Spiral and Elliptical Galaxies: what are
their properties and how did they form?




Disk Galaxies: Observational Facts

oDisk galaxies have surface brightness profiles that often are close to exponential.

o Deviations from exponential at small radii are attributed to bulge and/or bar.

o Deviations from exponential at large radii are attributed to star formation
thresholds, radial migration, and/or maximum angular momentum...
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Disk Galaxies: Observational Facts

(Flat Rotation Curves )

Disk galaxies have flat rotation curves. Unfortunately, it is difficult to obtain
unique disk-halo(-bulge) decompositions....
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Disk Galaxies: Observational Facts

{Expune.nﬁul Surface Brightness Prnfilesjl

Because of their close-to-exponential appearance, disk galaxies are often modelled
as infinitesimally thin, exponential disks:

T = T - -_— _———— —

surface brightness I HY =nln g 5/ b= iZ}T/ I(R) RdR = 2w I, R?
0

| surface mass density X(R) = Zpe /84 My = 2?1"/ Y(R) RdR = 27 Xy R5
0

circular velocity VZ24(R) = —4nGZo Riy [To(y) Ko(y) — L1 (y) K1(y)]

disk scale length Ry stellar mass-to-light ratio My/Lq = X4/1
= RI2 1R modified Bessel functions I,(x) K,(z)

The circular velocity curve reaches a maximum at R ~ 2.16 R4




Disk Galaxies: Observational Facts

(Scaling Relations )

Brighter disks
oare larger
o are redder
o have higher central SB
0 have smaller gas mass fractions
o rotate faster (Tully-Fisher relation)
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Tully—Fisher relation

i
—— spiral galaxies rotate, and the rotation
C speed is proportional to the mass of
— the galaxy

v
measurements of neutral hydrogen (HI)
HI display a ‘‘double-horned’’ profile,
fhe Tne wridih where the width of the line indicates the
Mass
veloorhy
@ : :
a plot of line width versus absolute
o® luminosity of a galaxy is called the
lﬂfsﬁl;tii}, o o Tully—Fisher relation. When calibrated
® o using galaxies with Cepheid distances,
® the TF relation is used to determine
oo ¢ Hubble s constant.
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Photometric Bands
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Stellar mass as a function of Stellar + gas (baryonic)
circular velocity mass as a function of
circular velocity

log &y
10 10° 10° 10¥ 10"

10°




Linear Tidal Torque Theory

Dark matter haloes acquire angular momentum in the linear regime due to tidal

torques from neighboring overdensities...

Consider the material that ends up as part of a virialized halo. Let V| be the Lagrangian
region that it occupies in the early Universe. The angular momentum of this material can

be written as

Ji= [ dgmlpma (aZ — alom) X U
V1,

where Tcom is the center of mass (the barycenter) of the volume.

Using the Zel'dovich approximation for the velocities U inside the volume, and
second-order Taylor series expansion of the potential, one finds that

Ji(t) = ﬂz(t) D( ) ijkTu'.IEk

Einstein summation convention

Here D(t] is the fime-derivative of the linear-growth rate, T;; is the tidal tensor
at the barycenter at the initial time, [;; is the inertial tensor at the initial time, and
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Linear TTT

According to linear TTT, the acquisition of angular momentum stops once a proto-halo
turns around and starts to collapse: after turn-around, the moment of inertia starts to
decline rapidly...Hence, according to linear TTT the final angular momentum of a virialized

dark matter halo should (roughly) be equal to

f’-t& fta i
G ] -..T(le di = €ijk TJ-,; I / {’Jz{f:] D(t)dt

0 0




The Halo Spin Parameter

The angular momentum of a dark matter halo is traditionally parameterized through
the dimensionless spin parameter:

_ JIE]”
~ GME?

where J, E and M are the angular mementum, energy and mass of the halo.

A

An alternative definition for the spin parameter, which avoids having to calculate the

halo energy is:
X g

~ VAMVR

where V and R are the virial velocity and viral radius, respectively. Definitions are equal

if halo is singular isothermal sphere: otherwise they differ by factor of order unity....

Simulations show that PDF for spin parameter of haloes is a log-normal

In?(A/X)\ dA
Ev:rﬁl A\ A

with A ~ 0.03 and oy, 5, = 0.5, with virtually no dependence on hale mass or cosmology...




The Formation of Disk Galaxies

Hot (shock-heated) gas inside extended
dark matter halo cools radiatively,

3
As gas cools, its pressure decreases
causing the gas to contract

3

Since emission of photons is
isotropic, angular momentum
of cooling gas is conserved.

