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4.8 Maximum Entropy with known 1st and 2nd Moments

Prior information I: x ∈ R
Prior knowledge: q(x) := P(x|I) = const.
Updating information J: 〈x〉(x|J,I) = m, 〈(x− m)2〉(x|J, I) = σ2

Posterior knowledge: p(x) := P(x|J, I) = eαx+β(x−m)2

Z(α, β)

1. calculate Z(α, β):

Z(α, β) =

ˆ ∞
−∞

dx e

αx+β(x− m︸ ︷︷ ︸
=x′

)2

=

ˆ ∞
−∞

dx′ eαx′+αm+βx′2



4.8 Maximum Entropy with known 1st and 2nd Moments

Z(α, β) =

ˆ ∞
−∞

dx′ eαx′+αm+βx′2

Completing the square: = eαm
ˆ ∞
−∞

dx′ e
β
(

x′2+ 2αx′
2β + α2

(2β)2

)
−α2

4β

= eαm−α2
4β

ˆ ∞
−∞

dx′ eβ
(

x′+ α
2β

)2

Claiming β < 0: = eαm+ α2
4 |β|

ˆ ∞
−∞

dx′ e−|β|
(

x′− α
2|β|

)2

= eαm+ α2
4 |β|

√
π

−β



4.8 Maximum Entropy with known 1st and 2nd Moments

2. determine α and β:

lnZ(α, β) = αm− α2

4β
+

1
2

ln

(
π

−β

)
∂ lnZ(α, β)

∂α
= m− α

2β
!

= m

⇒ α = 0
∂ lnZ(α = 0, β)

∂β
= − 1

2β
!

= σ2

⇒ β = − 1
2σ2

Insert in Z(α, β):

Z =
√

2πσ2



4.8 Maximum Entropy with known 1st and 2nd Moments

3. calculate p(x) = P(x|J, I):

P(x|J, I) =
eαx+β(x−m)2

Z(α, β)

∣∣∣∣∣
α=0,β=−1/(2σ2)

=
1√

2πσ2
e−

(x−m)2

2σ2

= G(x− m, σ2)

⇒ Maximum Entropy PDF P(x|J, I) for known 1st and 2nd moments (and flat prior) is
Gaussian distribution



5 Gaussian Distribution

I maximum Entropy solution if only 1st and 2nd moments known
I emerges according to central limit theorem
I mathematically convenient

5.1 One dimensional Gaussian distribution:

G(x− m, σ2
x ) =

1√
2πσ2

x
exp

(
−(x− m)2

2σ2
x

)



5.2 Multivariate Gaussian Distribution

x = (x1, . . . xn)t: zero centered independent Gaussian distributed variables
σ2

1, . . . σ
2
n: corresponding variances

X = diag(σ2
1, . . . σ

2
n): diagonal covariance matrix

Joint probability: P(x) =

n∏
i=1

P(xi) =

n∏
i=1

1√
2πσ2

i

exp

(
−(xi)

2

2σ2
i

)

=
1∏n

i=1

√
2πσ2

i

exp

(
−1

2

n∑
i=1

x2
i

σ2
i

)
=

1√
|2πX|

exp

(
−1

2
x†X−1x

)

Multivariate Gaussian: G(x, X) =
1√
|2πX|

exp

(
−1

2
x†X−1x

)
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From independent to dependent coordinates

Orthonormal basis transformation in n-dim. space:

y = O x

O−1 = O†

⇒ |O| = |O†| = |O−1| = 1/|O|

⇒ |O|2 = 1

⇒ ‖O‖ = ‖O†‖ = 1

Conservation of probability mass:

P(y|I) dy = P(x|I) dx|x=O†y



From independent to dependent coordinates

⇒ P(y|I) = G(x, X) ‖∂x
∂y
‖
∣∣∣∣
x=O†y

= G(O†y, X) ‖O†‖︸ ︷︷ ︸
=1

=
1√
|2πX|

exp

−1
2

(O†y)†︸ ︷︷ ︸
x†=y†O

X−1 O†y︸︷︷︸
x


=

1√
|2πX|

exp

−1
2

y†O X−1O†︸ ︷︷ ︸
Y−1

y


=

1√
|2πX|

exp

(
−1

2
y†Y−1 y

)



From independent to dependent coordinates

|Y| = |Y−1|−1

= |OX−1O†|−1

= ( |O|︸︷︷︸
=±1

|X−1| |O†|︸︷︷︸
=±1

)−1

= |X|

Generic multivariate Gaussian:

⇒ P(y) = G(y, Y) =
1√
|2πY|

exp

(
−1

2
y†Y−1 y

)



Moments of the multivariate Gaussian

Normalization:

〈1〉G(y, Y) =

ˆ
dy 1G(y, Y) =

ˆ
dx 1G(x, X) = 1

1 =
1√
|2πY|

ˆ
dy exp

(
−1

2
y†Y−1 y

)
︸ ︷︷ ︸

=
√
|2πY|

1stMoment:

〈y〉G(y, Y) =

ˆ
dy yG(y, Y)

=

ˆ
dy′(−y′)G(−y′, Y)‖ − 11‖

= −〈y′〉G(y′, Y) = 0



Moments of the multivariate Gaussian
2ndMoment: 〈

y y†
〉
G(y,Y)

=

ˆ
dy y y†G(y, Y)

=

ˆ
dx G(x, X)Oxx†O†

= O
ˆ

dx x x†G(x, X) O† ?
= OXO† = Y

ˆ
dx xi xj G(x, X) =

[
n∏

k=1

ˆ
dxkG(xk, σ

2
k )

]
xi xj

=

{[´
dxiG(xi, σ

2
i ) xi

] [´
dxjG(xj, σ

2
j ) xj

]
if i 6= j´

dxiG(xi, σ
2
i ) x2

i if i = j

=

{
0 if i 6= j
σ2

i if i = j
= δijσ

2
i = Xij �



Moments of the multivariate Gaussian

〈y〉G(y, Y) = 0

〈f (y)〉G(y, Y) = 0, if f (−y) = −f (y)

〈yy†〉G(y, Y) = Y



Wick theorem

Wick theorem:
P: set of all possible ways to partition {i1, ..., i2n} into pairs

〈yi1 . . . yi2n〉G(y, Y) = 〈
2n∏

j=1

yij〉G(y, Y) =
∑
p∈P

∏
(i′,j′)∈p

Yii′ ij′

Examples:
I 〈yi1yi2〉G(y, Y) = Yi1i2

I 〈yi1yi2yi3yi4〉G(y, Y) = Yi1i2Yi3i4 + Yi1i3Yi2i4 + Yi1i4Yi2i3

⇒ 〈y2n
i 〉G(y, Y) =

(2n)!

2nn!
(Yii)

n

⇒ 〈y2n+1
i 〉G(y, Y) = 0



Maximum Entropy with known n-dimensional 1st and 2nd Moments

Prior information I: s ∈ V (e.g. R, Rn, C(Rn))
Prior knowledge: q(s) := P(s|I) = const. = 1
Updating information J: 〈s〉(s|J,I) = m, 〈(s− m)(s− m)†〉(s|J, I) = S
Posterior: p(s) = 1

Z exp[
∑

i µi(s− m)i +
∑

ij Λij ((s− m)i(s− m)j − Sji)︸ ︷︷ ︸
=Bji(s)

]

1. calculate Z(µ, Λ):

Z(µ, Λ) =

ˆ
ds exp

µ† (s− m)︸ ︷︷ ︸
s′

+ Tr[ΛB(s)]


=

ˆ
ds′ exp

[
µ†s′ + Tr[Λ(s′s′† − S)]

]
=

ˆ
ds′ exp

[
µ†s′ + s′†Λs′ − Tr[ΛS]

]
= e−Tr[ΛS]

ˆ
ds′ eµ

†s′+s′†Λs′



Maximum Entropy with known n-dimensional 1st and 2nd Moments
2. determine µ and Λ:

lnZ(µ, Λ) = −Tr[ΛS] + ln

(ˆ
ds′ exp(µ†s′ + s′†Λs′)

)

∂ lnZ(µ, Λ)

∂µ
=

(
∂ lnZ
∂µi

)
i

=

´
ds′ s′ exp(µ†s′ + s′†Λs′)´
ds′ exp(µ†s′ + s′†Λs′)

!
= 0

⇒ µ = 0

∂ lnZ(µ, Λ)

∂Λ
=

(
∂ lnZ
∂Λij

)
ij

= −(Sji)ij︸ ︷︷ ︸
=−S

+

( ´
ds′ s′is

′
j exp(s′†Λs′)´

ds′ exp(s′†Λs′)

)
ij

!
= 0

⇒ S =

´
ds′ s′s′† exp

(
− 1

2 s′†(−1
2Λ−1)−1s′

)
´

ds′ exp
(
−1

2 s′†(− 1
2Λ−1)−1s′

) =

´
ds′ s′s′†G

(
s′,− 1

2Λ−1
)

´
ds′G

(
s′,−1

2Λ−1
)

= −1
2

Λ−1 ⇒ Λ =−1
2

S−1



Maximum Entropy with known n-dimensional 1st and 2nd Moments

Insert in Z(µ, Λ):

Z(µ, Λ) =

ˆ
ds′ exp

− 1
2

s′†S−1s′ +
1
2

Tr[ S−1S︸︷︷︸
=11

]


= |2πS|1/2e

1
2 Tr[11]

3. calculate p(s) = P(s|J, I): remember: s′ = s− m

P(s|J, I) =
1√
|2πS|

exp

(
−1

2
(s− m)†S−1 (s− m)

)
= G(s− m, S)

⇒use Gaussian distribution G(s− m, S) given the n-dim. mean m and variance S


