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THEORY OF THE GROWTH OF PERTURBATIONS

The theory of how the 
tiny (1/100,000) density 
fluctuations that we see 
imprinted on the CMB 
radiation at z=1300-1100
 grow to become the 
galaxies we see today.



  

DEFINE DENSITY FLUCTUATION FIELD  δ:

                              δ= (ρ - <ρ>)/ <ρ>



  

                Fourier analysis of density fluctuations:
It is often convenient to consider building up a general field by the 
superposition of many modes. The natural tool for achieving this is via 
Fourier analysis. In three dimensions, the forward and inverse Fourier 
transforms of a  field F are:

Primordial density perturbations will subsequently be modified by a variety of 
physical processes: growth under self-gravitation, the effect of pressure, and 
dissipative processes. The effect is summarized  in the transfer function:

D(z) is the growth factor between redshift z and 
present
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The Gaussian nature of the primordial density field is preserved in its 
linear evolution stage, but this is not the case in the nonlinear stage. In 
the real density field, δi cannot be less than −1. This assumption does 
not make any practical difference as long as the fluctuations are  small, 
but it is invalid in the nonlinear regime where the typical amplitude of 
the fluctuations exceeds unity. 



  

 Evolution of density perturbations into the non-
linear (δρ/ρ > 1) regime

Two approaches: APPROXIMATE METHODS and NUMERICAL 
SIMULATIONS

1. SPHERICAL COLLAPSE

The galaxy cluster Abell 1989 seen in optical 
light and in X-rays



  

Consider the idealised case 
of a spherical volume where 
the density is infinitesimally 
higher than the cosmic mean.

Our density perturbation will then evolve like a closed universe
with Ωm = 1 +δ . The scale factor a(t) of such a universe reaches a 
maximum value amax and then decreases again—in other words, 
our perturbation will grow to a maximum size r=rmax at time t=tmax 
and then collapse.



  

The Friedman equation for a closed Universe:

has a parametric solution in terms of a development angle θ:

           so that

and

   with

the development angle θ is a scaled form of the ‘conformal time’
(the time travelled by a photon since the Big Bang)



  

The maximum size which the perturbation will grow is given by

 Which is satisfied at θ= 0, π and 2π. θ=π corresponds to the time 
of turn-around when the over-density reaches its maximum size 
before collapsing. At this time t=tmax, we have

and, more generally



  

The constants A and B are related through the enclosed mass

by the simple relation A3=GMB2

In the linear regime, we can follow the growth of the perturbation
by using the McLaurin expansions for cosθ  and sinθ , to yield

The leading order, r = Aθ2/2 and t = Bθ3/6, just gives the 
expansion of the background (i.e. outside the volume including 
the over-density) universe where



  

Our over-density grows according to the equations:

which can be combined to give the linearized scale factor of our
closed Universe:

Again, the first term is just the expansion of the background 
in a flat matter dominated universe. Including both terms in 
the square brackets gives the linear theory expression for the 
growth of a perturbation.



  

After turnaround, the evolution of the over-density mirrors the expansion 
phase until the object collapses at t = 2tmax. At this time the linear 
density contrast has become

Thus, a linear density contrast 
δC ~1.7 corresponds to the 
epoch of complete gravitational 
collapse of a spherically 
symmetric perturbation.
This value of  δc~ 1.7 is used in 
analytical treatments of the 
growth of structure in the 
universe, such as the Press-
Schechter formalism.



  

Variation in the linearly 
extrapolated  critical density 
for collapse and the non-linear 
overdensity at virialization 
between flat models with and 
without a cosmological 
constant.



  

      Virialization
A real density perturbation is neither spherical nor homogeneous.
Thus, the collapse does not proceed to a point of infinite density,
but reaches virial equilibrium at a radius rvir = 1/2 rmax.

This can be appreciated by considering the virial theorem 
 Uvir = −2Tvir, where  U and T represent the potential and kinetic 
energies respectively. At turnaround, the kinetic energy of the 
collapsing sphere is zero. From conservation of energy, we have:  
Urmax + Trmax = Uvir + Tvir. 
Thus, Urmax = Uvir − 1/2Uvir = 1/2Uvir. Since the gravitational 
energy of a mass M within a spherical volume of radius R is U ~ 
1/R, it follows that Rturn = 2Rvir.

By this time, the density within our volume has increased by a 
factor of 23, while that of the background universe has decreased 
by a factor of 22, since ρ~ a−3 and a ~ t2/3 in a matter-dominated 
universe. Thus, at virialization, the overdensity within our volume 
has grown from 5.5 to 178. 