\_/L

As gas sphere contracts,
it spins up, and flattens

4

Surface density of disk increases, " triggering
star formation; a disk galaxy is born...




Simple Model to Predict Disk Sizes and Rotation Curves From Dark Halo
Properties plus assumption that Gas Conserves Angular Momentum

For a singular isothermal sphere the density profile is just
FI
T 4nGrt’

p(r) (1)

we define the limiting radius of a dark halo to
be the radius ryyy within which the mean mass density 1s 200p_,.
where p_;, 18 the critical density for closure at the redshift z when the
halo is identified. Thus, the radius and mass of a halo of circular
velocity V_ seen at redshift z are

2 3
V,: . M_Fcrlﬂ]_ V.:

200 = J0H(2)’ — "G 10GH()’

(2)

where

]IIE

H(z) = Hy[Qp0 + (1 — @y — o)1 + 2% + Qy(1 + 2)° (3)

is the Hubble constant at redshift z.



We assume that the mass which settles into the disc is a fixed
fraction my of the halo mass. The disc mass is then

3 3 o —]
Md=Md—ﬂ“51.T}{lﬂ”h_]ME(md) V,: Hi(z) .
10GH(z) 0.05/ \250kms™! Hy

Let us assume an exponential profile for the disk:
E(R) = Egexp(—R/Ry). (3)

Here R4 and X are the disc scalelength and central surface density,
and are related to the disc mass through

Md = ZTFEDRE. {6}

If the gravitational effect of the disc is neglected, its rotation curve is
flat at the level V. and its angular momentum is just

Jy = sz V.E(R)R*dR = 4wE,V_.R} = 2M R V.. i)

We assume this angular momentum to be a fraction j4 of that of the
halo, 1.e.

I — fak. (8)

and we relate J to the spin parameter A of the halo through the
definition

A= JIE" G "M, (9)

where E is the total energy of the halo. Equations (7) and (8) then
imply that

AGMZ £ ;
Rd:zv — (J"). (10)
| E| my




The total energy of a truncated singular isothermal sphere is easily
obtained from the virial theorem by assuming all particles to be on
circular orbits:

GM> MV,

E = —
1!"3]4] 2

(11)

On inserting this into equation (10) and using equations (2) and (6)
we get

l,fd)
Ry= — (24 )ar
: ﬁ(mn i

~ @ ap] A Ve H] ™ ( ja
=8 ox{o) (st ) () 2

and

% -2
L, = 4.8 x 102 cm‘zmﬂ( = )
0.05/ 1 0.05

2
* (zormer) (| (i)
250kms Hy |\ Ja

where my, is the mass of a hydrogen atom.




approximate the distribution of \ by

p(h)dh =

1 1n3wi:.} dA
(15)

—exp|— 3
&7 iy P[ 27 | A

where A = 0.05 and o3, = 0.5. This function is a good fit to the N-
body results of Warren et al. (1992; see also Cole & Lacey 1996;
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Figure 1. The Hubble constant (in units of its present value) as a function of
redshift for flat ({f; + 24 5 = 1) and open models with various {I;.



Sizes of Disk Galaxies and their Evolution

R, [kpc]
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Figure 4. Model predictions for R as a function of V¥ for stable discs assembled at z = O and at z = 1 in the SCDM and ACDM models. The solid lines give the
relations for critical discs when m,; = 0.05, while short-dashed lines give the corresponding relations for m; = 0.025. Stable discs must lie above the line for the

relevant value of my. The long-dashed lines correspond to my = j; and A = 0.1; at most 10 per cent of discs should lie above these lines. The data points are the
observational results of Courteaun (1996, 1997) for a sample of nearby normal spirals.



V_ [km/s]

400

300

100

400

Predicted Rotation Curves:
dependence on parameters
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Theoretically predicted Tully-
Fisher Relations

nTrrn11. T ||||||||||rl11'I1T| T | L |||||||||I1TI'| T L TTTT1

~24 T 9cpM, 2=0 |

Tﬂ' B & A .r.f
o L ~ s
IEI _EE I * I:I‘ : # ‘= —
I i oy o ,
ay e i
B il o < i
Lﬁ g ey -4
2 _## b) m,=0.05 | 45 c) m,=0.05 |
= g €. >1.0 o €,>08 -

