Exam on Information Field Theory

25.07.2017

Name: ______ Matrikelnummer: _____

- The exam consists of **four exercises**. Please do check if you received all of them.
- There are more questions than you will be able to solve within the given time.
- Therefore jump to the next questions if you cannot solve one.
- The working time is **90 minutes**.
- No aids are allowed during the exam.
- In order to gain the full amount of possible points we strictly advise you to use conditional probabilities.

Question	Points
1	/9
2	/14
3	/12
4	/15
Bonus	
Total	/50

Grade	
-------	--

GOOD LUCK!

Assume that a quantity y is linearly dependent on a quantity x, i.e., y(x) = a + bx. Assume further that the quantity y has been measured at m - 1 different positions $(x_i)_i$, $i = 1, \ldots, m - 1$, subject to additive uncorrelated Gaussian noise, i.e.,

$$d_i = y(x_i) + n_i, \quad n \leftarrow \mathcal{G}(n, N), \quad N_{ij} = \delta_{ij}\sigma_i^2. \tag{1}$$

'9

Assuming a Gaussian prior for the parameters a and b, i.e.,

$$s = \begin{pmatrix} a \\ b \end{pmatrix} \leftrightarrow \mathcal{G}(s,S), \quad S = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}, \tag{2}$$

a linear fit can be performed using Wiener filter theory.

- a) Write down the response and posterior covariance for this Wiener filter problem. -/5
- b) You have enough money left to finance one additional measurement with uncertainty σ_m . ____/4 Let m_a be the Wiener filter estimate after the m measurements. How should you choose the position x_m for that measurement to gain the parameter estimate m_a for a? Use the quadratic loss function $\mathcal{L}(s, x_m) = (a - m_a)^2$ and the formalism of risk minimization.

Your prior knowledge about two statistically independent real-valued fields η and ζ is

$$\mathcal{P}(\eta) = \mathcal{G}(\eta, H), \quad \mathcal{P}(\zeta) = \mathcal{G}(\zeta, Z) \tag{3}$$

However, you are only interested in their sum $s = \eta + \zeta$. You have a linear measurement of s with independent Gaussian noise n,

$$d = Rs + n, \quad \mathcal{P}(n) = \mathcal{G}(n, N). \tag{4}$$

a) What is the prior of s?

<u>Hint</u>: Instead of calculating the prior directly, think which functional form it should have and try to only calculate the quantities needed to specify it.

b) What is the posterior of *s*?

_/3

/14

c) Calculate the moment generating function $Z_s(j) = \left\langle e^{j^{\dagger}s} \right\rangle_{\mathcal{P}(s|d)}$. _____/2

<u>Hint</u>: If you could not solve exercise b) you may use $\mathcal{P}(s|d) = \mathcal{G}(s - a - b, C)$.

d) Calculate the one, two and three point correlation functions $\langle s(x) \rangle_{\mathcal{P}(s|d)}, \langle s(x)s(y) \rangle_{\mathcal{P}(s|d)},$ ______/6 and $\langle s(x)s(y)s(z) \rangle_{\mathcal{P}(s|d)}.$

Let x be the displacement of a damped harmonic oscillator with randomly fluctuating external force, i.e.,

$$\ddot{x} + \eta \dot{x} + \omega_0^2 x = \alpha \xi, \qquad \xi \leftrightarrow \mathcal{G}(\xi, \mathbb{1}).$$
(5)

 $^{/}12$

____/4

- a) Find the power spectrum $P(\omega)$ of x and sketch it.
- b) Find the singularities of $P(\omega)$. Then set $\eta = 2\omega_0$ and calculate the autocorrelation of x in _____/8 position space.

 $\underline{\operatorname{Hint}}:$ Use the residue theorem

~

$$\oint_{\gamma} f(z) dz = 2\pi i \sum_{k} Z_{\gamma}(a_k) \operatorname{Res}\left(f, a_k\right)$$
(6)

where $Z_{\gamma}(a_k)$ is the winding number of γ around a_k and $\operatorname{Res}(f, a_k)$ is the residue of f at a_k

Consider a real-valued signal field s with a Gaussian prior,

$$\mathcal{P}(s) = \mathcal{G}(s, S),\tag{7}$$

that is observed with an instrument that exhibits an almost linear response,

$$d = R\left(s + rs^2\right) + n. \tag{8}$$

Here, R is a linear operator, $r \in \mathbb{R}$ with $|r| \ll 1$ is a small parameter that determines the strength of the nonlinearity in the instrumental response, s^2 denotes the local squaring of the signal field, i.e., $(s^2)_x = (s_x)^2$, and n is additive Gaussian noise, i.e.,

$$\mathcal{P}(n) = \mathcal{G}(n, N). \tag{9}$$

a) Consider first the case of an exactly linear response, i.e., r = 0. Derive the Hamiltonian $(2)^2$

$$H(d,s) = -\log\left(\mathcal{P}(d,s)\right) \tag{10}$$

for this problem. You may drop all terms that do not depend on s.

b) Show that the posterior probability density in the case with r = 0 is of Gaussian form, i.e., -/2 $\mathcal{P}(s|d) = \mathcal{G}(s - m_0, D)$, and derive expressions for its mean and covariance,

$$m_0 = \langle s \rangle_{\mathcal{P}(s|d)}$$
 and $D = \langle (s - m_0)(s - m_0)^{\dagger} \rangle_{\mathcal{P}(s|d)}$, (11)

as a function of d, S, N, and R.

c) Now consider the case with small but non-zero r. Calculate the Hamiltonian in this case and $\frac{1}{4}$ write it in the form

$$H(s,d) = H_0 - j^{\dagger}s + \frac{1}{2}s^{\dagger}D^{-1}s + \sum_{k=2}^{\infty}\frac{1}{k!}\Lambda^{(k)}_{x_1x_2\cdots x_k}s_{x_1}s_{x_2}\cdots s_{x_k},$$
(12)

where only the coefficients $\Lambda^{(k)}$ depend on r and we use the convention that repeated indices are integrated over. Give expressions for j, D, and all non-zero $\Lambda^{(k)}$. You do not need to calculate H_0 .

- d) Write down the diagrammatic expansion of the partition function $\log (Z(d))$ up to linear order _____/3 in r.
- e) Find the diagrammatic expressions for the posterior mean and covariance, ____/4

$$m_r = \langle s \rangle_{\mathcal{P}(s|d)}$$
 and $\langle (s - m_r)(s - m_r)^{\dagger} \rangle_{\mathcal{P}(s|d)},$ (13)

up to first order in r.

./15

10