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P R E FA C E

Information field theory (IFT) is information theory (IT) for fields. Fields are con-
tinuous varying functions over some space, and IT refers to logic under uncertainty,
which is probabilistic reasoning. Consequently, this script introduces into IT in Part
i and then extend this to IFT in Part ii.
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Part I

I N F O R M AT I O N T H E O RY





1
F R O M L O G I C T O P R O B A B I L I T Y

Here, we give a sketch of the Cox theorem proof [3] while following the book of
Jaynes [7] and the lectures by Caticha [2]. A more rigorous proof can be found in
[11].

1.1 aristotelian logic

Let A and B be statements or propositions (e.g. A = “it rains” and B = “there is
a cloud”) and I = “if A is true, then B is also true” = “A ⇒ B” the background
information (e.g. I = “it rains only if there is a cloud”).

• strong syllogism: I ⇒ “if B is false then A is false” = (B⇒ A)

• weak syllogism I ⇒ “if B is true then A is more plausible”= J

– This is possible, since we can exclude the case that “B is false” which
definitely would have excluded A.

• weaker syllogism J ⇒ “if A is true, then B becomes more plausible”

1.2 boolean algebra

Let A and B be statements or propositions, we introduce the following relations
and their notations:

• “and”: AB = “both, A and B are true”, conjunction or logical product conjunction

• “or”: A + B = “at least one of the propositions A, B is true”, disjunction or disjunction

logical sum

• “identity”: A = B = “A always has the same truth value as B”, logical
equivalence logical equivalence

• “denial”: A = “not A” = “A is false”, negation or logical complement, logical complement

A = “A is false”, “A=A” is always false

Notation:

• AB + C = (AB) + C

– The logical product has a higher binding than the sum

• AB = (AB)= “AB is false”

– The negation of a logical product (“at least one of A and B is false”) is
not the product of negations AB (“A is false and B is false” = “both are
false”).
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The Boolean algebra rests on the following axioms:Boolean algebra

idempotency: AA = A

A + A = A

commutativity: AB = BA

A + B = B + A

associativity: A(BC) = (AB)C = ABC

A + (B + C) = (A + B) + C = A + B + C

distributivity: A(B + C) = AB + AC

A + (BC) = (A + B)(A + C)

duality: AB = A + B

A + B = A B

implication: “A⇒ B” ≡ “A = AB” =

“A and AB have the same truth value”

This set of axioms is over-complete. For example the second distributivity ax-
ioms follows from the first one and duality:

A + B C = A + B + C (duality)

= A (B + C) (duality)

= AB + AC (1st distributivity)

= AB AC (duality)

= (A + B) (A + C) (duality),

which is the second distributivity axiom for A′ = A, B′ = B, and C′ = C.

1.3 plausible reasoning

Notation:

• π(A|B) = “conditional plausibility that A is true, given that B is true” = plausibility (π) of “A given B” .

1.3.1 Desiderata

The derivation of probability from logic rests on three desiderata:

I Degrees of plausibility are represented by real numbers.

By convention (infinitesimally) larger plausibilities are represented by (infinitesi-
mally) larger numbers:

C = “A is more plausible than B”
⇒π(A|C) > π(B|C) & π(A|C) < π(B|C)

If information D gets updated to D′ with π(A|D′) > π(A|D) and π(B|AD′) =

π(B|AD):
⇒π(AB|D′) ≥ π(AB|D) &π(A|D′) < π(A|D)
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II Qualitative correspondence with common sense.

1. Aristotelian logic should be included.

III Self consistency of the plausibility value system:

1. If a conclusion can be reasoned in several ways, their results must agree.

2. Equivalent knowledge states are represented by equivalent plausibilities.

3. All available information must be included in any reasoning.

1.3.2 The product rule

The plausibility of the product statement AB|C = “A and B given C” can be de-
composed in two different ways:

1. a) Decide whether B is true under C by specifying π(B|C)
b) If this is the case, decide if A is also true π(A|BC).

2. a) Decide whether A is true under C by specifying π(A|C)
b) Given A, decide if B is also true π(B|AC)

From III.1 we expect both ways of reasoning to lead to the same conclusion on the
plausibility of AB|C. This means, there must be a plausibility function f (x, y) = z,
which fulfills

π(AB|C) = f (π(B|C), π(A|BC)) = f (π(A|C), π(B|AC)). (1)

Furthermore, by the convention below desideratum I (or by desideratum II) we
expect f (x, y) to be continuous and monotonic in both x, y.
By a similar decomposition of the triple-and statement ABC|D one can show that

f ( f (x, y), z) = f (x, f (y, z)). (2)

From this, Cox [3] showed that there is a new, transformed plausibility system ω

in which the logical product (“and”) becomes an ordinary product:

ω( f (x, y)) = ω(x)ω(y) or f (x, y) = ω−1(ω(x)ω(y)). (3)

This leads to the product rule for the new plausibilities

ω(AB|C) = ω(A|BC)ω(B|C) = ω(B|AC)ω(A|C). (4)

1.3.3 True and false

1. Assume “A certain given C” = “C ⇒ A” = “C = AC”
⇒(i)AB|C = B|C, because requesting A does not change the plausibility of
B|C, since A is given under C.
⇒(ii)A|BC = A|C
Using (i), (ii) and the product rule we find the value for true:

ω(B|C) = ω(AB|C) = ω(A|BC)ω(B|C) = ω(A|C)ω(B|C)⇒ ω(A|C) = 1
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2. Assume “A is impossible, given C” = “C ⇒ A” = ”C = AC”
⇒(iii)AB|C = A|C
⇒(iv)A|BC = A|C
Using (iii), (iv) and the product rule we find the values for false

ω(A|C) = ω(AB|C) = ω(A|BC)ω(B|C) = ω(A|C)ω(B|C)⇒ ω(A|C) =

0

∞
.

In this case −∞ as a solution of ω(A|C) is ruled out by the special case
A = B.

There are two possibilities of choosing ω

• ω ∈ [0, 1] expressing plausibilities

• ω′ ∈ [1, ∞] expressing implausibilities

related by ω = 1
ω′ .

Convention:
ω ∈ [0, 1] with ω(A|B) = 0 expressing impossibility of A given B and

ω(A|B) = 1 expressing certainty of A given B.

1.3.4 Negation

Aristotelian logic:

• A is either true or false

• AA is always false

• A + A is always true

The negation function S : [0, 1]→ [0, 1] fulfilling

ω(A|B) = S(ω(A|B)), (5)

is monotonically decreasing with the boundary conditions S(0) = 1 and S(1) = 0.
Due to consistency, this function must be of the form [3]

S(x) = (1− xm)
1/m x ∈ [0, 1], 0 < m < ∞. (6)

The parameter m is arbitrary and labels the different possible plausibility systems.
⇒ ω(A|B) = S(ω(A|B)) = (1−ωm(A|B))1/m

• sum rule: ωm(A|B) + ωm(A|B) = 1

• product rule: ωm(AB|C) = ωm(A|BC)ωm(B|C) = ωm(B|AC)ωm(A|C).

1.4 probability

In the following, we choose a linear plausibility system with the exponent m = 1.
These plausibilities we call probabilities

P(x) = ωm(x). (7)
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1.4.1 Probability systems

For probabilities, P(A|B) =“probability of A given B”, product and sum rule are
particularly simple:

product rule: P(AB|C) = P(A|BC) P(B|C) = P(B|AC) P(A|C) (8)

sum rule: P(A|B) + P(A|B) = 1 (9)

product rule and
sum rule

Probabilities can be based on

• logic (extended to uncertainty)

• relative frequencies of events (frequentist definition)

P(specific event | generic event) = lim
n→∞

n(specific event)
n(generic event)

, (10)

• set theoretical considerations (Kolmogorov system), or

• considerations on consistent bet ratios (de Finetti approach).

1.4.2 Marginalization

Marginalization removes the dependence of a probability P(A, B|C) on the state-
ment B. (i)

P(A, B|C) = P(B|AC) P(A|C)
P(A, B|C) = P(B|AC) P(A|C)

⇒ P(A, B|C) + P(A, B|C) =
[
P(B|AC) + P(B|AC)

]︸ ︷︷ ︸
1

P(A|C) = P(A|C)

P(A|C) = P(A, B|C) + P(A, B|C) is called the “B-marginalized probability of A”.
(Note the change in notation for the “and”: AB ≡ A, B) (ii) The marginalization
can be generalized to more than two options B and B. Let {Bi}n

i=1 be a set of n
mutually exclusive (P(BiBj|I) = 0 for i 6= j) and exhaustive (P(B1 + . . .+ Bn|I) = 1) mutually exclusive

exhaustivepossibilities in I, then

P(A|I) =
n

∑
i=1

P(A, Bi|I) (11)

is the B-marginalized probability of A under I. marginalized
probabilityShortcut notation:

• P(A) = P(A|I)

• P(A|B) = P(A|BI)

if the context I is either clear or unimportant.
Warning: if several contexts are present, they should be clearly marked, since oth-
erwise confusion is guaranteed.
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1.5 probabilistic reasoning

The generalized sum rule describes how two probabilities of non-exclusive and
non-exhaustive statements can be added.

generalized sum rule: P(A + B) = P(A) + P(B)− P(AB). (12)
generalized sum rule

By using Bayes’ theorem the “posterior” probability P(A|B) of an original cause
A given the observed event (the data) B can be calculated.

Bayes’ theorem: P(A|B) = P(A, B)
P(B)

=
P(B|A) P(A)

P(B)
. (13)

Bayes’ theorem

Here, P(A) is the “prior” probability of A, P(B|A) is the “likelihood” describing
the forward probability of the causal process and the “evidence” P(B) is just a
normalization constant.

1.5.1 Deductive logic

Now we can check whether probabilistic reasoning already contains the syllogisms
of Aristotelian logic.

• strong syllogism: I = “A⇒ B”⇒(i) P(B|AI) = 1 & (ii) P(A|BI) = 0
proof:
(i) “A⇒ B” is actually “A = AB”⇒ P(AB|I) = P(A|I)

P(B|AI) =
P(AB|I)
P(A|I) = 1

(ii)

P(A|BI) =
P(AB|I)
P(B|I)

=
P(ABB|I)

P(B|I)
= 0

unless P(B|I) = 0, which would turn the r.h.s. condition into an empty state-
ment.

• weak syllogism: I = “A⇒ B ”⇒ P(A|BI) ≥ P(A|I)
proof: From the strong syllogism we already know P(B|AI) = 1.

P(A|BI) =
P(B|AI) P(A|I)

P(B|I) =
P(A|I)
P(B|I) ≥ P(A|I)

In the last step the triviality P(B|I) ≤ 1 was used.

• weaker syllogism: J = “B ⇒ A more plausible under I” = “P(A|BI) >

P(A|I)”
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claim: J ⇒ J′ = “A⇒ B more plausible under I”= “P(B|AI) > P(B|I)”
proof:

P(B|AI) =
P(A|BI)
P(A|I)︸ ︷︷ ︸

>1

P(B|I) > P(B|I)

∣∣∣∣∣∣∣∣∣ J

1.5.2 Assigning probabilities

• I is the background information or proposition, A1, . . . An is the set of mu-
tually exclusive possibilities which exhaust I. ⇒ “one and only one Ai with
i∈{1, . . . n} is true” and ∑n

i=1 P(Ai|I) = 1.

• Assume that the knowledge in I about A1, . . . An is absolutely symmetric.
⇒P(Ai|I) = P(Aj|I) and a uniform distribution is assigned.

uniform probability distribution: P(Ai|B) =
1
n

. (14)
uniform probability
distribution

This is Laplace’s principle of the insufficient reason.
Canonical examples:

• fair die: P(�|fair die) = 1
6

• loaded die: P(�|loaded die) = 1
6 , but P(�|previous results, loaded die) may

differ from 1/6 depending on previous results

⇒ Conditional probabilities describe learning from data.

1.6 statistical inference

1.6.1 Measurement process

In the inference process the causality between the real physical state and the data
should be inverted.
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reality

data

theory/signal

s

d

measurement

measurement model

• The measurement process maps the real state into the data space.

• We only have a theory, a simplified model, to describe reality.

• The theory has unknown parameters, the signal s, which shall be determined
by the data d from a measurement described via P(d|s).

Potential problems:

• Theory might be insufficient to describe relevant aspects of reality.

• Measurement and theory differ too much (e.g. device was broken).

• Data is not uniquely determined (knowledge on resulting distribution is
given by P(d|s)).

• Signal is not uniquely determined.

1.6.2 Bayesian Inference

I is the background information on signal s, on measurement process producing
data d. In the following I is assumed to be implicitly included among the condi-
tionals of any probability.
Bayes’ theorem permits us to construct from prior P(s) and likelihood P(d|s) the
posterior P(s|d), which describes the signal knowledge after the measurement.

Bayes’ theorem:

P(s|d) = P(d, s)
P(d)

=
P(d|s) P(s)

P(d)
(15)

• Note the sloppy notation: P(s) means the probability of the variable s to have
the value s given the implicit background information I, P(svar = sval|I), with
svar the unknown variable and sval a concrete value.

• The joint probability P(d, s) is decomposed in likelihood and prior.
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• The prior P(s) summarizes our knowledge on s before measuring.

• The likelihood P(d|s) describes the measurement process.

• The evidence P(d) = ∑s P(d, s) serves as normalization factor.

∑
s

P(s|d) = ∑
s

P(d, s)
P(d)

=
∑s P(d, s)
∑s′ P(d, s′)

= 1 (16)

s

d

s

P(d , s)

d obs

obs

P(d,s)

• With the measurement of the data dobs only the hyperplane with d = dobs is
relevant any more. Any deduction depending on unobserved data dmock 6=
dobs is suboptimal, inconsistent, or just wrong.

• The normalization of the restricted probability P(d = dobs, s) is given by the
area under the curve: ∑s P(dobs, s) = P(dobs).

1.7 coin tossing

1.7.1 Recognizing the unfair coin

I1 = “A large number of coin tosses are performed and the outcomes are stored
in a data vector d = (d1, d2, . . .), with di ∈ {0, 1} representing head (di = 1)
or tail (di = 0) for the i-th toss. The data up to toss n is denoted by d(n) =
(d1, . . . dn). ”

question 1 : What is our knowledge on d(1) = (d1) given I1?
Due to symmetry in knowledgethe probability distribution is given:

P(d1 = 0|I1) = P(d1 = 1|I1) (17)

⇒ 1 = P(d1 = 0|I1) + P(d1 = 1|I1) (18)

⇒ 1
2

= P(d1|I1) (19)
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question 2 : What is our knowledge about dn+1 given d(n), I1?
With d(n+1) = (dn+1, d(n)) we get

P(dn+1|d(n), I1) =
P(d(n+1)|I1)

P(d(n)|I1)
. (20)

Given our knowledge I1 we have no reason to favor any of the 2n possible se-
quences d(n) ∈ {0, 1}n of length n and have assign symmetric probabilities to them:
P(d(n)|I1) = 2−n

P(dn+1|d(n), I1) =
2−n−1

2−n =
1
2

. (21)

It seems that I1 ⇒ “All tosses are statistically independent of each other.”statistical
independence Two events A and B are statistically independent of each other under some infor-

mation C if knowing B does not change the probability for A, P(A|BC) = P(A|C),
and vice versa. This implies, that their joint probability is just the direct product of
their individual probabilities,

P(AB|C) = P(A|BC) P(B|C) = P(A|C) P(B|C).

⇒ Given I1, the data d(n) contains no useful information on dn+1. The probability
has not changed. What did we miss? Something that connects the different tosses
without making them explicitly dependent of each other, a shared, but hidden
property.

Additional information I2 = “All tosses are done with the same coin. We highly
suspect the coin to be loaded, meaning that heads occur with a frequency f ∈
[0, 1]”: ∃ f ∈ [0, 1] : ∀i ∈N : P(di = 1| f , I1, I2) = f . I = I1 I2, then

P(di| f , I) =

 f di = 1

1− f di = 0
= f di (1− f )1−di . (22)

question 3 : What do we know about f given I and our data d(n) after n tosses?
We have developed probability theory so far only for discrete possibilities, but f

is a continuous parameter, for which we have to extend probability theory.

