Exam about Information Field Theory

12.06.2017

Name: ______ Matrikelnummer: _____

- The exam consists of **six exercises**. Please do check if you received all of them.
- There are more questions than you will be able to solve within the give time.
- Therefore jump to the next questions if you cannot solve one.
- The working time is **90 minutes**.
- No aids are allowed during the exam.
- In order to gain the full amount of possible points we strictly advise you to use conditional probabilities.

Question	Points
1	/6
2	/6
3	/10
4	/12
5	/8
6	/6
Bonus	
Total	/54

Grade

GOOD LUCK!

Question 1

You are interested in two numbers, $s = (s_1, s_2) \in \mathbb{R}^2$. Your measurement device, however, only measures sum and difference of the numbers, according to

6

6/

/10

$$d_1 = s_1 + s_2 + n_1 d_2 = s_1 - s_2 + n_2$$

with some noise vector $n \in \mathbb{R}^2$. Assume a Gaussian prior $\mathcal{P}(s) = \mathcal{G}(s, S)$ for s and a Gaussian PDF for the noise, $\mathcal{P}(n) = \mathcal{G}(n, N)$, with $N_{ij} = \sigma^2 \delta_{ij}$.

- a) Assume a flat prior. Write down the response matrix, and calculate the posterior $\mathcal{P}(s|d)$. Re- ____/3 minder: $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}^{-1} = \frac{1}{\alpha\delta \beta\gamma} \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix}$
- b) In the setting from above, now assume a generic response $R = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$. Calculate the mean ____/3 of $\mathcal{P}(s|d)$.

Discuss in which circumstances (regarding R) the linear filter fails to provide a definite answer and give the underlying reason.

Question 2

Assume the measurement of a signal s, which yields the data d, leads to.

$$\mathcal{P}(s) = \mathcal{G}(s, S)$$
$$\mathcal{P}(s|d) = \mathcal{G}(s - m, D)$$

- a) Calculate the amount of information in terms of entropy one gains via the measurement.
- b) Now assume that your signal prior in the above measurement was flat. How much information ____/2 in terms of entropy does one gain via the measurement? Explain the result.

Question 3

A sequence of n coin tosses is performed and stored in a data vector $d^{(n)} = (d_1, \ldots, d_n) \in \{0, 1\}^n$. The coin produced a head with constant, but unknown frequency $f = P(d_i = 1|f) \in [0, 1]$.

a) How many bits of extra information on f are provided by the data vector $d^{(n)} = (1, ..., 1)$?

<u>Hint</u>: $\int_0^1 dx \, x^n (1-x)^m = \frac{n! \, m!}{(n+m+1)!}$ for $n, m \in \mathbb{N}, \int_0^1 dx \, x^n \, \ln x = -\frac{1}{(n+1)^2}$

b) After how many such sequential heads did one obtain 10 bits of information on f? An accuracy $__/2$ of 10% is sufficient.

<u>Hint</u>: If n > 10 you can use $\frac{n}{n+1} \approx 1$. Use $2^{1/\ln 2} = 2^{\ln e/\ln 2} = 2^{\log_2 e} = e \approx 2.7$.

c) How many bits on the outcome of the next toss is provided by a sequence of n heads? Provide ____/4 also the asymptotic for $n \to \infty$!

<u>Hint</u>: It is helpful to guess the maximal amount of obtainable information before the detailed calculation is done.

Question 4

Assume that for a PDF p(x) only a set of constraints are known. From the principle of maximum entropy one derives that

12

 $^{\prime}8$

12

_/4

$$p(x) = \exp\left(\lambda_0 + \sum_{i=1}^n \lambda_i f_i(x)\right) = \frac{\exp\left(\sum_{i=1}^n \lambda_i f_i(x)\right)}{Z} = \frac{e^{\mu^{\dagger} f(x)}}{Z(\mu)}$$
(1)

with λ_i such that the constraints are satisfied.

- a) Assume a PDF $P(x \mid \lambda)$ with $x \in \mathbb{R}$. Show that no maximum entropy function exists if the _____/3 only non-trivial constraint solely affects the first moment, $\langle x \rangle_{(x \mid \lambda)} = \lambda$.
- b) Now take the above case and add the restriction that the support of x is only on \mathbb{R}^+ . Derive _____/5 the corresponding maximum entropy PDF.
- c) Now assume that $\langle \ln x \rangle_{(x|\alpha)} = \alpha$, with $\alpha > 0$ and $x \in [1, \infty)$ is known. Calculate the PDF. _____/4

Question 5

An unknown number m of atoms of a long living radioactive isotope with known decay rate ν is observed for a short time $t \ll \nu^{-1}$ with a Geiger counter that is known to register on average a fraction f of the decay events and actually registers n decays.

- a) Calculate the posterior P(m|n, I)?
- b) At a slightly later observing time $t_2 = t + \delta t > t$ you still have only *n* counts. Did you obtain ____/4 thereby more information and if yes how much?

Question 6

We want to calculate the probability that the apocalypse will happen in your lifetime. Let n denote the total amount of humans that will ever live.

- a) Take one random human of all the humans that will ever have lived. Numbering all humans ____/1 from first to last by the time they were born, what is the probability of this person being the d-th human (with $d \in \mathbb{N}$) given that there will be a total of n humans ever to live?
- b) Calculate the posterior probability for n given that the random human of a) is the d-th human. ____/4 For this, take the improper prior

$$P(n) \propto \frac{1}{n} \tag{2}$$

This prior is not normalizable, but for a Bayesian argumentation it will be sufficient if the posterior is normalizable.

Hint: You can approximate sums as integrals at your convenience.

c) You are yourself an independent sample of the human population. You are approximately the $__/2$ 10¹¹-th human (assuming you were born in 1990). If you grow to be 100 years old, then at the time of your death an approximative total of $1.2 \cdot 10^{11}$ humans will have been born according to todays extrapolations. What is the probability of the apocalypse happening in your lifetime, i.e. $P(n < 1, 2 \cdot 10^{11} | d = 10^{11})$?

Hint: You may again approximate sums as integrals at your convenience.

d) We want to test how the choice of prior affected the above outcome. As in c), calculate the _____/5 posterior probability of the last human birthing in your life time, but this time assuming a uniform prior

$$P'(n) = \begin{cases} \frac{1}{x} & \text{for } n < x\\ 0 & \text{otherwise,} \end{cases}$$
(3)

where x is a fixed upper limit to n that we fix to $x = 10^{35} \approx (1.2)^{200} \cdot 10^{11}$. <u>Hint</u>: You may once again approximate sums as integrals at your convenience.