  

Optical(left) and X-ray(right) images 
of the Coma Cluster



  

        Press-Schechter model for the statistics of collapsed, virialized 
 halos in the Universe

According to the spherical collapse model, regions with δ(x,t)>δc=1.686 
will have collapsed to produce dark matter halos by time t.



  

If the density field is Gaussian, the probability that a given point lies in a 
region with δ>δc is:

where σ(R) is the rms of the density field δ on scale R. The
PS argument assumes that the only objects that exist at a given epoch are 
those that have only just reached the δ = δc collapse threshold; if a point 
has δ> δc for a given R, then it will have δ= δc when filtered on some 
larger scale and will be counted as an object of the larger scale. The 
problem with this argument is that half the mass remains unaccounted for: 
PS therefore simply multiplying the probability by a factor 2.
The fraction of the universe condensed into objects with mass > M can 
then be written in the universal form

where νc = δc/σ(M) is the threshold in units of the rms density fluctuation 
andM is the mass contained in a sphere of co-moving radius R in a 
homogeneous universe.



  

 The probability of a point in space forming as mass between M and 
M + dM is dF/dM. We can write this result in terms of the 
multiplicity function, M2f(M)/ρ0 :

which is the fraction of the mass carried by objects in a unit range of 
lnM.



  

 Comparison with N-body simulations



  

N-body 
simulations of 
gravitational 
clustering are the 
tool of choice for 
studying the 
detailed structure 
and dynamics of 
the dark matter 
far into the non-
linear regime.



  

   Cosmological simulations incorporate a range of physics: in this 
lecture, we will focus on the most basic, gravity, which is required to 
describe the evolution of the dark matter component. Future lecture 
will consider the physics applicable to the baryons.

 These computations are nearly always performed using co-moving 
spatial coordinates and periodic boundary conditions so that a finite, 
expanding volume is embedded in an appropriately perturbed 
background space-time.
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L + Δx = Δx
L+  Δy = Δy



  

 Dark matter is represented in cosmological simulations by particles 
sampling the phase space distribution. Particles are evolved forward in time 
using Newton’s laws written in co-moving coordinates (Peebles 1980):

 is the peculiar velocity. is the gradient in co-moving
 coordinates.

 The time integration of particle trajectories is generally performed using a 
second-order accurate leapfrog integration scheme requiring only one 
force evaluation per timestep. In leapfrog integration, the equations for 
updating position and velocity are:

where xi is position at step i, vi+1/2, is the velocity, or first derivative of x, at 
step i+1/2 , ai=F(xi) is the acceleration, or second derivative of x, at step i 
and Δt is the size of each time step. 



  

 The art of N-body simulation lies chiefly in the computational algorithm 
used to obtain the gravitational force.  Evaluating the forces by direct 
summation over all particle pairs is prohibitive. A variety of approximate 
methods are therefore employed:

1. Barnes-Hut Tree Algorithm:  divides space recursively into a hierarchy of 
cells, each containing one or more particles. If a cell of size s  and distance d  
(from the point where g  is to be computed) satisfies s/d < θ , the particles in 
this cell are treated as one pseudo-particle located at the center of mass of 
the cell. Computation is saved by replacing the set of particles by a low-order 
multipole expansion due to the distribution of mass in the cell.

Advantages: compute time scales as NlogN instead of N2. Code public, 
spatially adaptive. 
Dis-advantages: high memory requirements, does not provide periodic 
boundary conditions in its simplest form.



  



  

 2. Particle-Mesh Algorithm.  The particle-mesh (PM) method is based
on representing the gravitational potential on a Cartesian grid . The 
development of the Fast Fourier Transform (FFT) algorithm (Cooley & Tukey 
1965) made possible a fast Poisson solver requiring O(Ng log Ng)  operations.

 The algorithm consists of 3 steps:
1) Mass assignment: ρ(x,t)  is computed on the grid from discrete particle 
positions and masses.  The most commonly used assignment scheme is 
Cloud-in-Cell (CIC), which uses multilinear interpolation to the eight grid 
points defining the cubical mesh cell containing the particle.  This procedure 
effectively treats each particle as a uniform-density cubical cloud.
2) Calculation of the gravitational potential:  The heart of the PM algorithm is 
the Fourier space solution of the Poisson equation for the gravitational 
potential.

   ρ and φ are the discrete Fourier transforms of the mass density and potential, 
respectively. The gravity field is then obtained by transforming the potential 
back to the spatial domain and approximating the gradient by finite differences.

