Most recent CMB map from the
Planck satellite




THEORY OF THE GROWTH OF PERTURBATIONS

The theory of how the
tiny (1/100,000) density
fluctuations that we see
imprinted on the CMB
radiation at z=1300-1100
grow to become the
galaxies we see today.




DEFINE DENSITY FLUCTUATION FIELD o:

o= (p - <p>)/ <p>




Fourier analysis of density fluctuations:

It is often convenient to consider building up a general field by the
superposition of many modes. The natural tool for achieving this is via
Fourier analysis. In three dimensions, the forward and inverse Fourier

transforms of a field F are:

5(x)=V/ (3;):3 (k) ek

5(k) = % | &z 8(x) ™™

Primordial density perturbations will subsequently be modified by a variety of
physical processes: growth under self-gravitation, the effect of pressure, and
dissipative processes. The effect is summarized in the transfer function:

- 5k (2’ — 0) D(z) is the growth factor between redshift z and
W) (Z)D(Z) present




The Gaussian nature of the primordial density field is preserved in its
linear evolution stage, but this is not the case in the nonlinear stage. In
the real density field, dj cannot be less than —1. This assumption does

not make any practical difference as long as the fluctuations are small,

but it is invalid in the nonlinear regime where the typical amplitude of
the fluctuations exceeds unity.

a a? in the radiation dominated era
= in the matter dominated era

g ] f/ t; in the radiation dominated era
o (t / ti)gf 3 in the matter dominated era




Evolution of density perturbations into the non-
linear (dp/p > 1) regime

Two approaches: APPROXIMATE METHODS and NUMERICAL
SIMULATIONS

1. SPHERICAL COLLAPSE

The galaxy cluster Abell 1989 seen in optical
light and in X-rays



Consider the idealised case
of a spherical volume where
the density is infinitesimally
higher than the cosmic mean.

Our density perturbation will then evolve like a closed universe
with Qm = 1 +0 . The scale factor a(t) of such a universe reaches a

maximum value amax and then decreases again—in other words,
our perturbation will grow to a maximum size r=rmax at time t=tmax
and then collapse.



The Friedman equation for a closed Universe:
1 da

~ % = Hy (moa™® + (1~ Qmg)a™)

has a parametric solution in terms of a development angle ©:
6 = Hon (Qmo — 1)

1/2

sothat  r(f) = A(1 — cosf)

and  ¢(9) = B(6 — sin )

Qm,,[] . B = 1 Qm?[]
2(Qmo — 1)’ ~ Hp 2(Qmpo — 1)3/2

with A= T0

the development angle 0 is a scaled form of the ‘conformal time’
(the time travelled by a photon since the Big Bang)



The maximum size which the perturbation will grow is given by

dr _

55— Asinf =0
Which is satisfied at 6= 0, 1m and 21T. 6=1T corresponds to the time
of turn-around when the over-density reaches its maximum size

before collapsing. At this time t=tmax, we have

Qm 0
P — 2. — 0 "
max 0 Qmjl] _ 5
and, more generally
1
?“]:;x = 5(1 — cos 0)

m,0

T
bmax =1 — B: H bmax = =
(m)=m 0 U — 1)3/2

and

t 1
— = —(f — sin )

max n



The constants A and B are related through the enclosed mass

A ATt o 3H?

;M = ?Tgﬁm?ﬂpcrit — ?T[}erﬂgﬁg

by the simple relation AS=GMB?2

In the linear regime, we can follow the growth of the perturbation
by using the McLaurin expansions for cos®@ and sin0 , to yield

1 1
lim r(0) = A (—92 - —94)
f—0 2 24

1 1
lim () = B (—93 - —95)

The leading order, r = AB%/2 and t = B63/6, just gives the
expansion of the background (i.e. outside the volume including
the over-density) universe where

A [(6t\2/3
r=aq=— |—
2 (B)



Our over-density grows according to the equations:

r 02 B4

o

t 1 (63 6°
Poax 4 487 tmax T \L6 120

which can be combined to give the linearized scale factor of our
closed Universe:

| 2/3 T 2/37
SO t 1 t
S (67?—) E— (Gﬂ—t )

iz A

Again, the first term is just the expansion of the background
in a flat matter dominated universe. Including both terms in

the square brackets gives the linear theory expression for the
growth of a perturbation.