1.7.2 Probability density functions

notation : P( f ∈ F|I) with F ⊂ Ω. In the above case Ω = [0, 1].
We would expect the probability P( f ∈ F|I) to be monotonically increasing with
|F| =

∫
F d f 1, since as more possibilities are included in F the probability for it

should be larger. We require P( f ∈ Ω|I) = 1. If no value f ∈ Ω given I is favored,
we request

P( f ∈ F|I) = |F||Ω| =
∫

F d f 1∫
Ω d f 1

. (23)

If a non-uniform weight distribution w : Ω 7→ R+
0 should be considered, we use

|F|w =
∫

F d f w( f ) and therefore
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P( f ∈ F|I) = |F|w|Ω|w
=

∫
F d f w( f )∫
Ω d f w( f )

=
∫

F
d f P( f | I) (24)

P( f | I) = w( f )/|Ω|w is called probability density function (PDF). probability density
function

normalization : P( f ∈ Ω | I ) =
∫

Ω d f P ( f | I ) = 1

transformation : A coordinate transformation T : f → f ′ can turn a uni-
form PDF P( f | I) into a non-uniform PDF P( f ′| I) and vice verse. From the coor-
dinate in-variance of the probabilities P( f ∈ F|I) = P( f ′ ∈ F′|I) with F′ = T(F) it
follows that ∫

F
d f P( f | I) =

∫
F′

d f ′ P( f ′| I) (25)

for all sets F ⊂ Ω, and therefore

P( f ′| I) = P( f | I)
∥∥∥∥ d f

d f ′

∥∥∥∥
f=T−1( f ′).

(26)

The Jacobian does not need to be uniform. Choosing a uniform prior for a PDF
therefore requires first to identify the natural coordinate system.

bayes’ theorem : I = “Let x ∈ R and y ∈ R” and P(x, y|I) their joint PDF, i.e.
such that P(x ∈ X, y ∈ Y|I) =

∫
X dx

∫
Y dyP(x, y|I) for any X, Y ⊂ R. Then we can conditional

probability density
function

define the marginal and conditional PDFs, respectively,

P(x|I) =
∫

dyP(x, y|I), (27)

P(y|I) =
∫

dxP(x, y|I), (28)

P(x|y, I) =
P(x, y|I)
P(y|I) , (29)

P(y|x, I) =
P(x, y|I)
P(x|I) , (30)

such that the product rule holds,

P(x, y|I) = P(x|y, I)P(y|I) = P(y|x, I)P(x|I), (31)

from which Bayes’ theorem for PDFs follows. It remains to be shown that the
quantities defined above are indeed PDFs, that these encode the corresponding
probabilities. For the y-marginalized PDF we find that this is the case,

P(x ∈ X|I) ?
=

∫
X

dxP(x|I) =
∫

X
dx
∫

R
dyP(x, y|I) = P(x ∈ X, y ∈ R|I)

= P(x ∈ X|I) (32)

as I ⇒ y ∈ R. Similarly, P(y ∈ Y|I) =
∫

Y dyP(y|I). For the conditional PDF, e.g.
for x conditioned on y (more precisely, on the statement yvar = yval), we observe

P(x ∈ X|y, I) ?
=
∫

X
dxP(x|y, I) =

∫
X
dx
P(x, y|I)
P(y|I) =

∫
X dxP(x, y|I)∫
R

dxP(x, y|I)
=
|X|P(x,y|I)
|R|P(x,y|I)

(33)
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to follow exactly the spirit of a weighted measure ratio, as used above to intro-
duced PDFs.

Note that a given PDF P(x, y) uniquely defines all probabilities P(x ∈ X, y ∈ Y)
for the continuous quantities x, y ∈ R, however, the reverse is not necessary true.
Any zero-measure function B(x, y), with

∫
X dx

∫
Y dyB(x, y) = 0 for ∀X, Y ⊂ R can

be added to P(x, y)→ P ′(x, y) = P(x, y) +B(x, y) without changing the resulting
P′(x ∈ X, y ∈ Y) =

∫
X dx

∫
Y dyP ′(x, y), but affecting conditional probabilities as

defined in Eq. (33). E.g. if B(x, y) 6= 0 for some y = yval, but otherwise B(x, y) = 0,
P′(x ∈ X|y = yval, I) 6= P(x ∈ X|y = yval, I).

1.7.3 Inferring the coin load

Back to question 3:

• n = 0: P( f , I) is independent of f .

n=0, P(f|I)=1

1

1
0

f

• n = 1, d1 = 1:

P( f |d1 = 1, I) =
P(d1 = 1| f , I)P( f |I)∫ 1

0 d f P(d1 = 1| f , I)P( f |I)
=

f∫ 1
0 d f f

=
f

1/2
= 2 f

n=1, P(f| d =1, I)=2f

2

1
0

f

1

⇒ P( f = 0 | d1 = 1, I) = 0, a coin which does not show heads ( f = 0) can
now be excluded with certainty, as a head has been observed.

• arbitrary n:⇒ Usage of Bayes’ theorem and independence:

P( f |d(n), I) =
P(d(n)| f , I)P( f , I)

P(d(n)|I)
=
P(d(n), f |I)
P(d(n)|I)

(34)

P(d(n), f |I) =
n

∏
i=1
P(di| f , I)× 1 =

n

∏
i=1

f di (1− f )1−di = f n1 (1− f )n0 (35)

Number of heads in d(n): n1 = n1(d(n)) = ∑n
i=1 di

Number of tails in d(n): n0 = n0(d(n)) = ∑n
i=1(1− di) = n− n1.
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Figure 1: The posterior P( f |d(n), I) of the coin load parameter f for different data realiza-
tions, as marked with (n0, n1) = ∑n

i=1(1− di, di) = (# of tails, # of heads). Left:
The first few tosses, with an equal number of heads and tails marked by solid
lines and a preference for heads marked by dashed lines. Right: Situations with
10 to 200 tosses. Solid and dashed lines as before, dotted line for a case with a
preference for tails. The Gaussian approximation of the posterior by (43) is shown
by a thin solid line with grey filling for the case (80, 20) .

The prior P( f ) = 1 is uniform.
Calculate evidence of I, P(d(n)|I), by marginalizing P(d(n), f |I),

P(d(n)|I) =
∫ 1

0
d f P(d(n), f |I) =

∫ 1

0
d f f n1(1− f )n0 (36)

Integral via definition of beta function

B(a, b) =
∫ 1

0
dx xa−1(1− x)b−1 =

Γ(a)Γ(b)
Γ(a + b)

=
(a− 1)! (b− 1)!
(a + b− 1)!

. (37)

By comparison of the former equations, we derive a = n1 + 1 and b = n0 + 1,
resulting in

P(d(n)) = n0! n1!
(n + 1)!

, n = n0 + n1. (38)

From Eqs. (35) & (38) we get the posterior,

P( f |d(n), I) =
P(d(n), f |I)
P(d(n)|I)

=
(n + 1)!
n1! n0!

f n1(1− f )n0 . (39)

n = 2:

P( f |d(2)) =


3 f 2 , n1 = 2

6 f (1− f ) , n1 = 1

3(1− f )2 , n1 = 0

, (40)

The posterior density functions P( f |d(n), I) depending on f for different parame-
ters n, n1, n2 are shown in Figure 1. The figures demonstrate that the probability
density function gets more and more peaked with a growing number of tosses.
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After all, what do we know about dn+1 given d(n) and I? Let’s look first at the
case dn+1 = 1

P(dn+1 = 1|d(n), I) =
∫ 1

0
d f P(dn+1 = 1, f | d(n), I)

=
∫ 1

0
d f P(dn+1 = 1| f , d(n), I)P( f |d(n), I)

=
∫ 1

0
d f f P( f |d(n), I)

=
(n + 1)!
n1! n0!

∫ 1

0
d f f n1+1(1− f )n0

=
(n + 1)!
n1! n0!

(n1 + 1)! n0!
(n + 2)!

=
n1 + 1
n + 2

, (41)

P(dn+1 = 0|d(n), I) =
n0 + 1
n + 2

(42)

which means that the probability of the next toss being head is the mean value ofLaplace’s rule of
succession the posterior P( f |d(n)), i.e., P(dn+1 = 1|d(n)) =

∫ 1
0 d f f P( f |d(n)) ≡ 〈 f 〉( f |d(n)).

1.7.4 Large number of tosses

Figure 1 shows that P( f |d(n)) typically looks Gaussian for a sufficiently large num-
ber of detected heads and tails (Central limit theorem). The width of this distribu-
tion gets smaller with increasing data size.

• Mean:

f = 〈 f 〉( f |d(n), I)

=
∫ 1

0
d f f P( f |d(n), I)

=
n1 + 1
n + 2

• Variance:

σ2
f = 〈( f − f )2〉( f |d(n)) = 〈 f

2 − 2 f f + f
2〉( f |d(n)) = 〈 f

2〉( f |d(n)) − f
2

=
(n1 + 2) (n1 + 1)
(n + 3) (n + 2)

−
(

n1 + 1
n + 2

)2

=
f (1− f )

n + 3
.

⇒ The width/uncertainty decreases with σf ∼ 1/
√

n.

• Gaussian approximation (only good for f , f sufficiently far away from 0 and
1:

P( f |d(n), I) ≈ G( f − f , σ2
f ) =

1√
2πσ2

f

exp

(
− ( f − f )2

2σ2
f

)
(43)
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Figure 2: Odds for bets on the coin being loaded versus being fair for 100 tosses (left) and
1000 tosses (right) on a logarithmic scale as a function of the number of observed
heads. The region with larger evidence for a loaded (fair) coin is above (below)
the horizontal line. The undecided region around this line with odds between
1:10 and 10:1 is shaded in cyan. Less than 35 or more than 65 out of 100 tosses
should be heads, before a loaded coin should be claimed (with a confidence of
10:1). A fair coin can never be claimed with such a confidence after observing only
100 tosses. However, 1000 tosses with well balanced outcomes can be sufficient
for confidence in the fairness of the coin.

1.7.5 The evidence for the load

I = “a loaded coin with, f ∈ [0, 1]\{ 1
2}”

J = “a fair coin with f = 1
2 ”

M = I + J
P(I|M) = P(J|M) = 1/2 are the hyper-priors for the hypotheses. As a discriminat-
ing quantity between the two scenarios we can regard their a posteriori odds, odds

O(d(n)) ≡ P(I|d(n), M)

P(J|d(n), M)

=
P(d(n)|I, M) P(I|M)/P(d(n)|M)

P(d(n)|J M) P(J|M)/P(d(n)|M)

=
P(d(n)|I, M)

P(d(n)|J, M)
.

Evidences:

• loaded coin:
P(d(n)|I) = n1! n0!

(n + 1)!

• fair coin:

P(d(n)|J) = 1
2n
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Thus, the odds of our hypotheses are

O(d(n)) =
2n n1! n0!
(n + 1)!

. (44)

Example for only heads:

n1 = n 0 1 2 3 4 5 6 7 8 9 10 100 1000

O(d(n)) 1 1 4/3 2 31/5 51/3 91/7 16 284/9 511/5 931/11 ≈ 1028.1 ≈ 10298

1.7.6 Lessons learned

1. Background information matters: P(dn+1|d(n), I1) 6= P(dn+1|d(n), I1 I2), if
I2 * I1

2. Models are mandatory for intelligence: E.g. model of a coin having the
property of a constant head frequency f .

3. Probability density functions (PDFs) times a volume measure are probabili-
ties, therefore PDFs follow Bayes theorem.

4. Learning & forgetting: Posterior changes with new data and usually be-
comes sharply peaked with large amounts of data.

5. Sufficient statistics are compressed data, which still gives the same informa-
tion on the quantity of interest as the original data, e.g. only the number of
heads and tails are relevant, but not their order: P( f |d(n), I) = P( f |n1, n0, I).

6. Probabilities: Knowledge states are described by probabilities.

7. Frequencies: Probabilities and frequencies are in general different concepts,
but in case of known frequencies they coincide, P(d = 1| f , I) = f .

8. Joint probability: All relevant information is contained in the joint probabil-
ity of data and signal. Likelihood, prior, evidence, and posterior are different
normalized cuts and marginalizaitons of it.

9. Posterior: The knowledge of the signal given the data and all model assump-
tions.

P( f |d, I) =
P(d, f |I)∫
d f P(d, f |I)

10. Evidence: The signal-marginalized joint probability. It is also the “likelihood”
of the model.

11. Nested models are models where one contains the other and becomes iden-
tical to it, when some of its parameters take a specific value. The fair coin
model is nested in the model of the unfair coin of unknown bias, as f → 1/2

reproduces it.

12. Occam’s razor: Among competing hypotheses, the one with the fewest assumptions
should be selected. In a maximum likelihood comparison of nested models,
however, the more complex will always win or be equal to the simpler model.
The Bayesian odds ratio does not fall into this pitfall and has Occam’s razor
build in.
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13. Uncertainty: The uncertainty of an inferred quantity depends in general on
the data realization obtained.

1.8 adaptive information retrieval

How to infer from adaptively taken data, in which the last outcome determines
the next measurement action?

1.8.1 Inference from adaptive data retrieval

Data d(n) = (d1, . . . dn) taken to infer a signal s was obtained sequentially. Let ai,
the action chosen to measure di via

di ←↩ P(di|ai, s), (45)

depend on previously measured data through the data retrieval strategy function
A : d(i−1) → ai.

• A predetermined strategy is independent of the prior data⇒ A(d(i−1)) ≡ ai
irrespective of d(i−1)

• An adaptive strategy depends on the data: ∃i, d(i−1), d′(i−1) : A(d(i−1)) 6=
A(d′(i−1))

Thus, a new datum di depends conditionally on the previous data d(i−1) through
strategy A,

P(di|ai, s) = P(di|A(d(i−1)), s) = P(di|d(i−1), A, s). (46)

The likelihood of the full data set d = d(n) is

P(d|A, s) = P(dn|d(n−1), A, s) · · · P(d(1)|A, s) =
n

∏
i=1

P(di|d(i−1), A, s). (47)

If we had used a different strategy B, we probably would have gotten different
data, as the set of actions might have diverged.
It is however possible that the actual sequence of actions a = (a1, . . . an) could have
been the result of a different strategy B, e.g. the predetermined strategy B(d(i)) ≡ ai
that happens to coincide to A for the actual data observed (but not necessarily for
other data realizations).

likelihood:

P(d|A, s) =
n

∏
i=1

P(di|A(d(i−1)), s) =
n

∏
i=1

P(di|ai, s) (48)

=
n

∏
i=1

P(di|B(d(i−1)), s) = P(d|B, s), (49)

posterior:

P(s|d, A) =
P(d|A, s)P(s|A)

P(d|A)
=

P(d|A, s)P(s)
P(d|A)

(50)

=
P(d|A, s)P(s)

∑s P(d|A, s)P(s)
=

P(d|B, s)P(s)
∑s P(d|B, s)P(s)

(51)

= P(s|d, B) (52)
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Used assumption: P(s|A) = P(s)
⇒ Bayesian signal deduction does not depend on why some data was taken, only
on how it was taken and what it was:

P(s|d, A) = P(s|d, B) (53)

if A, B strategies that provide the same set of actions for the observed data:
A(d(i)) = B(d(i)) = ai and the signal is independent of the strategy, P(s|A) =

P(s).
Corollary: A sequence of interdependent observations (= actions and resulting
data) is open to a Bayesian analysis without knowledge of the used strategy func-
tion. A frequentist analysis, which depends on all possible data realizations, not
only the observed ones, needs to fully know the strategy function, as this affects
the likelihood of all possible data realizations.
⇒ A history (= record of a sequence of interrelated actions and consequences) is a
valid information source for Bayesians inference, but nearly useless for frequentists
analysis as it does not report what would have happened if some datum would
have been different.