?-[] B iy _;
© B 9
L [ g ]
20 B % A
Q o kil
™ I ot i
N e) m,=0.05 -
= d €_>1.0 i £,>0.8
_18 _L|,|_|_|_L|,|]| I 1 1 1 | L 11 II_TI_I_l,I,Ijl [ I | 1 | 1 1 111 I.I_I_LI,I]_IJ | 1 11 I 1 11 IT

100 200 100 200 100 200

V, [km/s] V. [km/s] V, [km/s]

Figure 6. Tully—Fisher (TF) relations for stable discs at z = 0 in the SCDM and ACDM cosmogonies. Monte Carlo samples of the predicted luminosity—rotation
velocity distribution are shown for three choices of £. We have converted stellar mass (in the model) into [-band luminosity using T = 1.7h (Bottema 1997). The
solid lines give the linear regressions of absolute magnitude against log V,. The dashed lines show the observed TF relation as given by Giovanelli et al. (1997).



Barred Spirals

NGC 1365

NGC 1300

Local Disk Stability: Toomre's Q Parameter

= When are self-gravitating disks vulnerable to local gravitational instabilities ?
Instabilities can arise from a competition between:

= gravity causing overdense regions to collapse
= stellar dispersion which inhibits the collapse
« angular momentum which inhibits the collapse

Toomre (1964) found the conditions for instability: Q < 1 where Q =z xo/ (3 G ¥)
Where o is the stellar velocity dispersion and ¥ is the local surface density



= Here's a simplified derivation based on a modified Jeans analysis:
Consider overdense region radius R in a non-rotating disk

o The collapse time is LR / V where V ~ gravitational velocity ~ (G M /R)”
Sot ~ ~ R/(GM/R)*~®R’/GM)* ~ (R/GX)” (I is surface density)

coll

The time for stars to escape the region is : Lo R /¢ (o1sdispersion)

L <t ie®R/IGD)* < R/o
— The critical size for stability due to dispersion is therefore : R < #1GE

So collapse occurs if t

- Now consider a rotating disk:
The local angular velocity is Oort's constant B
The region is stable if F > ,
centrifugal gravity

In this case RB? > GM/R*=G7Y
— The critical size for stability due to rotation is therefore : le > Gx/B’



- Combining these: the disk is unstable in the range R/ <R <R’
And therefore the disk is locally stable if R > R__

ie /G > GT/B? or ¢B/GXT > 1
Recall that B=x>/4 Qandx~1-20s0B ~x/3

The final condition for disk stability is therefore

Y ‘B‘ oK

[A similar relation for gravitational stability for a gas diskis: Q = V «/3GX > 1]



N-body hydrodynamical
simulations and the
“Angular Momentum
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Effect of different supernova feedback implementations
on the predicted rotation curves.
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(i) deVaucouleurs (Rm) and Sersic (R”“) Laws

deVaucouleurs noticed (1948) that for many ellipticals y o< R
The fit is usually good over all but the inner and outermost regions (typically 0.03 - 20 RE)

The law is usually written :

I(R) = I exp (—7.57 [(R;ﬁe]”‘i—l D (73)

It has the following properties :

.L =7227R*I
1ot e 8
« 1(0) = 2000 IE
. < I({Re)} =30 I (which we abbreviate to < I > and equivalently < K’ >)
. Asymptotically, at small R, I(R) = R"® while at large R, I(R) = R’/
+ In terms of surface brightness: #(R) = p_+8325[ (RR )" -1] = u(0)+8325 RR )"



Surface Brightness:

The deVaucouleurs law is a special case of a more general, Sersic (1963,1968), law:

I(R) = I eap (b | (R/R)'™—1 |)

Where

= b=1.999n-0.327 (n>1) ensures 0.5 L = L(-::Re)
= n=4 gives the deVaucouleurs R law with b =7.67

» n=1 gives an exponential profile with b=1.67

Sersic Brightness Profiles: n
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More Luminous E's are More Concentrated

Figurs 4.28 Charscteristic surfuce.
4 brightnem profiles for elliptical galay.
= jen of different luminosities. The

1 lumincalties are expressed in terms

= of absolute V-band magnitudes wad

3 correspond o the portion of the gak
- axy that lies in projection interior by
r 7 & circle of radius 16kpe. Thess pro-
iy =7 =18 .. ~E1 -22 -2 - files are based on photometry of 261

55':"J_ul'“-I"-“'---:;--HJ‘r elliptical galaxies. [After Schombert
1086) from dats kind]
/07! pe) o

Surface brightness profiles for Ellipticals with a
range of luminosity. The x axis is R in

kpc”“. Clearly, more luminous galaxies are
bigger, but also larger n-index since if the
profile curves down the n-index is less than 4,
but if it curves up it is more than 4.
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Clear trend for more luminous Elliptical galaxies to
have higher n-index (more concentrated profiles).
Note the low luminosity dwarf spheroids have Sersic n
in the same range as for disks. [Fiqure 33 from
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Figure 4.28 The surface-brightness
profile of the ¢D galaxy that lies at
the center of the cluster Abell 1413
(points). The line shows the R}/4.
law that best fits the inner points.
|From data kindly provided by J.

