Analysis of Dark Matter Simulations
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“Friends-of-friends” algorithm for identifying halos at fixed over-
density compared to the mean inter-particle separation.



Navarro, Frenk & White 1996
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where r, = ryg0/c 1s a characteristic radius and p_,, =
3H%/8nG is the critical density (H is the current value of
Hubble's constant); 4, and ¢ are two dimensionless param-
eters. Note that r,,, determines the mass of the halo,
M 00 = 200p,,,(4n/3)r3 00, and that §, and c are linked by
the requirement that the mean density within r,,, should be
200 x p_;,- That s,
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The Density Profiles of
Dark Matter Halos Exhibit
a “Universal” form
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The same form fits for
different cosmological
parameters and power
spectra of initial density
perturbations.
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Less massive halos
are more
concentrated
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Fig. 8.— The characteristic density of all haloe in our series s o function of the redshift at which
half of the final mass is m collapsed progenitors more massive than 10 of the final ma==. Solid



Shapes of dark
matter halos
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One way of quantifying the shape of a halo 15 to go
one step beyond the spherical approximation and approx-
immate halos by ellipsoids. Ellipsoids are characterised by
three axes, a,b,c, with a > b > ¢, which are normally de-
scribed 1n terms of ratios, s = ¢/a, g = b/a, and p = ¢/b. El-
lipsoids can also be described in terms of three classes, which
have corresponding ratio ranges: prolate (sausage shaped)
ellipsoids have a > b =~ ¢ leading to axial ratios of s &~ g < p,
oblate (pancake shaped) ellipsoids have a ~ b > ¢ leading
to axial ratios of 5 &= p < g, and tnaxial ellipsoids are in be-
tween prolate and oblate with a > b > .
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s=c/a (ratio of the shortest-to-longest axes) decreases at high
halo masses and high redshifts
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Figure 11. (s) vs characteristic formation epoch for different
mass bins (mass quoted in units of 101h~! Mg). Only bins that
contain at least 10 halos are shown (square points). There is a
distinect trend of shape with a. for the lower mass bins. At higher
mass there is still a trend but it is uncertain how strong the trend
is due to the lower number statistics. Solid black line is a linear fit
to the points and dashed line is the 1o scatter about the points.
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Often ellipsoids are described in terms of their triaxiality 0 - T ]

(prolate, oblate, or triaxial). One way of expressing the tri- 3 T ]

axiality of an ellipsoid is by using the triaxiality parameter 3 : : T F | T
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An ellipsoid is considered oblate if 0 < T < 1/3, triarial with 0 02 04 06 08 1 02 04 08 08 1
1/3 < T < 2/3, and prolate if 2/3 < T < 1. : T

Figure B. Triaxiality of halos at z = 0 at R = 0.3H,;; (solid) and
Ryir (dashed). Beginning with the top left histogram and moving
right, then down, the triaxiality of halos is divided in to the same
mass bins as in Figure[7]



ANGULAR MOMENTUM OF HALOS AS
CHARACTERIZED BY SPIN

The spin parameter of a halo is a dimensionless quantity introduced

by Peebles (1969) that indicates the amount of ordered rotation
compared to the internal random motions. For a halo of mass M and

angular momentum J it is defined as
I E|Y?
e (3)

where the total energy £ =T + U with T the kinetic energy of the
halo after subtracting its bulk motion and U the potential energy

of the halo produced by its own mass distribution.




The specific angular momentum 7 and kinetic e r
of each halo containing N, particles are given by:

1
N = e i X 1y
N 2
1 e
T -
T = EMhZ;“U,_

where r;i is the position vector of particle i relative to the
halo centre, and v; is its velocity relative to the halo centre
of momentum.



The halo potential energy, U, is calculated using all halo
particles if My < 1000my, and is rescaled up from that of
1000 randomly-sampled particles otherwise. The potential is
that used in the simulation itself:

o i Nea—1 N,
o= () (22) 55 8w

i=1 j=i+1

where Ny is the number of selected particles (Nza1 < 1000),
77 is the softening length (see Table 1), ri; is the magnitude
of the separation vector between the ith and jth particles in
the halo, and the softening kernel (see Springel et al. 2001)
is:
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Sphericity and Triaxiality only Weakly
Dependent on Environment
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Figure 5. Median halo sphericity (lefi-hand panel) and triaxiality (right-hand panel) as a function of halo mass for haloes in filaments and clusters. The
behaviour for haloes in sheets is almost identical to that for filaments. The shaded area indicates the central 1o scatter in the whole sample, not split by
environment. The dark grey lines indicate the fits of Allgood et al. (2006) for § and Bett et al. (2006) for § and T, the black lines show our fits to haloes with
masses M < 2 x 102 4! M. Parameters are given in Section 4.2.