Our over-density grows according to the equations:

r 02 B4

o

t 1 (63 6°
Poax 4 487 tmax T \L6 120

which can be combined to give the linearized scale factor of our
closed Universe:

| 2/3 T 2/37
SO t 1 t
S (67?—) E— (Gﬂ—t )

iz A

Again, the first term is just the expansion of the background
in a flat matter dominated universe. Including both terms in

the square brackets gives the linear theory expression for the
growth of a perturbation.



Throughout the evolution of the perturbation, the following relation holds:

3
Uback

3 C‘7“linl — ( = )
(llin

Substituting this into the previous equation where apack is given by the

leading order term, and with the substitution (1 +0)~"3 ~ 1 = 1/3 8 valid
for 0<< 1, we have:

. 3 t \2/3
0]111 — (G’FT )
20 max

At t=t__, (turnaround) o;,=1.06
The density contrast at turnaround is:

back = 1 t 21/33 G )2
1 4 gturn :(ab ']‘) — [ (Gﬂ* ) ] I CL R

nonlin A
Amax max

Att=2t__ (collapse) o,,= 1.686



After turnaround, the evolution of the over-density mirrors the expansion
phase until the object collapses at t = 2tmax. At this time the linear

density contrast has become

| collapse of a spherically
o L . symmetric perturbation.
00 Y emis % Y This value of dc~ 1.7 is used in
—3 analytical treatments of the
growth of structure in the
universe, such as the Press-
Schechter formalism.
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Virialization

A real density perturbation is neither spherical nor homogeneous.
Thus, the collapse does not proceed to a point of infinite density,
but reaches virial equilibrium at a radius ryjr = 1/2 rmax.

This can be appreciated by considering the virial theorem

(see lecture 1) Uyir = —2Tvir, where U and T represent the potential
and kinetic energies respectively. At turnaround, the kinetic energy
of the collapsing sphere is zero. From conservation of energy, we
have: Urmax + Trmax = Uvir + Tvir.

Thus, Urmax = Uvir — 1/2Uyir = 1/2Uyr. Since the gravitational

energy of a mass M within a spherical volume of radius R is U ~
1/R, it follows that Riyrn = 2Rvir.

By this time, the density within our volume has increased by a
factor of 23, while that of the background universe has decreased
by a factor of 2% since p~ a3 and a ~ t%3 in a matter-dominated

universe. Thus, at virialization, the overdensity within our volume
has grown from 5.5 to 178.



Optical(left) and X-ray(right) images
of the Coma Cluster




In terms of the initial co-moving radius rj com, we have:

1 1
3 _ 3
Tyir = 178 (1 & Evir)g Tl?cﬂm

The virial theorem for bound objects tells us: v¢= GM/rg

where M is the mass of the system and rg is the radius within
which the gravitational energy is U = =GM?/rg. The mass within

r is 4/31rr3

I,com i,com pm,O

Combining the above equations, we find that the velocity
dispersion and the mass of a collapsed object are related by:

(2 2 M 2/3
(127 km 5—1) - (1012 th@) (1 + Zﬁr)




This means that perturbations which collapse at earlier times have higher
velocity dispersions for the same enclosed mass ---Higher over-densities
turn around and collapse at the earlier times, when the background

universe was smaller and denser, and when virialized have proportionally
higher velocity dispersions.

Finally, if the matter within the volume is in hydrostatic equilibrium,we

can associate a temperature to the velocity dispersion, T ~ v and
hence obtain the scaling:

A f’ﬁmw

TkeV  \10B5h-1M,

Gas at such high temperatures gives rise to X-ray emission through
thermal bremsstrahlung radiation (to be explained later)



Press-Schechter model for the statistics of collapsed, virialized
halos in the Universe
According to linear theory, the density field evolves as (7. 1) = D(t) do(T)

Here (1) is the density field linearly extrapolated to t = ¢;, and D(t) is the linear
growth rate normalized to unity at t = ¢,

§ hale hale hale
lin

| |

According to the spherical collapse model, regions with d(x,t)>0c=1.686
will have collapsed to produce dark matter halos by time t.




If the density field is Gaussian, the probability that a given point lies in a
region with 0>0¢ is:

Mﬁlﬂr(ﬂ} /5 exp (—6°/20%(R)) ds,

where o(R) is the rms of the density field o on scale R. The
PS argument assumes that the only objects that exist at a given epoch are
those that have only just reached the d = d¢ collapse threshold; if a point

has &> d¢ for a given R, then it will have 8= d¢ when filtered on some

larger scale and will be counted as an object of the larger scale. The
problem with this argument is that half the mass remains unaccounted for:
PS therefore simply multiplying the probability by a factor 2.