^ ^



  



  

3) Interpolate the gravity from the grid back to the particles. The same 
interpolation scheme should be used here as in the first step (mass 
assignment) to ensure that self-forces on particles vanish.

PM method advantage: Speed,  requires O(N) + O(Ng log Ng) operations.

PM method disadvantage:   The forces approximate the inverse square law 
poorly for pair separations less than several grid spacings. Each particle 
has an effective diameter of about two grid spacings and a non-spherical 
shape.

For high-resolution studies of galaxy dynamics, the tree code is generally 
considered much superior



  



  

    Several groups have developed codes that automatically refine the 
spatial resolution where needed during the computation by using 
higher resolution meshes (adaptive mesh refinement).



  

     Setting up the Initial Conditions

 Initial conditions for simulations of structure formation consist of 
specifying the background cosmological model and the perturbations 
imposed on this background.  Gaussian fluctuations are simple, as 
they are specified fully by one function, the power spectrum . 
  
 Because the covariance matrix of this Gaussian becomes diagonal 
in Fourier space, it is in principle easy to sample a Gaussian random 
field by sampling its Fourier components on a Cartesian lattice 
(Peacock & Heavens 1985, Bardeen et al 1986).

 The standard approach for the dark matter is to displace equal-
mass particles from a uniform Cartesian lattice using the Zel’dovich
(1970) approximation, which describes the evolution of the density 
field in an approximate way. The advantage of the Zeldovich 
approximation is that it normally breaks down later than standard 
linear theory.



  

                          The Zel'dovich Approximation

Another approximate approach to the formation of structure. In this method, 
we work out the initial displacement of particles and assume that they 
continue to move in this initial direction. If the initial (Lagrangian) 
coordinates are called q,  the Eulerian coordinates are given by

                                r(q,t)= a(t) [q+b(t)s(q)]

a(t) is the Hubble expansion. The second term is a “perturbation” term, b(t) 
can be thought of as the growing rate of linear fluctuations,
 And s(q) is a “velocity term” 
                                 
 



  

                          The Zel'dovich Approximation

And s(q) is a “velocity term”, which is related to the potential 
originated by the density fluctuations Φ0(q) as  
                                 
 

Mass conservation requires ρ(r,t)dr = ρ0 dq, so that the density field 
As a function of Lagrangian coordinates is:

describes the gravitational evolution of the density 
field and is called the deformation tensor.

The deformation tensor is a symmetric tensor characterized by its 
three eigenvalues after diagonalization, so we can write:



  

  

If the eigenvalues are ordered in such a way that α(q)>β(q)>γ(q), 
then, as b(t) grows, the first singularity occurs in correspondence of 
the Lagrangian coordinate q1 where α attains its maximum positive 
value αmax, at the time t1 such that b(t1) = αmax-1. This 
corresponds to the formation of a pancake (sheet-like structure) by 
contraction along one of the principal axes.



  

Other structures like filaments and knots come from simultaneous 
contractions along two and three axes, respectively. The 
approximation holds quite well for the first collapse, but breaks 
down at late times for power spectra with significant power on 
small scales (i.e. in the regime of hierarchical clustering).

N-body Zel'dovich



  

 The initial conditions are set up in Fourier Space.
Reason: this is convenient for Gaussian random fields.

1. A Gaussian random field in Fourier space is still  Gaussian

2. Phases of the Fourier modes are random

. 



  



  

 



  

When particles are distributed initially on a lattice, the small-scale 
periodicity of the lattice persists visibly until virialization occurs, i.e. until 
particles fall  into and orbit in gravitationally bound objects. To avoid this 
artificial pattern,  before applying displacements, particles can be arranged 
in a random “glass” state with very small gravitational forces. A gravitational 
glass is made by advancing particles from random positions using the 
opposite sign of gravity until they “freeze” in co-moving coordinates (Baugh 
et al 1995, White 1996).



  



  

           LIMITATIONS OF N-BODY SIMULATIONS

 In purely gravitational N-body simulations of structure formation, 
the numerical issues include dynamic range, force accuracy, and 
time integration accuracy.  Of these, dynamic range is the most 
difficult to deal with:

 Three distinct kinds of dynamic range are needed for a faithful 
simulation: mass resolution (number of particles), initial power 
spectrum sampling (range of wavenumbers present in the initial 
conditions), and spatial resolution (force-softening length 
compared with box size).  The era of parallelization of codes and 
ever-increasing supercomputer power have allowed enormous 
advances over what was possible in the 1980's and 1990's. This 
will be described in the next lecture.
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