Substructure in Dark Matter Halos
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Early halos in simulations exhibited very little substructure
— this was known as the “overnerging problem”, because
bound , virialized systems of multiple galaxies do exist
(galaxy groups and clusters).



full box "' s

As computers became more
powerful, simulations of every
increasing particle number
could be carried out. The
higher resolution simulations
revealed a rich hierarchy of
substructure in dark matter
halos.

Aquarius simulations
contains six examples of an
isolated halo similar in mass
to that of the Milky Way.
These are simulated in their
full cosmological context
(assuming the concordance
LCDM cosmology) and at
various resolutions up to
about 200 million particles
(counted within the radius
where the enclosed density is
200 times the cosmic mean).
One halo is also simulated at
even higher resolution,
resulting in almost 1.5 billion
particles within this radius.




In the highest
resolution
simulation, one
even finds
“substructures
within

substructures”




1000

Sub-halo identification
algorithms, eqg.
SUBFIND (Springel et
al 2001) employ a
variable link-
length/density
threshold to identify
local density maxima
on top of the global
one.
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function is a power
law with slope -1.9
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Density profiles of subhalos
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Figure 9. Example for a typical mass accretion history for a sub-
halo of mass 2 x 1011 h—1M, (lower panel), and the corresponding
variation of mass for the parent halo in which the subhalo resides
(top panel). The vertical solid line corresponds to the last time the
subhalo is outside the main progenitor of the cluster; the dotted
line corresponds to the time the subhalo becomes a substructure
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Merger histories of dark matter halos




Lacey & Cole 1993: Derive approximate merger histories
analytically by starting with the linear density field of fluctuations
and allowing the smoothing scale is changed.

4, w

W S

Figure 1. A trajectory 4(5), and the corresponding halo merger
history. The solid line shows the trajectory for the overdensity & as
the smoothing scale is varied. The dotted line shows the trajectory
for the halo mass, represented by a function S{w). Where o is
increasing with §, the dotted line coincides with the solid line.

We wish to determine the merger probability per unit
time for a halo of given mass M at time ¢. Let us therefore
consider the subset of trajectories, depicted in Fig. 2,
which make their first upcrossing of a barrier of height w, at
S, and then continue until they eventually cross a second
barrier of height w,> w, at various values §,>S,. These
trajectories represent haloes which at the time corresponding
to @, have masses corresponding to §,, and which by the
later time corresponding to w, have merged to form a halo
of mass corresponding to S,. The conditional probability
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Halo mass dependence of the merging rate
IS very weak.
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We find the best-fitting parameters to be («, 8. ¥, n) = (0.133,
—1.995, 0.263, 0.0993) and (A.£) = (0.0104,9.72 x 107). The
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Mass growth of the largest progenitor as a function of z
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# of Mergers between zp and z
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Observational Tests: Satellites of the Milky Way
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The NFW profile can be turned into a velocity profile using
V= (GM(r)/r2)1/2

Ve(r)\? _ 1In(1 + ex) — (ex)/(1 + cx)
(Van)

Mo z In(l+e)—c/(l+c)

Where x=r/roog is the radius in units of the virial radius. Circular
velocities rise near the center, reach a maximum (Vmax) at Xmax ~ 2/c,

and decline near the virial radius. More centrally concentrated halos
are characterized by higher values of Vmax/V200.

0sf

02

Log V.V,

0.2

-0.4 ,’/




We use the Aquarius simulations to show that the most massive subhaloes in galaxy-mass dark
matter (DM) haloes in A cold dark matter ( ACDM) are grossly inconsistent with the dynamics
of the brightest Milky Way dwarf spheroidal galaxies. While the best-fitting hosts of the dwarf
spheroidals all have 12 = V.. < 25kms™ | ACDM simulations predict at least 10 subhaloes

with Vo > 25kms . These subhaloes are also among the most massive at earlier times,
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Same
problem for
M31
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UGC 7558
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We conclude that, although the cores of dwarf galaxies
pose a significant problem for CDM, the problem is not as
bad as previously thought. Perturbations to the central
regions of dwarf galaxy halos, resulting perhaps from the

sudden loss of a large fraction of the baryonic material after
a vigorous bout of star formation (Dekel & Silk 1986), can
in principle reconcile the observations of dwarfs with the
structure of CDM halos (Navarro, Eke, & Frenk 1995a).
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Figure 8. Simulations of impulsive blow-out from a Vg, =35 kms~! halo.

The initial halo profile is plotted as a solid line; the dashed and dotted curves
correspond to the final, relaxed profile after gas blow-out of 2.2 » 107 and

1.1 = 108 M, respectively. Measured values of Vi for the bnght dSphs
are plotted as the squares, sized proportional to log Ly, with error bars. We
emphasize that the two data points closest to the halo line post-blowout are
among the least luminous dwarfs we consider [Draco and Ursa Minor, with
Ly =~ (2—4) % 10°]. Matchi ng their densities via impulsive feedback would
then require ejecting ~ 100 times as much mass as is present in stars today
in these systems.

But can this work
In practice?
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