The fraction of the universe condensed into objects with mass > M can
then be written in the universal form

F(> M) = \E /H m exp(—v?/2) dv.

where v = 0c/a(M) is the threshold in units of the rms density fluctuation

andM is the mass contained in a sphere of co-moving radius R in a
homogeneous universe.

p(0 >0 | R) =




The probability of a point in space forming as mass between M and
M + dM is dF/dM. We can write this result in terms of the
dlneo

multiplicity functior M2 (M) IF 5 2
d In M \/;"" Thls (_?)

oo dlnM
which is the fraction of the mass carried by objects in a unit range of
InM. z = 0,1,2,3,4,5
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Comparison with N-body simulations
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N-body
simulations of
gravitational
clustering are the
tool of choice for
studying the
detailed structure

and dynamics of
the dark matter
far into the non-
linear regime.




Cosmological simulations incorporate a range of physics: in this
lecture, we will focus on the most basic, gravity, which is required to
describe the evolution of the dark matter component. Future lecture
will consider the physics applicable to the baryons.

These computations are nearly always performed using co-moving
spatial coordinates and periodic boundary conditions so that a finite,
expanding volume is embedded in an appropriately perturbed
background space-time.

L + Ax = AX
L+ Ay = Ay




Dark matter is represented in cosmological simulations by particles
sampling the phase space distribution. Particles are evolved forward in time
using Newton’s laws written in co-moving coordinates (Peebles 1980):

dx s dv R = 5
_:_Uﬂ __I_HUZS: v‘gz_‘:"JrGﬂ[ﬂ(I:f}_ﬁ'{r)]-
drt a dt

—_—

v is the peculiar velocity. v — 3/3x is the gradient in co-moving
coordinates.

The time integration of particle trajectories is generally performed using a
second-order accurate leapfrog integration scheme requiring only one
force evaluation per timestep. In leapfrog integration, the equations for

updating position and velocitv are:
T =T+ V12 At

; — F{I;‘)

Vit1/2 = Vi—1jo + a; AL,

where Xj is position at step i, vi+1/2, is the velocity, or first derivative of x, at
step i+1/2 , aj=F(Xxj) is the acceleration, or second derivative of x, at step i
and At is the size of each time step.



There are two primary strengths to Leapfrog integration over other
methods, e.g. Runge-Kutta. The first is the time-reversibility: one can
integrate forward n steps, and then reverse the direction of integration and
iIntegrate backwards n steps to arrive at the same starting position. The
second strength is its symplectic nature, which implies that it conserves
the (slightly modified) energy of dynamical systems.

The art of N-body simulation lies chiefly in the computational
algorithm used to obtain the gravitational force. Evaluating the forces
by direct summation over all particle pairs is prohibitive. A variety of
approximate methods are therefore employed:

1. Barnes-Hut Tree Algorithm: divides space recursively into a hierarchy of
cells, each containing one or more particles. If a cell of size s and distance d
(from the point where g is to be computed) satisfies s/d < 6 , the particles in
this cell are treated as one pseudosparticle located at the center of mass of
the cell. Computation is saved by replacing the set of particles by a low-order
multipole expansion due to the distribution of mass in the cell.

Advantages: compute time scales as NlogN instead of N2. Code public,
spatially adaptive.

Dis-advantages: high memory requirements, does not provide periodic
boundary conditions in its simplest form.



Tree algorithms approximate the force on a point with a
multipole expansion

HIERARCHICAL TREE ALGORITHMS - °
] ® o @
o o ®
o @ -
Idea: Group distant particles together, Sl = hd
and use their multipole expansion.
-] ° L

—* (Only ~ log(N) force terms per particle. .

W N




2. Particle-Mesh Algorithm. The particle-mesh (PM) method is based

on representing the gravitational potential on a Cartesian grid (with a total of
Ng grid points), used in solving Poisson’s equation on this grid. The
development of the Fast Fourier Transform (FFT) algorithm (Cooley & Tukey
1965) made possible a fast Poisson solver requiring O(Ng log Ng) operations.
The algorithm consists of 3 steps:

1) Mass assignment: p(x,t) is computed on the grid from discrete particle
positions and masses. The most commonly used assignment scheme is
Cloud-in-Cell (CIC), which uses multilinear interpolation to the eight grid
points defining the cubical mesh cell containing the particle. This procedure
effectively treats each particle as a uniform-density cubical cloud.