1.8.2 Adaptive strategy to maximize evidence

Can spurious evidence be created for a false hypothesis I, against the right hypoth-
esis J? We might ask for O(d(n)) = P(I|d(n)) : P(J|d(n)) = 10 : 1 � 1 to claim J to
be proven! Can this be made more likely by tuning the strategy?
Odds:

O(d(n)) =
P(I|d(n))
P(J|d(n))

(54)

=
P(d(n)|I)P(I)
P(d(n)|J)P(J)

(55)

The expectation value of the odds against the correct hypothesis, averaged over the
outcomes of possible data realizations d = d(n) given an observing strategy A

〈O(d)〉(d|J) = ∑
d

P(d|A, J)O(d) (56)

= ∑
d

P(d|A, J)
P(d|A, I) P(I)
P(d|A, J) P(J)

(57)

=
P(I)
P(J) ∑

d
P(d|A, I)︸ ︷︷ ︸

=1

(58)

=
P(I)
P(J)

, (59)

is independent on the strategy A.
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⇒ By tuning the strategy, no additional odds mass (expected odds) in favor of a
wrong hypothesis can be generated, however, the odds mass can be redistributed.
E.g. rare high odds events can be traded for an increased number of moderate
odds event. Stopping a measurement sequence when a chosen significance thresh-
old happens to be reached is such a strategy.

Does this mean we do not learn from data?
Not at all, the expected odds for the right hypothesis, 1/O, usually increases:〈

1
O(d)

〉
(d|J)

= ∑
d

P(d|A, J)
P(d|A, J) P(J)
P(d|A, I) P(I)

(60)

=
P(J)
P(I) ∑

d
P(d|A, I)

[
P(d|A, J)
P(d|A, I)

]
︸ ︷︷ ︸

≡r(d)

2

(61)

=
P(J)
P(I)

〈
r2(d)

〉
(d|A,I) (62)

≥ P(J)
P(I)

〈r(d)〉2(d|A,I) (63)

=
P(J)
P(I)

[
∑
d

P(d|A, I)
P(d|A, J)
P(d|A, I)

]2

(64)

=
P(J)
P(I)

[
∑
d

P(d|A, J)

]
︸ ︷︷ ︸

=1

2

(65)

=
P(J)
P(I)

, (66)

where we used
〈
r2(d)

〉
(d|A,I) = r2 + σ2

r ≥ r2 with

r ≡ 〈r(d)〉(d|A,I) , (67)

σ2
r ≡

〈
[r(d)− r]︸ ︷︷ ︸
≡∆(r)

2

〉
(d|A,I)

since (68)

〈
r2(d)

〉
(d|A,I) =

〈
[r + ∆(d)]2

〉
(d|A,I)

(69)

=
〈
r2 + 2 r ∆(d) + ∆2(d)

〉
(d|A,I) (70)

= r2 + 2 r 〈∆(d)〉(d|A,I)︸ ︷︷ ︸
=0

+
〈
∆2(d)

〉
(d|A,I)︸ ︷︷ ︸

=σ2
r

(71)

= r2 + σ2
r � (72)





2
D E C I S I O N T H E O RY

2.1 optimal risk

Decisions should be done rationally. For example in science, given data d from a
measurement of a signal s we have to decide which estimate of s we publish. For
a rational decision, we need to know the possible consequences of our action.

The loss function l(a, s) quantifies the loss associated with an action a (e.g. the
number we publish) if the data was actually generated by the signal having value
s. l might measure the e.g. the lost money, status, health, security, or attention.
optimal risk: The risk of an action a given the data d is the expected loss

r(a, d) = 〈l(a, s)〉(s|d) =
∫

ds l(a, s)P(s|d). (73)

The optimal action minimizes this risk.

2.2 loss functions

• quadratic loss: “square error of a trying to match true s” (used often in
scientific publishing)

l(a, s) = (a− s)2 (74)

Calculate the best action by minimizing the optimal risk:

r(a, d) =
∫

ds (a− s)2P(s|d) (75)

= 〈(a− s)2〉(s|d) (76)

∂r(a, d)
∂a

= 〈2(a− s)〉(s|d) (77)

= 2a− 2〈s〉(s|d)
!
= 0 (78)

⇒ a = 〈s〉(s|d) (79)

For the quadratic loss function the best estimator for s is the mean of s under the
posterior distribution P(s|d).

• linear loss: “absolute loss” (often used in nummerics)

l(a, s) = |a− s| (80)

27
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Calculate the best action by minimizing the optimal risk:

∂r(a, d)
∂a

=
∂

∂a

∫ ∞

−∞
ds |a− s| P(s|d) (81)

=
∂

∂a

[∫ a

−∞
ds−

∫ ∞

a
ds
]
[(a− s)P(s|d)] (82)

= [|s=a + |s=a] [(a− s)P(s|d)] +
∫ a

−∞
dsP(s|d)−

∫ ∞

a
dsP(s|d)(83)

!
= 0 (84)

⇒
∫ a

−∞
P(s|d) =

∫ ∞

a
P(s|d) (85)∫ ∞

−∞
P(s|d) = 1 (86)

⇒
∫ a

−∞
P(s|d) = 1/2 (87)

For the linear loss the best estimate of a signal is the median of its posterior
distribution P(s|d).

• delta loss: For this there is the same penalty, whenever the estimate a does
not exactly correspond to the true signal s, unrelated to the distance between
a and s. (might be regarded as a military loss function)

l(a, s) = −δ(a− s) (88)

r(a, d) = −
∫

ds δ(a− s)P(s|d) (89)

= −P(a|d) (90)

For the delta loss the best estimate of a signal is given by its mode, the location
of the maximum of the posterior distribution P(s|d).

2.3 communication

Communication requires to decide which message M ∈ M is to be sent to the
recipient. Here, we are concerned with the optimal communication of a knowledge
or believe state p(s) = P(s|I) on some signal s in case we have to approximate
it by selecting a message M from a limited set M. Each M generates a known
believe state q(s) = P(s|M) in the recipient, so that we can identify q and M in
the following. How should we decide to select among the M ∈ M (= among the
accessible qs)?

We might want to avoid the embarrassment we face by giving wrong advice.
Is there a generic measure for embarrassment? In general it will depend on how
much damage is done if something is assumed but something else was the case.
Here, we look only at the generic case that we want to avoid to inform incorrectly,
irrespective of what the different cases of s are. The goal is to assign the highest
possible probability to the s that turns out the case, with the catch, that this is not
known.

We follow the argumentation of [9].
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p(s)=P(s|I)

M

Alice Bob

q(s)=P(s|M)

s s

Figure 3: Communication setup: Alice wants to transfer her knowledge I to Bob, however,
she is only able to select one imperfect message M from a set of possible messages
M. Which one should she send to inform Bob best? Which criteria should she
use for her decision?

2.3.1 Embarrassment – a unique loss function

Loss function l(q, s0) to quantify embarrassment of communicating q(s) in case
that s turns out to be s0.
As we do not know s0, all we can do is to minimize the expected loss

r(q, p) = 〈l(q, s0)〉p =
∫

ds0 l(q, s0)p(s0). (91)

But which loss function is sensible?

Criterion 1. (Being local) If s = s0 turned out to be the case, l only depends on the
prediction q actually made about s0: l(q, s0) = L (q(s0))

For example frequentist’s p̃-values p̃(s0) =
∫

s≥s0
dsP(s|I) do not fulfill criterion

(1) as they depends on the probability of counter-factual events.

Criterion 2. (Being proper) If any belief on s can be communicated, the optimal commu-
nication should be q = p:

argminq 〈L (q(s0))〉p = p (92)
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While minimizing the expected embarrassment we ensure the normalization of
q via a Lagrange multiplier:

0 =

 d
dq(s)︸ ︷︷ ︸

minimum


∫

ds0 L (q(s0))︸ ︷︷ ︸
only s0 matters

p(s0)︸ ︷︷ ︸
guessing s0

+λ

(∫
ds0 q(s0)− 1

)
︸ ︷︷ ︸

normalization




q = p︸ ︷︷ ︸
properness

(93)

=
∫

ds0
[
L ′(p(s0)) δ(s0 − s) p(s0) + λ δ(s0 − s)

]
(94)

=L ′(p(s)) p(s) + λ (95)

⇒L ′(p(s)) = − λ

p(s)
(96)

⇒L (p(s)) = −λ ln(p(s)) + δ . (97)

λ > 0 and δ are constants with respect to q, which can be chosen arbitrarily. Choos-
ing λ = 1 and δ = 0:

Expected embarrassment: r(q, p) = 〈l(q, s0)〉p(s0)
= −

∫
ds0 p(s0) ln(q(s0))(98)

Cross entropy: S(p, q) = −
∫

ds p(s) ln(q(s)) (99)

Entropy: S(p) = −
∫

ds p(s) ln(p(s)) = S(p, p) (100)

Choosing δ =
∫

ds0 p(s0) ln(p(s0)) = −S(p) provides a coordinate invariant mea-
sure:Kullback-Leibler

divergence Kullback-Leibler divergence:

DKL(p||q) =
∫

ds p(s)ln
(

p(s)
q(s)

)
= S(p, q)− S(p)

The Gibbs inequality states DKL(p||q) ≥ 0 if p and q are properly normalized
probabilities. Proof:Gibbs inequality

−DKL(p||q) =
∫

ds p(s) ln
(

q(s)
p(s)

)
(101)

≤
∫

ds p(s)
(

q(s)
p(s)

− 1
)

(102)

=
∫

ds q(s)−
∫

ds p(s) (103)

= 1− 1 = 0 � (104)

DKL(p||q) = 0 iff (if and only if) q(s) = p(s) for ∀s (up to zero-measure differences,
proof left for exercise).
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Kullback-Leibler divergence

KLs(A, B) := DKL(P(s|A)||P(s|B)) =
∫

dsP(s|A) ln
(
P(s|A)

P(s|B)

)
(105)

measures how much information on s is expected from A with respect to B.
Unit is nit = nat or bits if log2 is used, conversion 1 nit = 1/ln 2 bit ≈ 1.44 bit,
1 bit = 1 shannon.

Information (or surprise) H(s|I) = − logP(s|I) information

Product rule:

P(d, s|I) = P(d|s, I)P(s|I) (106)

= P(s|d, I)P(d|I) (107)

⇒ H(d, s|I) = H(d|s, I) +H(s|I) (108)

= H(s|d, I) +H(d|I) (109)

⇒ Information is additive.

Kullback-Leibler divergence

KLs(A, B) = 〈H(s|B)−H(s|A)〉(s|A) (110)

measures expected information gain from B to A. Note that the averaging over
P(s|A) is focusing on regions where lnP(s|A) = −H(s|A) is largest.

Example: Result vector d∗ ∈ {0, 1}n of n tosses of a fair coin gets known
Prior: P(d|I) = 2−n

Posterior: P(d|d∗, I) = δd,d∗

KLd((d∗, I), I)
bits

= ∑
d

P(d|d∗, I) log2

(
P(d|d∗, I)

P(d|I)

)
(111)

= ∑
d

δd,d∗ log2

(
δd,d∗

2−n

)
(112)

= log2 (2
n) = n log2 (2) = n (113)

The result of n tosses contains exactly n bits on information on the outcome.

Optimal coding: choose message M that minimizes expected surprise

KLs(I, M) = 〈H(s|M)−H(s|I)〉(s|I)

and the amount of information needed to update from M to I.

31
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Independence:
If P(x, y|A) = P(x|A)P(y|A) and P(x, y|B) = P(x|B)P(y|B):

KL(x,y)(A, B) =
∫

dx
∫

dyP(x, y|A) ln
(
P(x, y|A)

P(x, y|B)

)
(114)

=
∫

dx
∫

dyP(x|A)P(y|A) ln
(
P(x|A)P(y|A)

P(x|B)P(y|B)

)
(115)

=
∫

dx
∫

dyP(x|A)P(y|A)

[
ln
(
P(x|A)

P(x|B)

)
+ ln

(
P(y|A)

P(y|B)

)]
(116)

=
∫

dxP(x|A) ln
(
P(x|A)

P(x|B)

)
+
∫

dyP(y|A) ln
(
P(y|A)

P(y|B)

)
(117)

= KLx(A, B) + KLy(A, B) (118)

KL is additive for independent quantities.

Mutual information of I:

MI(x,y)(I) = DKL(P(x, y|I)||P(x|I)P(y|I)) (119)

=
∫

dx
∫

dyP(x, y|I) ln
(
P(x, y|I)
P(x|I)P(y|I)

)
(120)

= 〈H(x|I) +H(y|I)−H(x, y|I)〉(x,y|I) ≥ 0 (121)

Since
P(x, y|I)
P(x|I)P(y|I) =

P(x|y, I)
P(x|I) =

P(y|x, I)
P(y|I) (122)

we also get

MI(x,y)(I) = 〈H(x|I)−H(x|y, I)〉(x,y|I) (123)

= 〈H(y|I)−H(y|x, I)〉(x,y|I) ≥ 0 (124)

The reduction of the expected surprises on one variable due to knowing the
other one.
MI(x,y)(I) = 0 for independent quantities (“x⊥y|I”=”P(x, y|I) = P(x|I)P(y|I)”).
MI used to test for relations between quantities.

Bayesian updating: I →(d, I), P(s|I)→ P(s|d, I) = P(d|s,I)
P(d|I) P(s|I)

KLs((d, I), I) = 〈H(s|I)−H(s|d, I)〉(s|d,I) (125)

=
∫

dsP(s|d, I) ln
(
P(s|d, I)
P(s|I)

)
(126)

=
∫

dsP(s|d, I) ln
(
P(d|s, I)
P(d|I)

)
(127)

= 〈H(d|I)−H(d|s, I)〉(s|d,I) (128)

Information gain on s by data d =how much data is less surprising if signal is
known on (posterior) average.
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Divergence: asymmetric distance measure (depends on direction).
Becomes symmetric for small distances:

p(s) = q(s) + ε(s) (129)

ε(s) � q(s), p(s) ∀s (130)

0 =
∫

ds ε(s) (131)

DKL(p||q) =
∫

ds p(s) log
(

p(s)
q(s)

)
(132)

=
∫

ds (q(s) + ε(s)) log
(

1 +
ε(s)
q(s)

)
(133)

=
∫

ds

{
(q(s) + ε(s))

[
ε(s)
q(s)
− 1

2

(
ε(s)
q(s)

)2
]
+O(ε3)

}
(134)

=
∫

ds

[
ε(s) +

(ε(s))2

2q(s)
+O(ε3)

]
(135)

= 0 +
∫

ds
[p(s)− q(s)]2

2q(s)
+O(ε3) (136)

=
∫

ds
[p(s)− q(s)]2

2
√

p(s) q(s)
+O(ε3) (137)

1/p ≈ 1/q ≈ 1/√pq seems to be metric in space of probabilities
→ information geometry (but be beware, original KL is not a distance!)