1 10 - 100 1000 Schombert based on the work of

R/(h ~ kpe) Oemler (1976).)
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(ii) Size & Luminosity vs Surface Brightness (Kormendy) Relation

A couple of correlations suggest larger, more luminous galaxies have lower surface brightness

<1 > correlates with R : Kormendy Relation

_E:'-ES |||l_ D-DS
- (o's I

<1 > correlates with L
ol i F s 2P
tot e

- this follows from the above relation, givenL_=1/2L =pi<I > Rf

We conclude: larger and more luminous galaxies are fluffier with lower densities
An interpretation is not yet too clear, though galaxy formation models must explain it.
One inference: low-luminosity ellipticals formed with more gaseous dissipation than giant ellipticals.
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(b) The 3-Parameter Fundamental Plane

The above 2-parameter correlations have considerable real scatter
Furthermore, the residuals in one plot correlate with those in another.
This suggests we look for a tighter correlation among three parameters:

- A tilted plane of points in 3-D volume, which
= Projects onto 2-D planes as the (looser) correlations seen above
= One example is: LogR =alogos+bLlogl +c

log r,/pc
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Figure 2 Projections of the fundamental parameter plane of elliptical galaxies. Top panels:



(iv) The Physical Basis of the Fundamental Plane

The following gives some insight into the origin of the F-P relation :
Consider:

<> = YL /n R: (just a definition)
‘MR = c t:f; (virial equilibrium, KE = PE; ¢ = "structure parameter" containing all details)

e
Taken together, these give:
'R = (ML)’ o7 <1 > orequivalently,

+LogR = Log[(c/2n) ML)l + 2Log o - Log<l> or
»LogR = Log [(c2r) ML) + 2 Log o+ 04 <p, > (SiﬂCE{}GE} =2 Logt:le:v)

So, if ¢ and M/L are constants, then we expect
+LogR = 2Logs, + 04<p > + Log[(c/2r) (M/L)"]

Which is close to, but not quite, the F-P relation:
»LogR = 14Logo + 036<pu > + const

To bring these into agreement, we require:
. 2rfc) ML) o« M¥ o« LY



Color-Magnitude Relation

Abell 2218 Abell 2218

Colors and magnitude for galaxies in the field of Abell 2218. Many fain background galaxies are included,
but the primary early-type color-magnitude strip is clearly visible.



Metallicity vs Velocity Dispersion
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Relationship between Mg, and o, for ellipticals (squares), SO bulges (crosses), dwarf
ellipticals (diamonds and small squares), special objects (open squares).
(Bender, IAU Symp 149)

Mg2 metallicity index increases in Ellipticals (and SO bulges) of higher velocity dispersion.



Remnants of simulations of the merger of
two equal mass galaxies

: p—

2 ight) s ' A, projected onio the orbital plane, at times 3, 4.5, and 6. The
Fig. 11,—Large-scale (left) and small-scale (right) structure of the merger remnant in encounter A, )
boxes, enlarged by a factor of 10 from their unframed counterparts, are 0.8 x 0.8 length units, Again, only 50% of the bulge particles are plotted.



= 25-50% 50-75%

Fic. 15.—Luminous particles from the remnant produced by encounter A at time t = 6, binned by their specific binding energy. On the left is the 0%-25% bin,
thinned by a factor of 4 to reduce crowding. In the middle is the 25%-50% bin, thinned by a factor of 2. On the right is the 50% 77" "~

mag L T ; "

4

Original
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Major mergers with gas

F1G. 14—Views of stars (left) and gas (right) in the merger remnant produced by encounter A at time t = 6. The stellar view is 0.8 x 0.8 length units, while
the view of the gas is enlarged by a factor of 20. Over 60% of all the gas in this remnant lies in this dense central blob.



Formation of elliptical galaxies in a
cosmological context
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Two-phase model
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