2) Calculation of the gravitational potential: The heart of the PM algorithm is
the Fourier space solution of the Poisson equation for the gravitational
potential.

pk, 1)
K2

bk, 1) = —4n Ga®

@ and « are the discrete Fourier transforms of the mass density and potential,
yspectively. The gravity field is then obtained by transforming the potential
back to the spatial domain and approximating the gradient by finite differences.
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3) Interpolate the gravity from the grid back to the particles. The same
interpolation scheme should be used here as in the first step (mass
assignment) to ensure that self-forces on particles vanish.

PM method advantage: Speed, requires O(N) + O(Ng log Ng) operations.
PM method disadvantage: The forces approximate the inverse square law
poorly for pair separations less than several grid spacings. Each particle

has an effective diameter of about two grid spacings and a non-spherical
shape.

For high-resolution studies of galaxy dynamics, the tree code is generally
considered much superior



Particle-Particle PM schemes (P°M)

Idea: Supplement the PM force with a direct summation short-range force at the
scale of the mesh cells. The particles in cells are linked together by a chaining list.

Offers much higher dynamic range, but becomes slow when clustering sets in.

In AP®M, mesh-refinements are placed on clustered regions

Can avoid clustering slow-down,

|E but has higher complexity and
ambiguities in mesh placement




Several groups have developed codes that automatically refine the
spatial resolution where needed during the computation by using
higher resolution meshes (adaptive mesh refinement).




Setting up the Initial Conditions

Initial conditions for simulations of structure formation consist of
specifying the background cosmological model and the perturbations
imposed on this background. Gaussian fluctuations are simple, as
they are specified fully by one function, the power spectrum P(k). In
real space, the joint probability distribution of density fluctuations at
N points is a multidimensional Gaussian. Because the covariance
matrix of this Gaussian becomes diagonal in Fourier space, it is in
principle easy to sample a Gaussian random field by sampling its
Fourier components on a Cartesian lattice (Peacock & Heavens
1985, Bardeen et al 19806).

The standard approach for the dark matter is to displace equal-
mass particles from a uniform Cartesian lattice using the Zel'dovich
(1970) approximation, which describes the evolution of the density
field in an approximate way. The advantage of the Zeldovich
approximation is that it normally breaks down later than standard
linear theory.



The Zel'dovich Approximation

Another approximate approach to the formation of structure. In this
method, we work out the initial displacement of particles and assume
that they continue to move in this initial direction. If the initial
(Lagrangian) coordinates are called q, the Eulerian coordinates are

given by
r(q,t)= a(t) [q+b(t)s(q)]

a(t) is the Hubble expansion. The second term is a “perturbation”
term, b(t) can be thought of as the growing rate of linear fluctuations,
And s(q) is a “velocity term”, which is related to the potential
originated by the density fluctuations ®p(q) as

g(q) = V&,(q).

Mass conservation requires p(r,t)dr = pg dqg, so that the density field
As a function of Lagrangian coordinates is:

i

8ij — b(t) gg-

o .. P
F':qlt} o Pﬂ aq‘




Or;/dq; describes the gravitational evolution of the density
field and is called the deformation tensor.

The deformation tensor is a symmetric tensor characterized by its
three eigenvalues after diagonalization, so we can write:

_ p
ALY = F 50 eIl = 50) F@I L = 00 7]
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B Material Point
@& Grid Node

If the eigenvalues are ordered in such a way that a(q)>B(q)>y(q),
then, as b(t) grows, the first singularity occurs in correspondence of
the Lagrangian coordinate g1 where a attains its maximum positive
value amayx, at the time t1 such that b(t1) = amax-1. This

corresponds to the formation of a pancake (sheet-like structure) by
contraction along one of the principal axes.



The initial conditions are set up in Fourier Space.
Reason: this is convenient for Gaussian random fields.