Probabilities are parameterized in terms of conditional parameters, P(s|θ).
Expansion in terms of those leads to the Fisher information metric:

θ′i = θi + ε i (138)

P(s|θ′) = P(s|θ) + ∂P(s|θ)
∂θi

ε i +O(ε2), sum convention (139)

KLs(θ
′, θ) = KLs(θ, θ)︸ ︷︷ ︸

=0

+
∂KLs(θ′, θ)

∂θ′i

∣∣∣∣
θ′=θ︸ ︷︷ ︸

=0

ε i +
1
2

ε i
∂²KLs(θ′, θ)

∂θ′i ∂θ′j

∣∣∣∣∣
θ′=θ︸ ︷︷ ︸

=gij

ε j +O(ε3),(140)
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where

gij =
∂2

∂θ′i ∂θ′j

∫
dsP(s|θ′) ln

P(s|θ′)
P(s|θ)

∣∣∣∣∣
θ′=θ

(141)

=
∂

∂θ′i

∫
ds

[
∂P(s|θ′)

∂θ′j
ln
P(s|θ′)
P(s|θ) +

∂P(s|θ′)
∂θ′j

]∣∣∣∣∣
θ′=θ

(142)

=
∂

∂θ′i

∫
ds
[

ln
P(s|θ′)
P(s|θ) + 1

]
∂P(s|θ′)

∂θ′j

∣∣∣∣∣
θ′=θ

(143)

=
∫

ds

{
1

P(s|θ′)
∂P(s|θ′)

∂θ′i

∂P(s|θ′)
∂θ′j

+

[
ln
P(s|θ′)
P(s|θ) + 1

]
∂2P(s|θ′)

∂θ′i ∂θ′j

}∣∣∣∣∣
θ′=θ

(144)

=
∫

ds
[

1
P(s|θ)

∂P(s|θ)
∂θi

∂P(s|θ)
∂θ j

+
∂2P(s|θ)

∂θi∂θ j

]
(145)

=
∫

dsP(s|θ) ∂lnP(s|θ)
∂θi

∂ lnP(s|θ)
∂θ j

+
∂2

∂θi∂θj

∫
dsP(s|θ)︸ ︷︷ ︸

=1︸ ︷︷ ︸
=0

(146)

=

〈
∂H(s|θ)

∂θi

∂H(s|θ)
∂θ j

〉
(s|θ)

, (147)

but also

gij =
∫

ds
∂lnP(s|θ)

∂θi

∂P(s|θ)
∂θ j

(148)

=
∂

∂θ j

∫
dsP(s|θ) ∂lnP(s|θ)

∂θi
−
∫

dsP(s|θ) ∂2lnP(s|θ)
∂θi∂θ j

(149)

=
∂

∂θ j

∫
ds

∂P(s|θ)
∂θi

+

〈
∂2H(s|θ)

∂θi∂θ j

〉
(s|θ)

(150)

=
∂2

∂θi∂θj

∫
dsP(s|θ)︸ ︷︷ ︸

=1︸ ︷︷ ︸
=0

+

〈
∂2H(s|θ)

∂θi∂θ j

〉
(s|θ)

(151)

=

〈
∂2H(s|θ)

∂θi∂θ j

〉
(s|θ)

(152)

is the (Bayesian) Fisher information metric. This measures how sensitive expected
information gain is in the limit of small amounts of additional data. Used to char-
acterize the sensitivity of future experiments with respect to parameters of interest.
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M A X I M U M E N T R O P Y

4.1 decoding a message

Requirements on action for optimal coding of knowledge p with the aim to hon-
estly inform the receiver with message M:

• Locality (possibilities not addressed by M should stay unaffected )

• Properness (if possible, q = p)

⇒ Cross entropy S(p, q) = −
∫

ds p(s) ln q(s) is action to choose q(s) = P(s|M)

(up to constant in q)

• Coordinate invariance of action

⇒ KL divergence DKL(p||q) = S(p, q) − S(p) =
∫

ds p(s) ln [p(s)/q(s)] codes
same message, as S(p) = S(p, p) = const(q).

Requirements on action S [q|r] for optimal decoding of message M, where now
r(s) = P(s|J) is initial knowledge of receiver, and q(s) = P(s|J, M) should be the
updated state.

1. Locality:

2. Coordinate independence of result (and therefore of action)

3. Separability: “Independent systems can be equally treated jointly as well as
separately.”

Maximum entropy principle (Jaynes, see Sect. (4.2) for sketch of derivation)
⇒ Entropy S [q|r] = −DKL(q||r) = S(r)−S(q, r) = −

∫
ds q(s) ln [q(s)/r(s)] to be

maximized w.r.t. q
⇒ KL divergence DKL(q||r) = S(q, r) − S(r) =

∫
ds q(s) ln [q(s)/r(s)] to be

minimized w.r.t. q

4.2 maximum entropy principle

Entropy is a measure for the amount of the information, which is forcing a change
in belief.
Use of entropy:

• Decide on an optimal strategy of updating (after receiving a message)

• Set up probabilities (the message was empty)

• General law to update information (the message could have come from any-
where, including nature)

35
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Notation:
s: unknown quantity
J: initial background information
M: new information (message in form of a set of constraints)

Bayesian knowledge update of M = {d, P(d|s, M)} with J′ = JM:

P(s|J) M→ P(s|J′) = P(d|s, M)P(s|J)
P(d) (153)

How does P(s|J′) look like under the assumption M = {d, 〈 f (s)〉(s|M)} ?
⇒ P(s|J′) should carry a minimum of extra information with respect to P(s|J)
while being consistent with J′ = JM.
Principle of Minimum Updating (PMU):
Beliefs must be reviewed only to the extent required by the new information.

Since we will in the following not assume a priori that this update is according to
the laws of probabilities, we introduce for the following the notation r(s) = P(s|J)
and q(s) = P(s|J′) for the functions of s, that happen to describe our prior and
posterior knowledge. Later we have to see whether our updating is consistent with
Bayesian reasoning or not.

Entropy is a measure of the relative information of q with respect to r:

relative entropy of q w.r.t. r = S [q|r]
= negative information gain r → q

Therefore the PMU is equivalent to the Maximum Entropy Principle (MEP).
Maximum Entropy Principle (MEP)
Updating from r(s) = P(s|I) to q(s) = P(s|J′ = JM) given some information M
should maximize the entropy S [q|r] under the constraints of M.

⇒

S= action for updating, favouring the most ignorant knowledge state P(s|J′)
In other words, S assigns numerical values to probability functions, such that if q1

is preferred over q2, then S [q1|r] > S [q2|r]. Following Jaynes, there are 3 criteria to
construct entropy:

1. Locality: “Local information has only local effects.”
New information M affecting only some Ω′ ⊂ Ω = {s} in J′ = JM leaves the
knowledge of J about Ω\Ω′ unaffected

P(s|J′, s ∈ Ω\Ω′) = P(s|J, s ∈ Ω\Ω′) (154)

⇒Non-overlapping domains of s have an additive contribution to the entropy

S [q|r] =
∫

Ω
ds F(q(s), r(s), s) (155)

F: some unknown local function

2. Coordinate invariance: “Chosen system of coordinates does not carry infor-
mation”
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Coordinate transformation:
m(s): some density function
m′(t): transformed density function

m(s) ds = m′(t) dt (156)

m′(t) = m(s(t))
∣∣∣∣ds
dt

∣∣∣∣ (157)

This is also true for the considered probability densities q, r.

S [q|r] =
∫

ds m1(s) F′
(

q(s)
m2(s)

,
r(s)

m3(s)

)
(158)

From 1. we know that if Ω = Ω′ and M = {}, then we require q = r. When
there is no new information there is no reason for updating the probability
density function and therefore q and r coincide.

Jaynes shows⇒ S [q|r] =
∫

Ω
ds q(s) F′

(
q(s)
r(s)

)
(159)

3. Independence: “Independent systems can be equally treated jointly as well
as separately.”
Consider two independent systems:

s = (s1, s2) (160)

r(s) = r1(s1)r2(s2) (161)

q(s) = q1(s1)q2(s2) (162)

New information M = M1M2 is acquired⇒ S [q|r] = S [q1|r1] + S [q2|r2]

Using the results from the coordinate invariance, we get

S [q|r] = −
∫

ds q(s) ln
(

q(s)
r(s)

)
= −DKL(q||r). (163)

Proof:

S [q|r] = −
∫

ds q(s) ln
(

q(s)
r(s)

)
(164)

= −
∫

ds1

∫
ds2 q1(s1)q2(s2) ln

(
q1(s1)q2(s2)

r1(s1)r2(s2)

)
(165)

= −
∫

ds1

∫
ds2 q1(s1)q2(s2)

[
ln
(

q1(s1)

r1(s1)

)
+ ln

(
q2(s2)

r2(s2)

)]
(166)

= −
[∫

ds1q1(s1) ln
(

q1(s1)

r1(s1)

)]
·
∫

ds2q2(s2)︸ ︷︷ ︸
=1

(167)

−
[∫

ds2q2(s2) ln
(

q2(s2)

r2(s2)

)]
·
∫

ds1q1(s1)︸ ︷︷ ︸
=1

(168)

= S [q1|r1] + S [q2|r2] (169)
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Actually, the case S [q|r] = const for ∀q, r has to be eliminated by the addi-
tional, pragmatic requirement

4. Sensitivity: “The gradient of S [q|r] should lead to the optimal q.”

4.3 optimal communication

S [q|r] = −DKL(q||r) (170)

Note the different usages of MaxEnt and the KL divergence in optimal communi-
cation:
Coding a message is done via minimizing of second argument of DKL(q||r), to
ensure that the receiver’s knowledge would only need a minimal amount of infor-
mation to catch up to p. Decoding a message is done via minimizing the first ar-
gument of DKL(q||r) (or maximizing S [q|r]), to add the least amount of (spurious)
information during decoding besides what the message says (maximal entropy).
Rule of thumb: The first argument (the probability averaged over) is always the
more accurate one.

Optimal coding: choose message M that minimizes expected surprise

M = argmin
M′

KL(I, M′) = argmin
M′

〈H(s|M′)−H(s|I)〉(s|I) (171)

and the amount of information needed to update from M to I.
Optimal decoding: given initial knowledge state r(s) = P(s|J) and received mes-
sage M = M(p) about p(s) = P(s|I) (message here to be read as statement in the
form of M(p) = 0), choose q(s) = P(s|J′) consistent with M that adds the least
amount of information with respect to r (leaves a maximum amount of information
to be added later on):

q = argmin
q′,λ

[
DKL(q′||r) + λ M(q′)

]
(172)

J′ = argmin
J′′,λ

[
KL(J′′, J) + λ M(P(s|J′′))

]
(173)

Optimal communication: optimal decoding of optimally coded message:
Sender with knowledge I codes message M to shift receiver knowledge from J to J′

M = argmin
M

KL(I, J′(J, M)) (174)

= argmin
M

KL

(
I, argmin

J′,λ

[
KL(J′, J) + λ M(P(s|J′))

])
(175)

⇒ communication is a game, in which sender chooses her action anticipating the
reaction of the receiver.
In optimal communication, the sender wants to inform honestly (to generate mini-
mal expected surprise for the receiver). For this, sender and receiver need to share
common knowledge about coding (encoding and decoding), e.g. by having an
agreement on this. Entropy singles out a coding scheme, alleviating the need to
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first agree on a coding scheme.

Real communication: any of those assumption can be violated (e.g. sender em-
phasizes what she thinks is important for receiver, communicates what she wants
the receiver to believe, receiver distrusts sender, sender makes wrong assumption
about receiver’s knowledge or ability to decode, ...)
⇒ really, really complicated mess, but interesting psychology

Corrective strategies:
Robust communication: Send facts! Communicate raw data instead of its interpre-
tation! A Bayesian receivers will build up his own knowledge system.
Questions: Request for necessary, unambiguous information. Probe knowledge,
assumptions, and communication strategies of communication partner.
Reputation systems: Remembering and rewarding honest and informative com-
munications. This will encourage such and allows to identify and concentrate on
trustworthy information sources.

4.4 maximum entropy with hard data constraints

Prior information: I = “q(d, s) = P(d, s|I), data d and signal s are unknown.”
Updating information: J =“d = d∗ =observed data, data has a particular value.”

p(d, s) := P(d, s|I, J) = δd,d∗ P(s|I J)︸ ︷︷ ︸
=:p(s)

(176)

⇒ p(s) has to be found, since if p(s) is known, the updating of p(d, s) is known.
Constrained entropy:

S∗[p|q] = −
∫

ds ∑
d

p(d, s)
[

ln
(

p(d, s)
q(d, s)

)
− λ

]
(177)

= −
∫

ds p(s)
[

ln
(

p(s)
q(d∗, s)

)
− λ

]
(178)

For the second step we used 0 ln 0 = 0, since limε→0 ε ln ε = 0.
The Lagrange multiplier λ enforces the normalisation of p(s),

∂S∗
∂λ

=
∫

ds ∑
d

p(d, s) !
= 1. (179)

Maximizing the entropy:

δS∗[p|q]
δp(s′)

= − ln
(

p(s′)
q(d∗, s′)

)
+ λ− p(s′)

p(s′)︸ ︷︷ ︸
=1

!
= 0 (180)

⇒ p(s) = q(d∗, s) · eλ−1 (181)
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Normalization:

∂S∗
∂λ

=
∫

ds p(s) = eλ−1
∫

ds q(d∗, s)︸ ︷︷ ︸
Z(d∗)

!
= 1 (182)

⇒ eλ−1 =
1

Z(d∗) (183)

Merging the results from the maximization and the normalization with the parti-
tion sum Z(d∗) we get

P(s|I, J) = p(s) =
q(d∗, s)
Z(d∗) =

P(d∗, s|I)∫
ds P(d∗, s|I)

= P(s|d∗, I). (184)

⇒ Maximum entropy embraces and extends Bayes updating!
The transition from Bayesian updating to Maximum Entropy updating has simi-
larities to the transition from Newtonian dynamics to Lagrangian dynamics as in
both cases dynamical equations containing forces (on mechanical or knowledge
systems) become replaced and embraced by action principles.

4.5 maximum entropy with soft data constraints

Prior information: I = “q(x) = P(x|I), x is unknown.”
Updating information: J = “d = 〈 f (x)〉(x|J,I) =

∫
dx f (x)P(x|J, I)” (e.g. from a

perceived message)
The new information J constrains the probability density p(x) = P(x| J, I︸︷︷︸

=I′

) (sim-

ilar constraint for normalization: 〈1〉(x|J, I)=1). The constraint can be added to the
entropy via a Lagrange multiplier,

S∗[p|q] = −
∫

dx p(x)
[

ln
(

p(x)
q(x)

)
− λ− µ f (x)

]
. (185)

Providing normalization, new information and maximum entropy, the following
derivations are obtained:

∂S∗
∂λ

=
∫

dx p(x) = 〈1〉(x|J, I)
!
= 1 (186)

∂S∗
∂µ

=
∫

dx p(x) f (x) = 〈 f (x)〉(x|I, J)
!
= d (187)

δS∗
δp(x)

= − ln
(

p(x)
q(x)

)
+ λ + µ f (x)− p(x)

p(x)
!
= 0. (188)



acknowledgments 41

⇒ p(x) = q(x)eλ−1eµ f (x) (189)

=
q(x)
Z(µ) eµ f (x) (190)

Z(µ) =
∫

dx q(x)eµ f (x) (191)

The partition sum Z(µ) accounts for the normalization of the updated probability
density p(x). The Lagrange multiplier µ has to be chosen such that

d !
= 〈 f (x)〉(x|J) =

∫
dx f (x)q(x)eµ f (x)

Z(µ) =
1
Z(µ)

∂Z(µ)
∂µ

=
∂lnZ(µ)

∂µ
. (192)

4.6 different flavors of entropy

prior: q(x) = P(x|I)
constraint J : 〈 f (x)〉(x|J, I) = d
posterior: p(x) = P(x|J, I)
constraints with Lagrange multiplier:

• for normalization: λ
(∫

dx p(x)− 1
)

• for new information J: µ
(∫

dx p(x) f (x)− d
)

The constrained entropy S [p|q, J], which has to be maximized with respect to
p(x), λ, µ, is given by,

S [p|q, J] = −{
∫

dx p(x)[ln
(

p(x)
q(x)

)
︸ ︷︷ ︸

S [p|q]

−λ− µ f (x)]}

︸ ︷︷ ︸
S∗[p|q, J]

−λ− µd. (193)

In this case S [p|q] represents the amount of relative information of p with respect
to q in nits. S∗[p|q, J] denotes the “alternative/auxiliary entropy”, which has to be

maximized with respect to p(x) and sloped by ∂S∗
∂λ

!
= 1, ∂S∗

∂µ

!
= d.

4.7 information gain by maximizing the entropy

Instead of information gain it is more precise to talk about a loss of uncertainty
associated with the relative entropy.

• relative negative information gain:

S [p|q] = −
∫

dx p(x) ln
(

p(x)
q(x)

)
(194)
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Plugging in the maximum entropy solution for p(x) we obtain

S [p|q] = −
∫

dx
q(x)eµ f (x)

Z(µ)︸ ︷︷ ︸
=1, as

∫
dx q(x)eµ f (x)=Z(µ)

ln

(
eµ f (x)

Z(µ)

)
(195)

= −
[∫

dx
q(x)eµ f (x)

Z(µ) µ f (x)− lnZ(µ)
]

(196)

= lnZ(µ)− µ 〈 f (x)〉(x|J)︸ ︷︷ ︸
=d

(197)

⇒ S [p|q] = lnZ(µ)− µd (198)

• auxiliary entropy:

S∗[p|q, J] = S [p|q] + λ + µ 〈 f (x)〉(x|J)︸ ︷︷ ︸
=d

(199)

= S [p|q] + λ + µd (200)

= lnZ(µ)− µd + λ + µd (201)

= lnZ(µ) + λ (202)

= 1 (203)

For the last step we used

Z(µ) = e1−λ (204)

λ = 1− lnZ(µ). (205)

• constrained entropy:

S [p|q, J] = S∗[p|q, J]− λ− µd (206)

= 1− λ− µd (207)

= lnZ(µ)− µd (208)

⇒At the maximum of S [p|q, J] the change in information is,

S [p|q, J] = S [p|q] = lnZ(µ)− µd (209)

If n constraints 〈 fi(x)〉 = di are considered, we define

d =


d1
...

dn

 , f (x) =


f1(x)

...

fn(x)

 , µ =


µ1
...

µn


d† = (d1, d2, ..., dn)

d†µ =
n

∑
i=1

diµi

Maximizing the entropy:
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• with respect to λ :
∂S [p|q, J]

∂λ

!
= 0

Condition is automatically fulfilled by normalization 1/Z.

• with respect to µ :
∂S [p|q, J]

∂µ
=

∂ lnZ(µ)
∂µ

− d !
= 0

The Lagrange multiplier µ is determined to,

∂ lnZ(µ)
∂µ

= d,

by maximizing the entropy (lnZ(µ) may be interpreted as the Helmholtz free
energy).

Maximum Entropy Recipe:
q(x) = P(x|I), J = ”〈 f (x)〉(x|J, I) = d”, p(x) = P(x|J, I) =?

1. calculate the partition sum: Z(µ) =
∫

dx q(x)eµ f (x)

2. determine µ: ∂ lnZ(µ)
∂µ

!
= d

3. assign: p(x) = q(x) eµ† f (x)

Z(µ)

4. calculate the information gain (in nits=bits/ln2 ≈ 1.44 bits if natural
logarithm is used in entropy):

∆I [p|q] = −S [p|q] = µd− lnZ(µ)

4.7.1 Coin Tossing Example

• I =”x ∈ {0, 1}”

• q(x) = P(x|I) = 1/2

• J =”frequency of heads is f ” = ”〈x〉(x| f ) = f ”

1. calculate Z(µ):

Z(µ) = ∑
x∈{0, 1}

q(x)eµx =
1
2
(1 + eµ) for µ < 0 (210)

2. determine µ:
∂ lnZ(µ)

∂µ
=

eµ

1 + eµ

!
= f (211)

⇒ eµ =
f

1− f
(212)

⇒ µ = ln
(

f
1− f

)
(213)
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Insert in Z(µ):

Z(µ) =
1
2

(
1 +

f
1− f

)
=

1
2(1− f )

(214)

3. calculate p(x) = P(x|J, I):

p(x) =
q(x)eµx

Z(µ) (215)

=
1/2

1/2(1− f )
(eµ)x (216)

= (1− f )
(

f
1− f

)x

(217)

= f x(1− f )1−x (218)

⇒ The P(x|J, I), calculated by Maximum Entropy Principle is the same as
we have used before in the coin flip example.

4. calculate the information gain ∆I:

∆I [p|q] = −S [p|q] (219)

= µ f − lnZ(µ) (220)

= f ln
(

f
1− f

)
− ln

(
1

2(1− f )

)
(221)

= ln 2 + f ln f + (1− f ) ln(1− f ) (222)

= (1 + f log2 f + (1− f ) log2(1− f )) bits (223)

ΔI

1bit

0 1/2 1 f

We can get up to 1 bit of information on the next outcome by knowing that
f = 0 or f = 1 as the yes/no-question “What is the outcome of the next
toss?” is definitively answered. For f = 1/2 there is no change in information
∆I = 0, we are as unsure about the next outcome as before.
The amount of gained information on the sequence of the next n outcomes is
n times the one of a single outcome.
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4.7.2 Positive Counts Example

• I =”n ∈N”

• q(n) = P(n|I) = const. = q

• J =”〈n〉 = λ”

1. calculate Z(µ):

Z(µ) = q
∞

∑
n=0

eµn = q
∞

∑
n=0

[eµ]n =
q

1− eµ
for µ < 0 (224)

2. determine µ:

∂ lnZ(µ)
∂µ

=
∂

∂µ
[ln q− ln(1− eµ)] = − 1

1− eµ
· (−eµ) (225)

=
eµ

1− eµ

!
= λ (226)

⇒ eµ =
λ

1 + λ
(227)

Set the result in Z(µ):

Z(µ) =
q

1− λ
1+λ

= q(1 + λ) (228)

3. calculate p(n) = P(n|λ = 〈n〉):

p(n) =
q(n) eµn

Z(µ) =
q ·
(

λ
1+λ

)n

q(1 + λ)
(229)

=
1

1 + λ

(
λ

λ + 1

)n

= λn (1 + λ)−1−n (230)

Check of compliance with constraints:

∞

∑
n=0
P(n|λ) =

∞

∑
n=0

1
1 + λ

(
λ

λ + 1

)n

=
1

1 + λ
· 1

1− λ
1+λ

(231)

=
1

1 + λ
· (1 + λ) = 1 (232)

∞

∑
n=0

nP(n|λ) =
∞

∑
n=0

n
1

1 + λ

(
λ

λ + 1

)n

︸ ︷︷ ︸
=yn

(233)

=
y

1 + λ
∂y

∞

∑
n=0

yn =
y

1 + λ
∂y

1
1− y

(234)

=
y

(1 + λ)(1− y)2 =
λ

(1 + λ)2(1 + λ)−2 = λ (235)
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4.7.3 Many Small Count Additive Processes

Consider a total number of counts n distributed on N independent processes:

• N = “number of processes”

• n = ∑N
i=1 ni =”total number of counts”

• I =”ni ∈N”

• J =”〈ni〉(ni |J) = δ for all i”⇒ ”〈n〉(n|J) = λ ≡ δN ”

From the probability P(ni|δ = 〈ni〉) known from the positive count example,

P(ni|δ = 〈ni〉) =
1

1 + δ

(
δ

1 + δ

)ni

, (236)

we can calculate the probability P(n|λ, N),

P(n|λ, N) =
∞

∑
n1=0

. . .
∞

∑
nN=0︸ ︷︷ ︸

≡∑~∞
~n=~0

P(n, n1, n2 , ...nN | λ, N︸︷︷︸
I′=J, I

). (237)

Assuming the independence of processes this can be decomposed to

P(n|I′) =
~∞

∑
~n=~0

P(n|n1, n2, ...nN , I′)P(n1|I′)P(n2|I′)...P(nN |I′) (238)

=
~∞

∑
~n=~0

δn, ∑N
i=0 ni

1
1 + δ

(
δ

δ + 1

)n1

...
1

1 + δ

(
δ

δ + 1

)nN

(239)

=

(
1

1 + δ

)N ~∞

∑
~n=~0

δn, ∑N
i=0 ni

(
δ

1 + δ

)∑N
i=0 ni

(240)

=

(
1

1 + δ

)N Nn

n!

(
δ

1 + δ

)n

. (241)

For the latter step, we used the knowledge that there are Nn possibilities to dis-
tribute n counts on N processes and n! possibilities to reorder the n counts.

P(n|I′) =
δn

(1 + δ)N+n ·
Nn

n!
(242)

=
(λ/N)n

(1 + λ/N)N+n ·
Nn

n!
(243)

=
λn

n!
·
(

1 +
λ

N

)−N (
1 +

λ

N

)−n

(244)

If an infinite number of processes (N → ∞, λ =fixed, δ = λ/N → 0) is considered,
the probability takes on the form of a Poisson distribution:

P(n|λ, N → ∞) =
λn

n!

(
1 +

λ

N

)−N

︸ ︷︷ ︸
→e−λ

(
1 +

λ

N

)−n

.︸ ︷︷ ︸
→1

(245)
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Poisson distribution:

⇒ P(n|λ, N → ∞) =
λne−λ

n!
(246)

The Poisson distribution is divisible:

P(n|λ) =
n

∑
m=0
P(m|λ′)P(n−m|λ− λ′) (247)

λ

λ-λ'λ'

If P(m|λ′) and P(n − m|λ − λ′) are Poisson distributions, P(n|λ) is a Poisson
distribution as well.
Proof:

n

∑
m=o
P(m|λ′)P(n−m|λ− λ′) =

n

∑
m=0

λ′me−λ′

m!
(λ− λ′)n−me−λ+λ′

(n−m)!
(248)

=
e−λ

n!

n

∑
m=0

n!
m!(n−m)!

λ′m(λ− λ′)n−m (249)

=
e−λ

n!
(λ′ + (λ− λ′))n (250)

=
e−λ

n!
λn (251)

= P(n|λ) (252)

In course of the proof we used the binomial identity,

n

∑
k=0

(
n
k

)
xkyn−k = (x + y)n. (253)

Additionally, it can be proven by recursion that the Poisson distribution is actually
infinitely divisible.

4.8 maximum entropy with known 1st
and 2nd

moments

• I =”x ∈ R”

• q(x) = P(x|I) = const.

• J =”〈x〉(x|J, I) = m, 〈(x−m)2〉(x|J, I) = σ2”

• P(x|J, I) = eαx+β(x−m)2

Z(α, β)
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1. calculate Z(α, β) :

Z(α, β) =
∫ ∞

−∞
dx e

αx+β(x−m︸ ︷︷ ︸
=x′

)2

(254)

=
∫ ∞

−∞
dx′ eαx′+αm+βx′2 (255)

Completing the square: = eαm
∫ ∞

−∞
dx′ e

β
(

x′2+ 2αx′
2β + α2

(2β)2

)
− α2

4β (256)

= eαm− α2
4β

∫ ∞

−∞
dx′ eβ

(
x′+ α

2β

)2

(257)

Claiming β<0: = eαm+ α2
4 |β|

∫ ∞

−∞
dx′ e−|β|

(
x′− α

2|β|

)2

(258)

= eαm+ α2
4 |β|

√
π

−β
(259)

2. determine α and β:

lnZ(α, β) = αm− α2

4β
+

1
2

ln
(

π

−β

)
(260)

∂ lnZ(α, β)

∂α
= m− α

2β

!
= m (261)

⇒ α = 0 (262)
∂ lnZ(α = 0, β)

∂β
= − 1

2β

!
= σ2 (263)

⇒ β = − 1
2σ2 (264)

Insert the result in Z(α, β):

Z =
√

2πσ2 (265)

3. calculate P(x|J, I) :

P(x|J, I) =
eαx+β(x−m)2

Z(α, β)

∣∣∣∣∣
α=0,β=−1/(2σ2)

(266)

=
1√

2πσ2
e−

(x−m)2

2σ2 (267)

= G(x−m, σ2) (268)

⇒ The Maximum Entropy PDF P(x|J, I) for only known 1st and 2nd moments
(and flat prior) is the Gaussian distribution.



5
G A U S S I A N D I S T R I B U T I O N

5.1 one dimensional gaussian

The Gaussian distribution is widely used, since

• it is the Maximum Entropy solution, if only 1st and 2nd moments are known.

• emerges as the distribution function of the sum of many (number→ ∞) inde-
pendent small processes (dispersion → 0, with limited high order moments)
according to the central limit theorem

• it is mathematically convenient, in particular in higher dimension problems,
and since it is infinitely divisible.

The Gaussian PDF with variance σ2
x and mean m is given by

One dimensional Gaussian distribution:

G(x−m, σ2
x) =

1√
2πσ2

x
exp

(
− (x−m)2

2 σ2
x

)
. (269)

Gaussian
distribution

5.2 multivariate gaussian

The one dimensional Gaussian distribution can be generalized to higher dimen-
sions. Let x = (x1, . . . xn)t be a vector of n zero centered independent Gaussian
distributed variables with variances σ2

1 , . . . σ2
n , respectively. Their joint probability

is just the product of their individual probabilities,

P(x) =
n

∏
i=1
P(xi) (270)

=
n

∏
i=1
G(xi, σ2

i ) (271)

=
n

∏
i=1

1√
2πσ2

i

exp
(
− (xi)

2

2 σ2
i

)
(272)

=
1

∏n
i=1

√
2πσ2

i

exp

(
−1

2

n

∑
i=1

x2
i

σ2
i

)
(273)

=
1√
|2πX|

exp
(
−1

2
x†X−1x

)
(274)

Multivariate Gaussian:

G(x, X) =
1√
|2πX|

exp
(
−1

2
x†X−1x

)
, (275)

where we introduced the diagonal covariance matrix X = diag(σ2
1 , . . . σ2

n). |X| =

49
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∏i σ2
i denotes the determinant of X and x† the transposed and complex conjugated

x.
For the former derivation of the multivariate Gaussian, we considered only inde-
pendent coordinates. Dependent or correlated Gaussian variables can be obtained
from this by a simple orthonormal basis transformation, denoted O,

y = O x (276)

O−1 = O† (277)

⇒ |O| = |O†| = |O−1| = 1/|O| (278)

⇒ |O|2 = 1 (279)

⇒ ‖O‖ = ‖O†‖ = 1, (280)

in the n-dimensional space.
Conservation of probability mass:

P(y|I) dy = P(x|I) dx|x=O†y (281)

⇒ P(y|I) = G(x, X)

∣∣∣∣∣∣∣∣∂x
∂y

∣∣∣∣∣∣∣∣︸ ︷︷ ︸
∂xi
∂yj

=O†
ij

∣∣∣∣∣∣∣∣∣∣∣∣
x=O†y

(282)

= G(O†y, X) ‖O†‖︸ ︷︷ ︸
=1

(283)

=
1√
|2πX|

exp

−1
2
(O†y)†︸ ︷︷ ︸
x†=y†O

X−1 O†y︸︷︷︸
x

 (284)

=
1√
|2πX|

exp

−1
2

y† O X−1O†︸ ︷︷ ︸
Y−1

y

 (285)

=
1√
|2πY|

exp
(
−1

2
y†Y−1 y

)
(286)

For calculations in the last step we used,

|Y| = |Y−1|−1

= |OX−1O†|−1

= ( |O|︸︷︷︸
=±1

|X−1| |O†|︸︷︷︸
=±1

)−1

= |X|.
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Generic multivariate Gaussian:

P(y) = G(y, Y) =
1√
|2πY|

exp
(
−1

2
y†Y−1 y

)
(287)

in case Y is positive definite and symmetric (hermitian in the complex case),
which is equivalent to the existence of an orthonormal transformation O that
consists of the eigenvectors of Y that diagonalizes Y to a matrix X = O†Y O with
strictly positive values on the diagonal, the eigenvalues of Y.

Moments of the multivariate Gaussian:

〈1〉G(y, Y) =
∫

dy 1G(y, Y) =
∫

dx 1G(x, X) = 1 (288)

1 =
1√
|2πY|

∫
dy exp

(
−1

2
y†Y−1 y

)
︸ ︷︷ ︸

=
√
|2πY|

(289)

⇒The multivariate Gaussian is properly normalized.

〈y〉G(y, Y) =
∫

dy y G(y, Y) (290)

=
∫

dy′(−y′) G(−y′, Y)‖ − 1‖ (291)

= −
∫

dy′ y′ G(y′, Y) (292)

= −〈y′〉G(y′, Y) (293)

⇒ 〈y〉G(y, Y) = 0

We used the coordinate transformation y′ = −y, ∂y′
∂y = −1.

For every odd function f of y (i.e. f (−y) = − f (y)) every contribution to
〈 f (y)〉G(y, Y) is compensated by an equally sized but oppositely directed contri-
bution.