If & is a (Gaussian random field with average 0, its probability distribution is given by:

v DetC ™!
(27r)n/2

exp [—é&Tc—lﬁJ

Pﬂ(tﬁlﬁ Sy ﬂﬂ) =
-' Cij = (555;;>- Multi-variate Gaussian
1. A Gaussian random field in Fourier space is still Gaussian

o ] |01 |2 X
P& > X X O ld |0y | =
(6> 20 = [ 2y [~ g | o = e | T

2. Phases of the Fourier modes are random



Using the Zeldovich approximation, density fluctuations are
converted to displacements of the unperturbed particle load

SETTING INITIAL DISPLACEMENTS AND VELOCITIES

Particle displacements: d;(1) =x;(1) — q;
Density chinge p{x] _ Po _ Po For sm;I:II displacements:
due to displacements: g—fl i + %" O;; + ﬁ‘ ~1+Vg-d
x —
Resulting density o(x) = P(x) = Po =-Vyd
contrast: P
During linear growth: 8(r) = D(#)3o i=d= &E dp = QEE.]
dit) = D(t)dy da a > da

dinD Note: Particles move on
Particle velocities: x=Hla)f(Q)d f(Q)= —=Q"° straight lines in the

dina Zeldovich approximation.
Displacement field: V=35 d=—-Vb

1 'k kO ]
Fourier realization: Ok = T2 dy = —ikpy = ;c_: dy =-Vp = E k_zﬂxpika}
k



— . (1) =D(1)dy gl & 4P i a dD
During linear growth: - i k=d=d—dy= e
d”' = ﬂl:f}dq] da a D) da
The linear theory power spectrum can be computed accurately
THE APPROXIMATE SHAPE OF THE LINEAR POWER SPECTRUM
Standard LCDM: n = 1.0
I = 0.21
k" . 4 h~'"Mpc
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To determine the power spectrum amplitude, we normalize the
spectrum to observations of clustering (usually galaxy clusters)

FILTERED DENSITY FIELD AND THE NORMALIZATION OF THE POWER SPECTRUM

0 q 2
The filtered density field: gz(ﬂ.{ G = DQ( z) /U % L2 P(k) [3-” lk .(;R)]
Observational input: o8 = 0.71 — (0.9 R = 8h—11\,-1pc

Extrapolate back to the starting redshift with the growth factor D(z)
This depends on cosmology.

» fluctuation spectrum of initial conditions fully specified.



When particles are distributed initially on a lattice, the small-scale
periodicity of the lattice persists visibly until virialization occurs, i.e. until
particles fall into and orbit in gravitationally bound objects. To avoid this
artificial pattern, before applying displacements, particles can be arranged
in a random “glass” state with very small gravitational forces. A gravitational
glass is made by advancing particles from random positions using the
opposite sign of gravity until they “freeze” in co-moving coordinates (Baugh
et al 1995, White 1996).
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1.0 LI — LA 1 T T 1T | L 1.0 T % LI B — 1 & T 1 T T 1
llllllllllllll T e . ” - - -
DEF = & = & = ® = & & ® = & = = — ngle '..1.'1 .-."'_
| ] . g W % f 5 0. .« & " L
!!!!!!!!!!!!!!
iiiiiiiiiiiiii
4 " "
DB &# ® & &% &% & & & &% & ® & & # nEé "
L]
iiiiiiiiiii /
iiiiiiiiiiiii &
Ddp= # & & & & & & & & & ® & @& @ l:ld..
---------------- .-
-------- t L ]
j &= ® = & ® * = & & F *® = & = E . '] : B &
D2} % ® @ & & ® ® @ @« & & @& @& & — (i ] 5 W A R s W e
- ¥ . L]
llllllllllllllll
f ® & & &4 ® & & & & ® @ & & ® K
0.0 P IPTE I P | W ST (e A A TR e 0.0 [T | -....lll | = a 1% , |-I-.1 L




One usually assigns random amplitudes and phases for individual

modes in Fourier space
GENERATING THE FLUCTUATIONS IN K-SPACE

Simulation box

sampled with
N2 points

L

O = By exp’

Pk

For each mode, draw a random
phase, and an amplitude from a
Rayleigh distribution.

(62) = P(k)
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LIMITATIONS OF N-BODY SIMULATIONS

In purely gravitational N-body simulations of structure formation,
the numerical issues include dynamic range, force accuracy, and
time integration accuracy. Of these, dynamic range is the most
difficult to deal with:

Three distinct kinds of dynamic range are needed for a faithful
simulation: mass resolution (number of particles), initial power
spectrum sampling (range of wavenumbers present in the initial
conditions), and spatial resolution (force-softening length
compared with box size). The era of parallelization of codes and
ever-increasing supercomputer power have allowed enormous
advances over what was possible in the 1980's and 1990's. This
will be described in the next lecture.



Cosmological N-body simulations have grown rapidly in size over the
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