⇒ 〈y〉G(y, Y) = 0 (294)

⇒ 〈 f (y)〉G(y, Y) = 0, if f (−y) = − f (y) (295)

〈
y y†

〉
G(y,Y)

=
∫

dy y y†G(y, Y) (296)

=
∫

dxG(x, X)Oxx†O† (297)

= O [
∫

dx x x†G(x, X)]︸ ︷︷ ︸
=X(to be shown)

O† (298)

= OXO† = Y (299)
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In course of the proof we used,

∫
dx xi xj G(x, X) =

[
n

∏
k=1

∫
dxkG(xk, σ2

k )

]
xi xj (300)

=


[∫

dxiG(xi, σ2
i ) xi

] [∫
dxiG(xi, σ2

i ) xi
]

if i 6= j∫
dxiG(xi, σ2

i ) x2
i if i = j

(301)

=

0 if i 6= j

σ2
i if i = j

= δijσ
2
i = Xij. (302)

〈yy†〉G(y, Y) = Y (303)

The expectation value of even powers a Gauss distributed random variable y can
be calculated with the help of Wick’s theorem.
Wick theorem (without proof):

〈
2n

∏
j=1

yij〉G(y, Y) = ∑
p∈P

∏
(i′,j′)∈p

Yii′ ij′
(304)

P is the set of all possible ways to partition {i1, ..., i2n} into pairs.
Examples:

• 〈yi1 yi2〉G(y, Y) = Yi1i2

• 〈yi1 yi2 yi3 yi4〉G(y, Y) = Yi1i2Yi3i4 + Yi1i3Yi2i4 + Yi1i4Yi2i3

in particular:

• 〈y2
i 〉G(y, Y) = Yii

• 〈y4
i 〉G(y, Y) = 3(Yii)

2

• 〈y6
i 〉G(y, Y) = 15(Yii)

3

〈y2n
i 〉G(y, Y) =

(2n)!
2nn!

(Yii)
n (305)

〈y2n+1
i 〉G(y, Y) =0 (306)

5.3 maximum entropy with known n-dimensional 1st
and 2nd

mo-
ments

• I=”unknown signal s ∈ V =Vectorspace (e.g. R, Rn, C(Rn))”

• q(s) = P(s|I) = const (to be set to 1 in calculation)
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• J =”〈s〉(s|J, I) = m, 〈(s−m)(s−m)†〉(s|J, I) = S”
Constraints:

0 = 〈s−m〉 =
∫

dsP(s)(s−m) (307)

0 = 〈(s−m)(s−m)† − S〉 (308)

• p(s) = 1
Z exp

∑n
i=1 µi(s−m)i + ∑ij Λij

(
(s−m)(s−m)† − S

)
ji︸ ︷︷ ︸

=Bji(s)


1. calculate Z(µ, Λ) :

Z(µ, Λ) =
∫

ds exp

µ† (s−m)︸ ︷︷ ︸
s′

+Tr[ΛB(s)]

 (309)

=
∫

ds′ exp
[
µ†s′ + Tr[Λ(s′s′† − S)]

]
(310)

=
∫

ds′ exp
[
µ†s′ + s′†Λs′ − Tr[ΛS]

]
(311)

2. determine µ and Λ:

lnZ(µ, Λ) = −Tr[ΛS] + ln
(∫

ds′ exp(µ†s′ + s′†Λs′)
)

⇒ 0 !
=

∂ lnZ(µ, Λ)

∂µ
(312)

=

(
∂ lnZ

∂µi

)
i

(313)

=

∫
ds′ s′ exp(µ†s′ + s′†Λs′)∫
ds′ exp(µ†s′ + s′†Λs′)

(314)

⇒ µ = 0 (315)
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As then the integral in numerator is anti-symmetric with respect to s′ → −s′

and hence vanishes.

⇒ 0 !
=

∂ lnZ(µ, Λ)

∂Λ
(316)

=

(
∂ lnZ
∂Λij

)
ij

(317)

= −(Sji)ij︸ ︷︷ ︸
=−S

+

(∫
ds′ s′is

′
j exp(s′†Λs′)∫

ds′ exp(s′†Λs′)

)
ij

(318)

⇒ S =

∫
ds′ s′s′† exp

(
− 1

2 s′†(− 1
2 Λ−1)−1s′

)∫
ds′ exp

(
− 1

2 s′†(− 1
2 Λ−1)−1s′

) (319)∫
ds′ s′s′†G

(
s′,− 1

2 Λ−1)∫
ds′G

(
s′,− 1

2 Λ−1
) (320)

= −1
2

Λ−1 (321)

⇒ Λ = −1
2

S−1 (322)

Inserting the result in Z(µ, Λ):

Z(µ, Λ) =
∫

ds′ exp

−1
2

s′†S−1s′ +
1
2

Tr[S−1S︸ ︷︷ ︸
=11

]

 (323)

= |2πS|1/2e
1
2 Tr[11] (324)

3. calculate P(s|J, I) :

P(s|J, I) =
1√
|2πS|

exp
(
−1

2
(s−m)†S−1 (s−m)

)
(325)

= G(s−m, S) (326)

⇒ In case only the mean 〈s〉 = m and the variance 〈(s − m)(s − m)†〉 = S are
considered the safest assumption is to use a Gauss distribution P(s|J, I) = G(s−
m, S) with this mean and variance.
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I N F O R M AT I O N H A M I LT O N I A N

Bayes theorem:

P(s|d, I) =
P(d|s, I)P(s|I)
P(d|I) (327)

=
P(d, s|I)∫
dsP(d, s|I)

(328)

=
e−H(d, s|I)

Z(d) (329)

information Hamiltonian = “surprise or information”:

H(d, s|I) ≡ − lnP(d, s|I) (330)

partition sum = “evidence”:

Z(d|I) ≡ P(d|I) (331)

=
∫

dsP(d, s|I) (332)

=
∫

ds e−H(d, s|I) (333)

6.1 linear measurement of a gaussian signal with gaussian noise

The simplest case of Bayesian reasoning on a continuous quantity s (∈ Rn, Cn, or
being a function) appears when prior and likelihood are Gaussians and the rela-
tion between signal and data is linear.
I =”P(s|I) = G(s, S) = 1√

|2πS|
exp

(
− 1

2 s†S−1s
)
, assuming that S is known. The

data d depends on the signal s and the noise n via d = Rs + n (either di =

∑j Rijsj + ni or di =
∫

dx Rixs(x) + ni), where the response matrix R is known
and the probability density of n is given by P(n|s, I) = G(n, N) (N is known).”
So, what do we know about the possible values of s given the data d and the infor-
mation I? To summarize the posterior knowledge on the signal s given data d and
information I we have to calculate P(s|d, I) = P(d, s|I)/P(d|I)
Calculation of the information Hamiltonian H(d, s|I):

• H(d, s|I) = − lnP(d, s|I) = − ln(P(d|s, I)P(s|I)) = − lnP(d|s, I)− lnP(s|I) =
H(d|s, I) +H(s|I)

• H(s|I) = − lnP(s|I) = 1
2 s†S−1s + 1

2 ln |2πS|

• P(d|s, I) =
∫

dnP(d, n|s, I) =
∫

dnP(d|s, n, I)︸ ︷︷ ︸
=δ(d−(Rs+n))

P(n|s, I︸ ︷︷ ︸
=G(n,N)

) = G(d− Rs, N)

57
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⇒ H(d|s, I) = − lnP(d|s, I)

=
1
2
(d− Rs)†N−1(d− Rs) +

1
2

ln |2πN|

=
1
2
[d†N−1d− s† R†N−1d︸ ︷︷ ︸

≡j

− d†N−1R︸ ︷︷ ︸
j†

s + s†R†N−1Rs + ln |2πN|]

=
1
2
[s†R†N−1Rs− s† j− j†s + d†N−1d + ln |2πN|]

d = Rs + n

P(n, s) = G(n, N) G(s, S)

H(d, s) = H(d|s) +H(s)

=
1
2
[s†D−1s− s† j− j†s] +H0,

where we have defined a H0 independent of s,

H0 = d†N−1d + ln |2πN|+ ln |2πS| and

D−1 = S−1 + R†N−1R (information propagator),

j = R†N−1d (information source).
Quadratic completion:
We introduce the sign “=̂” to be the (context dependent) equality up to constant
terms (with respect to the signal of the current context) and as the logarithmic
brother of the proportionality sign “∝”.

H(d, s|I) =̂
1
2
[s†D−1s− j†s− s† j]

For the quadratic completion we use a trick, reading the D−1 as a multiplication
sign and inserting the identities 1 = D−1D and 1 = D D−1(exploiting that D−1 is
invertible).

H(d, s) =̂
1
2

s†D−1s− j†D D−1 s− s†D−1 D j︸︷︷︸
=: m


=̂

1
2

s†D−1s− (D j)†︸ ︷︷ ︸
=m†

D−1 s− s†D−1m + m†D−1m


=

1
2
(s−m)† D−1(s−m).
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⇒ H(d, s|I) = H(d|s) +H(s)

=
1
2
(s−m)†D−1(s−m) +H′0

⇒ Z(d) =
∫

ds e−H(d, s|I)

=
∫

ds e

− 1
2 (s−m)†D−1 (s−m)︸ ︷︷ ︸

s′

−H′0

= e−H
′
0

∫
ds′ e−

1
2 s′†D−1s′

= e−H
′
0

√
|2πD|

⇒ P(s|d, I) =
P(d, s|I)
P(d|I) =

e−H(d, s)

Z(d)

=
e−

1
2 (s−m)†D−1(s−m)−H′0√
|2πD|e−H′0

We have therefore a Gaussian posterior,

P(s|d, I) = G(s−m, D)

with

• the mean

m = 〈s〉(s|d, I) = Dj

=
(

S−1 + R†N−1R
)−1

R†N−1d

• the covariance

D = 〈(s−m)(s−m)†〉(s|d, I)

=
(

S−1 + R†N−1R
)−1

• the information source
j = R†N−1d.

The mean m is typically our best guess for the signal and the covariance describes
the remaining uncertainty

sx = mx ±
√

Dxx (1σ-range).

The off-diagonal elements of D express how much the reconstruction uncertainty
of two locations is correlated. The operation applied to the data to calculate m =

D R†N−1d = FW d is called generalized Wiener filter.
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L I N E A R F I LT E R T H E O RY

7.1 optimal linear filter

Also for a non-Gaussian, non-linear measurement situation linear correlations be-
tween data and signal can exist. Can we exploit these for signal inference?

I =”An unknown signal s is measured, yielding the data d. The covariances
〈ss†〉(d, s), 〈ds†〉(d, s) and 〈dd†〉(d, s) were determined previously.”
What is the optimal linear filter FL, which reconstructs the linear signal estimate
via m = FL d ?
Here, optimal should be a minimal expected root mean square (RMS) error E.

E2 = 〈(s−m)†(s−m)〉(d, s)

= ∑
i
〈|si −mi|2〉(d ,s)

= 〈s†s〉(d, s) − 〈s†m〉(d, s) − 〈m†s〉(d, s) + 〈m†m〉(d, s)

⇒ 〈s†s〉(d, s) = Tr〈s†s〉(d, s) = Tr〈ss†〉(d, s) = TrS

〈s†m〉(d, s) = Tr〈ms†〉(d, s) = Tr(FL〈ds†〉(d, s))

〈m†s〉(d, s) = Tr〈sm†〉(d, s) = Tr(〈sd†〉(d, s)F
†
L)

〈m†m〉(d, s) = Tr〈mm†〉(d, s) = Tr(FL〈dd†〉F†
L)

For the calculations of the expectation values we exploited that the linear Filter FL

does not depend on signal s and data d.

⇒ E2 = Tr
[
〈ss†〉 − FL〈ds†〉 − 〈sd†〉F†

L + FL〈dd†〉F†
L

]
The optimum is defined by a minimized error estimator ∂E²

∂F†
L

!
= 0. For the partial

derivation FL and F†
L can be regarded as independent quantities.

∂E2

∂F†
L
= (0− 0− 〈sd†〉(d, s) + FL〈dd†〉(d, s))

† !
= 0

FL = 〈sd†〉(d, s)︸ ︷︷ ︸
crosscorrelation

〈dd†〉−1
(d, s)︸ ︷︷ ︸

autocorrelation matrix

The found optimal linear filter should also be correct in case of a linear measure-
ment of a Gaussian signal and noise, and therefore we suspect,

FL
?
= FW =

(
S−1 + R†N−1R

)−1
R†N−1.

61
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PROOF A:
Given a linear correlation between data and signal d = Rs + n and Gaussian signal
and noise P(s, n) = G(s, S)G(n, N),

⇒ 〈ss†〉(d, s) = 〈ss†〉(n,s) = S

〈ds†〉(d, s) = 〈(Rs + n)s†〉(n,s) = R 〈ss†〉(n,s)︸ ︷︷ ︸
=S

+ 〈ns†〉(n,s)︸ ︷︷ ︸
=0

= RS

〈sd†〉(d, s) = S R† (using S = S†)

〈dd†〉(d, s) = 〈(Rs + n)(Rs + n)†〉(s)
= R〈ss†〉(n,s)R

† + R 〈sn†〉(n,s)︸ ︷︷ ︸
=0

+ 〈ns†〉(n,s)︸ ︷︷ ︸
=0

R† + 〈nn†〉(n,s)

= RSR† + N

⇒ optimal linear filter: FL = 〈sd†〉(d, s)〈dd†〉−1
(d, s) = SR†(RSR† + N)−1

⇒Wiener filter: FW = (S−1 + R†N−1R)−1R†N−1

⇒ FL
?
= FW

SR†(RSR† + N)−1 ?
= (S−1 + R†N−1R)−1R†N−1 | · (RSR† + N) right

SR† ?
= (S−1 + R†N−1R)−1R†N−1(RSR† + N) | (S−1 + R†N−1R)· left

(S−1 + R†N−1R)SR† ?
= R†N−1(RSR† + N)

R† + R†N−1RSR† = R†N−1RSR† + R† �

PROOF B:
Consider two vector spaces (e.g. data space D and signal space S) and two linear
operators A : D→ S and B : S→ D

A(BA + 1D) = (AB + 1S)A

⇒ (AB + 1S)
−1A = A(BA + 1D)−1

assuming that the above two inverses exist, as otherwise FL and FW are undefined.
With A = R† it follows:

FL = SR†(RSR† + N)−1

= SR†(N−1RSR† + 1D)−1N−1

= S(R†N−1RS + 1S)R†N−1

= (R†N−1R + S−1)−1R†N−1

= FW



acknowledgments 63

The Wiener filter is the optimal linear filter,

FL = FW.

FW = (S−1 + R†N−1R)−1︸ ︷︷ ︸
=D

R†N−1

is the Wiener filter in the signal space and D is a signal space operation.

FL = SR† (RSR† + N)−1︸ ︷︷ ︸
=〈dd†〉−1

(d,s)

is the equivalent Wiener filter in data space and 〈dd†〉(d,s) is a data space opera-
tion.

However, the optimal linear filter is also defined in a non-Gaussian, non-linear
measurement situation.
⇒Is it possible to define a linear response and noise in the non-Gaussian, non-
linear case, as well?

• signal covariance:
〈ss†〉(d, s) =: S

• signal response:
〈ds†〉(d, s) =: RS

⇒ R = 〈ds†〉(d, s)S
−1

= 〈ds†〉(d, s)〈ss†〉−1
(d, s)

R looks like the optimal linear filter for obtaining data d from a signal s.

• noise covariance:
〈dd†〉 =: RSR† + N

⇒ N = 〈dd†〉(d, s) − RSR†

= 〈dd†〉(d, s) − 〈ds†〉(d, s)〈ss†〉−1
(d, s)〈ss†〉(d, s)〈ss†〉−1

(d, s)〈sd†〉(d, s)

= 〈dd†〉(d, s) − 〈ds†〉(d, s)〈ss†〉−1
(d, s)〈sd†〉(d, s)

By construction of R, S, N we have FL = FW. The definition of the data d = Rs + n
also holds in the non-linear case, if we define the linear noise as,

n = d− Rs.

7.1.1 Properties of the linear noise

• correlation between linear noise and signal:
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〈ns†〉(d, s) = 〈(d− Rs)s†〉(d, s)

= 〈ds†〉 − R〈ss†〉
= 0

⇒Linear noise is by definition linearly uncorrelated to the signal.

• linear noise auto-correlation:

〈nn†〉(d, s) = 〈(d− Rs)(d− Rs)†〉(d, s)

= 〈dd†〉(d, s) − 〈ds†〉(d, s)R
† − R〈sd†〉+ R〈ss†〉R†

= (RSR† + N)− (RSR†)− (RSR†) + (RSR†)

= N

The linear response R = 〈ds†〉(d, s)〈ss†〉−1
(d, s) and linear additive noise n = d− Rs

can be defined for non-Gaussian, non-linear measurements, as well. The Wiener
filter using those gives the optimal linear signal estimate. However, better non
linear operations on the data may exist.

Example: s ∈ R, P(s) = G(s, σ2), d = f (s) = s3 is noiseless, non-linear data.
Moments: 〈s s†〉(s) = σ2, 〈d s†〉(d,s) = 〈s4〉(s) = 3 σ4, 〈d d†〉(d,s) = 〈s6〉(s) = 6!

233! σ6 =

15 σ6

Linear response: R = 〈d s†〉(d,s)〈s s†〉−1
(d,s) = 3 σ2 increases with the signal variance

probing more of the the non-linear part of the underlying non-linear response.
Noise covariance: N = 〈d d†〉 − 〈d s†〉〈s s†〉−1〈s d†〉 = 6 σ6 increases with non-
linarity.
Optimal linear filter: FL = 〈s d†〉(d,s)〈d d†〉−1

(d,s) =
1
5 σ−2 removes two signal powers

from the data and scales it down.
Reconstruction error: 〈(s− FLd)2〉 = 〈s2〉 − 2 FL〈s4〉+ F2

L〈s6〉 =
(
1− 6

5 +
15
25

)
σ

2
=

2
5 σ2 increases with non-linearity.
Maximum Entropy perspective:
If we only know the covariances 〈dd†〉(d, s), 〈ss†〉(d, s), 〈ds†〉(d, s) we model P(d, s)
by a Gaussian with these constraints. The optimal signal estimate is then the
Wiener filter.

7.2 symmetry between filter and response

P(n, s) = G(n, N)G(s, S)

P(d, s) =
∫

dn P(d, n , s)

=
∫

dn P(d|n, s)︸ ︷︷ ︸
δ(d−(Rs+n))

P(n, s)

=
∫

dn δ(d− (Rs + n))G(n, N)G(s, S)

= G(d− Rs, N)G(s, S)

• signal estimate:

〈s〉(s|d) = FW d = FLd

= 〈sd†〉(d, s)〈dd†〉−1
(d, s)d
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• signal response:

〈d〉(d|s) = 〈Rs + n〉(n|s)
= Rs + 〈n〉G(n,N)︸ ︷︷ ︸

=0

= Rs

= 〈d†s〉(d, s)〈ss†〉−1
(d, s)s

There is a symmetry between filter and response by an exchange of data d and
signal s,

signal estimate =̂ data response

data estimate =̂ signal response.

We define a combined vector x,

x =

(
d

s

)

and the combined covariance X,

X = 〈xx†〉(x) =

(
〈dd†〉(d, s) 〈ds†〉(d, s)

〈sd†〉(d, s) 〈ss†〉(d, s)

)
.

The probability distribution of the combined vector x is give by a Gaussian,

P(x|X) = G(x, X).

For subvectors xa, xb of x (e.g. xa = s, xb = d) the expectation value is,

ma := 〈xa〉(xa|xb) = Xab(Xbb)
−1xb

and the probability distribution P(xa|xb) is given by,

P(xa|xb) = G(xa −ma, Daa)

with

Daa =

X−1
aa︸︷︷︸

=S−1

+ X−1
aa Xab︸ ︷︷ ︸
=R†

(
Xbb − X†

abX−1
aa Xab

)−1

︸ ︷︷ ︸
=N−1

X†
abX−1

aa︸ ︷︷ ︸
=R


−1

.

7.3 response

The signal s and the data d live in general in different spaces, the signal space and
the data space. The response R translates between signal and data space. R(s) is
the image of the signal in data space.

• generic response:
R(s) := 〈d〉(d|s)
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• linear response:

R(s) = Rs with R = 〈ds†〉(d, s)〈ss†〉−1
(d, s)

7.3.1 Repeated measurement of s ∈ R

A single number s ∈ R is repeatedly measured n times . The response is the 1× n

matrix

R =


1
...

1


that maps the 1-dimensional signal space to the n-dimensional data space, R→ Rn,
and specifically s→ (s, s, . . . s)t.

di = Rs + ni

d =


d1
...

dn

 =


1
...

1

 s +


n1
...

nn


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7.3.2 Photography

image plane object plane

lens plane

x

The response translates between a 2-dimensional, continuous signal space and a
m-dimensional, discrete data space,

R : C(R2)→ Rm.

For example, the signal might be the brightness distribution within the image plain
and an individual detector i in the focal plain of the camera measures the amount
of light that is focused onto it from some small, but extended area in the image
plain,

Ri : C(R2)→ R.

The recorded datum di depending on the brightness distribution s(x) and its point
spread function Ri(x) is then,

di = (R s + n)i =
∫

R²
d2x Ri(x) s(x) + ni.
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7.3.3 Tomography

A volume Ω = Ru is probed by a set of rays of the form xi(t) = ai + t bi with
ai ∈ Ω the location of a detector and bi ∈ Su−1 a direction. Each datum

di =
∫ tmax,i

0
dt s(xi(t)) + ni

contains the ray integrated signal field, e.g. the ray-integrated opacity of an absorb-
ing medium. The response operator is therefore

Rix =
∫ tmax,i

0
dt δ(x− xi(t)).

7.3.4 Interferometry

An interferometer measures individual components of the Fourier transformed sky
brightness sn̂ distribution by measuring the interference pattern produced by two
apertures recording the electromagnetic waves of wavelength λ = c/ω.

xjix x

x

Vij

ω ω

ajia

klight=n

The measured data dij is the visibility Vij = 〈aiaj〉time average with amplitude

ai =
∫

s2
dn̂
√

sn̂ exp[i(ωt + ϕ(n̂, t) +
ω

c
n̂~xi)].
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Calculate visibility:

Vij = 〈aiaj〉t

=
∫

dn̂
∫

dn̂′
√

sn̂sn̂′〈ei(ωt−ωt+ϕ(n̂, t)−ϕ(n̂′, t))〉 · ei ω
c (n̂~xi−n̂′~xj)

=
∫

dn̂
∫

dn̂′
√

sn̂sn̂′ 〈ei(ϕ(n̂, t)−ϕ(n̂′, t))〉︸ ︷︷ ︸
=δ(n̂−n̂′)

·ei ω
c (n̂~xi−n̂′~xj)

=
∫

dn̂
√

sn̂sn̂ exp[i
(
~xi −~xj

λ

)
︸ ︷︷ ︸

=~kij

·n̂]

=
∫

dn̂ sn̂ein̂~kij
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In Sect. 5.2 we already discussed the multivariate Gaussian,

G(y, Y) =
1√
|2πY|

e−
1
2 y†Y−1y

with,
Y = 〈yy†〉, y ∈ Rn.

⇒All involved quantities – y, Y, |Y|, and Y−1 – can be written without specifying
n, the number of degrees of freedom of y. Can one therefore take the limit n→ ∞?

The definition of a vector with correlated Gaussian distributed components can
be generalized to a field with Gaussian statistics. Let ϕ : Ru → R be a field with
Gaussian statistics.

Notation: We regard ϕ = ϕxex (Einstein summation) as a vector in a Hilbert
space with the contravariant components ϕx = ϕ(x), where x ∈ Ru . Con-
travariant means that if we change (e.g. scale) the unit system e = (ex)x in
which we measure the field (at location x) via e′ = Ae (e.g. with A a diag-
onal scaling matrix), the transformed field components are changed with the
inverse of this, ϕ′x =

(
A−1)x

y ϕy , such that the total vector stays invariant:

ϕ′ = ϕ′xe′x =
(

A−1)x
y ϕy Az

xez = ϕy (A−1)x
y Az

xez = ϕyδz
yez = ϕyey = ϕ. One

functional basis of the Hilbert space are the delta functions ex(y) = δ(x − y).
The scalar product is the integration ψ† ϕ =

∫
dx ψ(x) ϕ(x) ≡ ψx ϕx . Thus,

ϕ(x) = ϕyey(x) =
∫

dy ϕyδ(x− y) = ϕx.

Let us discretize ϕ with n pixels X(n) = {x1, ..., xn}. Then we denote ϕ(n) =

(ϕx1 , . . . , ϕxn)t the n-dimensional vector of field values at these pixel locations. The
continuous field ϕ is said to have a Gaussian probability distribution if for any such
finite subset X(n) ⊂ Ru the vector ϕ(n) has a multivariate Gaussian distribution:

P(ϕ(n)) = G(ϕ(n), Φ(n))

with
Φ

ij
(n) = 〈ϕ

i
(n)ϕ

j
(n)〉 = 〈ϕ(xi)ϕ(xj)〉.

Gaussian field distribution:

G(ϕ, Φ) ≡ 1√
|2πΦ|

exp
(
−1

2
ϕ†Φ−1 ϕ

)
=

1√
|2πΦ|

exp
(
−1

2
ϕx
(

Φ−1
)

xy
ϕy
)

≡ lim
n→∞
G(ϕ(n), Φ(n))

Gaussian field
distribution

71
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⇒ 〈 f (ϕ)〉(ϕ|Φ) =
∫
DϕP(ϕ|Φ) f (ϕ)

= lim
n→∞

[
n

∏
i=1

∫
dϕi

(n)

]
G(ϕ(n), Φ(n)) f (ϕ(n)).

8.1 field theory

Scalar Product
discrete case: j† ϕ = ji ϕi

continuous case: j† ϕ =
∫

dx j(x) ϕ(x) ≡ jx ϕx

Derivative
discrete case: ∂ϕi j† ϕ = ∂ϕi ji ϕi = ji
continuous case: ∂ϕx j† ϕ = δ

δϕx

∫
dx′ jx′ ϕx′ = jx ⇒ ∂ϕ j† ϕ = j

Normalisation Factors
discrete case: |Φ| = ∏n

i=1 λi (λi are the eigenvalues)
continuous case: |Φ| = limn→∞ ∏n

i=1 λi (might be undetermined)
Covariance Matrix
discrete case: Φij = 〈ϕi ϕ̄j〉
continuous case: Φxy = 〈ϕx ϕ̄y〉(ϕ) =

(
〈ϕϕ†〉(ϕ)

)xy

Inverse Covariance
discrete case: Φ−1Φ = 1

continuous case:
∫

dy Φ−1
xy Φyz = 1z

x = δ(x− z)
Wick Theorem
〈ϕx ϕy ϕz ϕw〉G(ϕ, Φ) = ΦxyΦzw + ΦxzΦyw + ΦywΦyz
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d = Rs + n

di = Ri
x sx + nx (R maps signal into data space)

P(n, s) = G(s, S) G(n, N)

⇒ P(s|d) = G(s−m, D)

m = Dj = Dxy jy
D = (S−1 + R†N−1R︸ ︷︷ ︸

=M

)−1

j = R†N−1d

jx = Ri
x

(
N−1

)
ij

dj

9.1 statistical homogeneity

Imagine we are interested in an unknown signal over real space (s, d, n : Ru →
R, C) with known Gaussian statistics and complete data

R = 1

d = s + n.

Furthermore, request a statistical homogeneous signal and noise. Consequently,
Sxy and Nxy can not depend on an absolute location x, however, it can depend on
relative distances x− y,

Sxy = 〈sxsy〉(s) = Cs(x− y)

Nxy = 〈nxny〉(n) = Cn(x− y).

The maximum of the covariance of the signal is given for x = y. Possible correlation
functions are shown in Fig. 4.

9.2 fourier space

There are a number of different conventions on how to define the Fourier trans-
formation of a function f : Ru → C. The most natural one should be symmetric
between Fourier and inverse Fourier transform and is given by

f (/k) =
∫

dx e2πi/kx f (x)

f (x) =
∫

d/k e−2πi/kx f (/k).

73



74 acknowledgments

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1

-30 -20 -10 10 20 30

1

2

3

4

5

6

Figure 4: Possible correlation functions (left) and their Fourier space representations (right)

In physics and many other areas, however, it is convention to absorb the 2π fac-
tors in the exponential function into the variable k = 2π/k . Transforming to this
coordinate, the Fourier transforms read

f (k) =
∫

dxu eikx f (x)

f (x) =
∫ dku

(2π)u e−ikx f (k).

We regard the function as an abstract vector, and the argument is more an index
in a given vector basis. Consequently, we will use also the notations fx ≡ f (x) and
fk ≡ f (k) ≡

∫
dx eikx f (x).

Fourier transformation operator:

Fk
x = eikx,

which should be applied to a function by using the real space scalar product a†b =∫
dx axbx, the inverse Fourier operator F−1 with

(F−1)x
k = e−ikx,

which should be applied to a (Fourier space) function by using the Fourier space
scalar product a†b =

∫
dk/(2π)u akbk. Note that these are related by

F−1 = F†.

⇒ The Fourier transformation is an orthonormal transformation in function spaces,
a sort of high dimensional rotation.
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9.3 power spectra

Now we can express the statistical homogeneous signal covariance matrix also in
Fourier space:

Skk′ =
〈

sksk′
〉
(s)

=

〈
(Fs)k (Fs)

k′
〉

(s)
=
〈
(Fs)k (Fs)†k′

〉
(s)

=

〈
(Fs)k

(
s†F†

)k′
〉

(s)
=

(
F
〈

s s†
〉
(s)

F†
)kk′

=
(

F S F†
)kk′

=
(

Fk
x Sxy F† k′

y

)∣∣∣
Einstein sum

=
∫

dx eikx
∫

dy Sxy e−ik′y

=
∫

dx
∫

dy ei(kx−k′y) Cs(x− y)

=
∫

dx
∫

dr ei(kx−k′ (x−r)) Cs(r)
∣∣∣∣
y=x−r

=
∫

dx ei(k−k′) x︸ ︷︷ ︸
(2π)uδ(k−k′)

∫
dr eik′ r Cs(r)︸ ︷︷ ︸

Ps(k′)

= (2π)u δ(k− k′) Ps(k),

where we use k′ as a second Fourier space coordinate, the Einstein notation to sum
over repeated indexes (the coordinates x and y), and statistical homogenity. Ps(k)
is the Fourier transformed correlation function, the so called power spectrum.

9.3.1 Units

• [sk] =
∫

dx eikxsx = V [sx]

• [Cs(r)] = [sx]2

• [Ps(k)] = [
∫

dr eikrCs(r)] = V[sx]2 = [sk ]2

V

• [δ(k− k′)] =
[

1
k−Volume

]
= V

⇒ Ps(k) =
〈|sk|2〉

V
Skk′ = (2π)uδ(k− k′)Ps(k)

= 〈sk s̄k′〉(s)

= 1 kk′ 〈|sk|2〉
V

(no summation over k!)

1kk′ = (2π)uδ(k− k′)
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9.3.2 Wiener-Khintchin Theorem

A statistical homogeneous signal s over Cartesian space with stationary auto-
correlation Sxy = 〈sxsy〉(s) = Cs(x − y) has a diagonal covariance matrix in
Fourier space,

Skk′ = 〈sksk′〉(s) = (2π)uδ(k− k′)Cs(k).

The diagonal elements are given by the Fourier transformed auto-correlation
function Cs(k), which is identical to the power spectrum per volume V, Ps(k) =

limV→∞
1
V 〈|
∫

V dx sxeikx|2〉(s) = Cs(k).

Wiener–Khintchin
theorem

The Fourier space noise covariance is, since we also assume statistical homoge-
neous noise, similarly

Nkk′ = 〈nknk′〉(s) = (2π)uδ(k− k′)Cn(k)

with the Fourier transformed noise covariance being identical to the noise power
spectrum as well, Cn(k) = Pn(k).

9.3.3 Fourier space filter

In order to calculate the mean m = D N−1d and variance D = (S−1 + N−1)−1 of
our Gaussian posterior P(s|d) = G(s−m, D) we need the inverse of S, the matrix
S−1, which fulfills

1 = S−1S.

In Fourier space this becomes particularly simple:

1k
q =

(
S−1S

)k

q
⇐⇒

1k
q = (2π)uδ(k− q) = Skk′

(
S−1

)
k′q

=
∫ dk′

(2π)u (2π)
u
δ(k− k′)Ps(k)

(
S−1

)
k′q

=
(

S−1
)

kq
Ps(k)⇐⇒

⇒
(

S−1
)

kq
=

(2π)uδ(k− q)
Ps(k)

⇒
(

N−1
)

kq
=

(2π)uδ(k− q)
Pn(k)

⇒ Mkq = (R†N−1R)kq = (N−1)kq
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⇒ Dkq = (S−1 + R†N−1R︸ ︷︷ ︸
=M

)−1 kq

= (2π)uδ(k− q)
(
[Ps(k)]−1 + [Pn(k)]−1

)−1

⇒ jk = (R†N−1d)k

=
∫ dk′

(2π)u (2π)uδ(k′ − k)[Pn(k)]−1dk′

=
dk

Pn(k)

⇒ mk = (Dj)k = Dkk′ jk′

=
∫ dk′

(2π)u
(2π)uδ(k− k′)

1
Ps(k)

+ 1
Pn(k)

dk′

Pn(k′)

⇒ mk = (Dj)k

=
1

1 + Pn(k)
Ps(k)︸ ︷︷ ︸

f (k)=filter function

dk

The filter function f (k) reweighs all Fourier modes of the data independently
and according to the ratio of the expected signal and noise power at this mode.

f (k) =
1

1 + Pn(k)
Ps(k)

=


1 if Ps(k)� Pn(k) (perfect pass through)
Ps(k)
Pn(k)︸ ︷︷ ︸
�1

if Ps(k)� Pn(k) (signal-to-noise weighting)

The signal reconstruction m is not only a filtered versions of the data, it is usually
also a filtered version of the signal,<

mk = f (k) dk = f (k) (sk + nk) =

(
s + n

1 + Pn/Ps

)k

9.3.4 Position space filter

It is also instructive to investigate the Wiener filter in position space.

• reconstructed signal in position space:

sx =
∫ dk

(2π)u ske−ikx
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• reconstructed mean in position space:

mx =
∫ dku

(2π)u e−ikx mk︸︷︷︸
= f (k) dk

=
∫ dku

(2π)u e−ikx f k
∫

dyu eiky dy

=
∫

dyu
∫ dku

(2π)u e−ik(x−y) f (k)︸ ︷︷ ︸
f (x−y)

dy

=
∫

dyu f (x− y) dy = ( f ∗ d)x

⇒The posterior mean map is the data convolved with a position space kernel
function given by the Fourier transformed spectral filter

f (r) =
∫ dku

(2π)u e−ikr f (k)

=
∫ dku

(2π)u
e−ikr

1 + Pn(k)/Ps(k)

• power spectrum of the mean m:

Pm(k) =
1
V
〈|mk|2〉(d, s)

=
1
V
〈| f (k)|2|dk|2〉(d, s)

=
1

(1 + Pn/Ps)
2 (Ps(k) + Pn(k))

=
P2

s (k)
Ps(k) + Pn(k)

=
Ps(k)

1 + Pn(k)/Ps(k)

9.3.5 Example: large-scale signal

• Assume white noise:

Nxy = 〈nxny〉(n)
= δ(x− y)σ2

n

= Cn(x− y)

Nkq =
∫

dx
∫

dy eikxδ(x− y)σ2
ne−iqy

= σ2
n

∫
dx ei(k−q)x

= (2π)uδ(k− q) σ2
n︸︷︷︸

=Pn(k)
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Figure 5: Left: On a log-log scale, possible spectra of signals (Ps(k), black solid and dashed
lines, corresponding to the ones in Fig. 4), noise (Pn(k), gray horizontal line),
and resulting posterior mean (Pm(k), blue dotted lines) and uncertainties (PD(k),
black dotted lines), each belonging to the signal spectra shown next to it. The
noise spectrum is white and the relation Pm(k) + PD(k) = Ps(k) holds. On small
Fourier scales or large spatial scales the signals are reconstructed accurately, up
to the point of a signal to noise ratio of one, beyond which little of the signal
can be recovered due to the dominating noise there. Right: Corresponding filter
functions to be applied to the data to suppress the noise.

⇒ White noise has a constant power spectrum Pn(k) = σ2
n .

• Assume a signal s : R→ R with a red signal spectrum Ps(k) = σ2
s (k/k0)−2

The Wiener filter is given by the spectral filter function

f (k) =
1

1 + Pn(k)/Ps(k)
=

1

1 +
σ2

n

σ2
s k2

0︸︷︷︸
=q−2

k2

=
q2

k2 + q2

with q = σsk0/σn being the cut-off wave number of the filter. The position space
Wiener filter kernel is then

f (x) =
∫ dk

2π

q2

q2 + k2 e−ikx =
q2

2π

∫ ∞

−∞
dk

e−ikx

(k + iq) (k− iq)
.

The integrand has two poles, at k = ±iq, respectively. The function f (x) can be
calculated via Cauchy’s residue theorem, which states that the integral of an ana- Cauchy’s residue

theoremlytical function f (k) over a closed path γ in the complex plane is given by the sum
over the residues of the function at its poles inside the path,∮

γ
dk f (k) = 2πi

n

∑
l=1

I(γ, kl)Res( f , kl).
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Im

Re

-iq

+iq

x<0

x>0

• {k1, . . . kn} denotes the singularities of f inside γ

• I(γ, k) is the winding number of the path with respect to a point k

• The residuum is usually just given by Res( f , kl) = f (k) (k− kl)|k=kl

For x < 0 :

f (x) = iq2(+1)
e−ikx

k + iq

∣∣∣∣
k=+iq

=
iq2e−i(iq)x

2iq

=
q
2

e−qx

Combining the solutions of f (x) for x < 0 and x > 0 we get,

f (x) =
q
2

e−q |x| =
1

2 λ
e−|x|/λ, with

q =
σsk0

σn
and

λ =
1
q
=

σn

σsk0
the corrlelation length of f (x), since

λ =
∫ ∞

0
dx

f (x)
f (0)

=
∫ ∞

0
dx e−|x|/λ.

9.3.6 Deconvolution

I : “The measurement equation reads dx =
∫

dy Rx
y sy + nx with the translational

invariant convolution kernel Rx
y = b(x − y), so that d = b ∗ s + n. We assume for

simplicity, P(s, n) = G(s, S)G(n, N), with known response R and known covari-
ances S and N. In particular S, N are homogenous.”

dy =
∫

dx b(y− x)sx + ny
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⇒ Fourier space:

dk = (b ∗ s)k + nk

=
∫

dy eiky
[∫

dx b(y− x) sx + ny
]

⇒ (b ∗ s)k =
∫

dx
∫

dy eiky
∫ dk′

(2π)u e−ik′(y−x)b(k′)
∫ dk′′

(2π)u e−ik′′x sk′′

=
∫ dk′

(2π)u

∫ dk′′

(2π)u

∫
dx ei(k−k′)y︸ ︷︷ ︸

(2π)uδ(k−k′)

∫
dy ei(k′−k′′)x︸ ︷︷ ︸

(2π)uδ(k′−k′′)

b(k′) sk′′

= b(k) sk

⇒ Rk
k′ = (2π)uδ(k− k′) b(k)

⇒ The convolution response turns out to be as well diagonal in Fourier space,
Rk

k′ = (2π)uδ(k− k′) b(k), as are the signal covariance Skk′ = (2π)uδ(k− k′) Ps(k),
the noise covariance Nkk′ = (2π)uδ(k− k′) Pn(k), and consequently the uncertainty
covariance Dkk′ = (2π)uδ(k− k′) PD(k).

• Calculation of the spectrum PD(k) :

D = (S−1 + M)−1

M = R†N−1R

Fourier space:

Mkq =
(

R†N−1R
)kq

=
(

R†
)k′

k︸ ︷︷ ︸
=(2π)uδ(k−k′) b(k)

(
N−1

)
k′q′

Rq′
q︸︷︷︸

=(2π)uδ(q−q′) b(q)

= (2π)uδ(k− q) |b(k)|2︸ ︷︷ ︸
PR(k)

/Pn(k)

With this, we find

PD(k) = (P−1
S (k) + PM(k))−1

=
Ps(k)

1 + PS(k)PR(k)
Pn(k)

.

• Calculation of the information source in Fourier space:

jk = (R†N−1d)k =
b̄(k) dk

Pn(k)

• Calculation of the Fourier components of the signal mean:
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mk = (D j)k =
(Ps/Pn)(k) b(k)

1 + (PsPR/Pn)(k)︸ ︷︷ ︸
f (k)

dk

fidelity operator:

Q = SR†N−1R

PQ(k) =
PsPR

Pn
(k)

f (k) =
PQ(k)

1 + PQ(k)
b̄(k)

PR(k)
=

PQ(k)
1 + PQ(k)

1
b(k)

=
1

b(k)


1 if PQ(k)� 1 (high fidelity regime (hifi))

PQ(k)︸ ︷︷ ︸
�1

if PQ(k)� 1 (low fidelity regime (lofi))

The signal map m is not identical to the original signal. It is also shaped by the
convolution, noise and deconvolution,

mk = ( f d)k

=
PQ(k)

1 + PQ(k)
1

b(k)
(b(k) sk + nk)

=
PQ(k)

1 + PQ(k)

(
sk +

nk

b(k)

)

=

sk + nk

b(k) if PQ(k)� 1

PQ(k)
(

sk + nk

b(k)

)
if PQ(k)� 1

The power spectrum of the filtered signal map is,

Pm(k) =
1
V
〈|mk|2〉(n,s)

=
1
V

(
PQ(k)

1 + PQ(k)

)2 (
〈|sk|2〉+ 〈|n

k|2〉
|b(k)|2

)
=

PQ(k)2

(1 + PQ(k))2

(
Ps +

Pn

PR

)
(k)

=
PQ(k)2

(1 + PQ(k))2 Ps(k)
(

PQ(k) + 1
PQ(k)

)
=

PQ

1 + PQ
(k) Ps(k)

=

Ps(k) if PQ(k)� 1

PQ(k)Ps(k) if PQ(k)� 1
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9.3.7 Missing data

Again, we consider a deconvolution problem, but this time a part of the signal
space is blocked in the area Ω. To model this, we introduce the transparency or
transfer operator T

Tx
y = δ(x− y)P(x /∈ Ω|x, Ω)

P(x /∈ Ω|x, Ω) =

1 if x /∈ Ω

0 if x ∈ Ω
,

such that

• modified data:
d′x = Rx

x′T
x′
y︸ ︷︷ ︸

=R′yx

sy + nx

• new information source:

j′x = (R′†)x′
x (N−1)x′yd′y

⇒The new information source j′ vanishes within Ω.

• new propagator:

D′ = (S−1 + R′†N−1R′)−1

= (S−1 + R†N−1R− ∆)−1

with

∆ = R†N−1R− R′†N−1R′

= R†N−1R− T†R†N−1R T

We define the complement to T the blocking operator,

B = 1− T

Bx
y = δ(x− y) P(x ∈ Ω|x, Ω)

⇒ ∆ = R†N−1R− (1− B)†R†N−1R(1− B)

= −B† R†N−1R︸ ︷︷ ︸
=M

B + B† M + M B

= B M B

In the last equality we assumed for simplicity that M is local, M ∝ δ(x− y).
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This is the case when R ∝ δ(x− y) and when the noise is white.

D′ = (S−1 + M− ∆)−1

= (D−1 − ∆)−1

= D(1− ∆D)−1

Now we can expand D′ in powers of ∆ using the geometrical series under
the assumption that ∆D is a small expansion parameter (to be shown in Ch.
10),

D′ = D (1− ∆D)−1

= D (1 + ∆D + ∆D∆D + . . .)

= D + D∆D + D∆D∆D + . . . , (334)

which in coordinates gives

D′xy = Dxy + Dxx′∆x′y′Dy′y +O(∆2).

In the special case of the local Mxy = δ(x − y)g(x) we assumed above, this
reads

D′xy = Dxy + Dxz′ g(z′) Dy
z′ .

⇒ The information propagator/uncertainty dispersion at locations in and
near Ω is increased with respect to the unblocked case.

• reconstructed signal map:
m′x = D′xy j′y

⇒ The information propagation from the unblocked area Ω into the blocked
Ω is enhanced in order to compensate for the gap in the information source
j′ in Ω.
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Figure 6: Left: A Gaussian signal s, noisy data d from signal measurements, and the
Wiener filter reconstruction m including its one sigma uncertainty interval
[mx −

√
Dxx, mx +

√
Dxx] . Right: The same but with a gap in the data for

x ∈ Ω = [0.4, 0.6] leading to a larger reconstruction error as well as an increased
uncertainty there.
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M AT R I X A L G E B R A

In the following we consider positive definite, symmetric/hermitian operators,

hermitian: A = A†

positive definite: A ≥ 0

→ x† Ax ≥ 0 ∀x 6= 0

strictly positive definite: A > 0

→ x† Ax > 0 ∀x 6= 0

A > 0, B ≥ 0⇒ A + B > 0

• eigensystem:
A = ∑

i
αiaia†

i

⇒ αi are the eigenvalues of the system and ai the corresponding orthonormal
eigenvectors,

Aai = αiai

a†
i aj = δij.

• definition of action of a scalar function f : C→ C on A:

f (A) = ∑
i

aia†
i f (αi)

Examples:

1. f (x) = x1/2 → f (A) = A1/2 = ∑i α
1/2
i aia†

i
proof:

A1/2 A1/2 = ∑
i

αiaia†
i ∑

j
αjaja†

j = ∑
i

∑
j

αiαjaiδija†
j

= ∑
i

αiaia†
i = A,

where we used the definition of the scalar product of orthonormal vectors
a†

i aj = δij.

87
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2. f (x) = ∑∞
n=0

1
n! x

n fn → f (A) = ∑∞
n=0

1
n! fn An

f (A) =
∞

∑
n=0

1
n!

fn(∑
i

αiaia†
i )

n

=
∞

∑
n=0

fn

n!
(∑

i1

... ∑
in

αi1 ...αin ai1 a†
i1 ai2︸ ︷︷ ︸

=δi1, i2

a†
i2 ai3︸ ︷︷ ︸

=δi2, i3

...ain a†
in
)

=
∞

∑
n=0

fn

n! ∑
i

αn
i aia†

i

= ∑
i

aia†
i

∞

∑
n=0

fn

n!
αn

i

= ∑
i

f (αi)aia†
i

3. f (x) = x−1 → f (A) = A−1 = ∑i α−1
i aia†

i

f (A)A = ∑
ij

α−1
i αj︸ ︷︷ ︸

=1 if i=j

ai a†
i aj︸︷︷︸
=δij

a†
j

= ∑
i

aia†
i

= 1

⇒ A−1 =
1
A

4. Missing proof for Eq. 334 using above relations:

D′ =
(

D−1 − ∆
)−1

=
[

D−1/2
(

1− D1/2∆ D1/2
)

D−1/2
]−1

= D1/2

1− D1/2∆ D1/2︸ ︷︷ ︸
X

−1

D1/2

= D1/2 (1− X)−1 D1/2

= D1/2 (1 + X− XX + . . .) D1/2

= D + D ∆ D + D ∆ D ∆ D + . . .

as before, but we still have to show that X < 1 (all eigenvalues of X smaller
than 1) so that geometric expansion is convergent:

X = D1/2∆ D1/2 = D1/2B† M B D1/2

≤
(

S−1 + M
)−1/2

M
(

S−1 + M
)−1/2

<
(

S−1 + M
)−1/2 (

S−1 + M
) (

S−1 + M
)−1/2

= 1 �
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G A U S S I A N P R O C E S S E S

11.1 markov processes

11.1.1 Markov property

A process s : R 7→ Ru (or Cu) is Markov if any future value is independent of the
past values if the present value is known,

f ≥ t ≥ p ⇒ P(s f |st, sp) = P(s f |st).

For a Markov process, the present isolates the future from the past:

f ≥ t ≥ p ⇒ P(s f , st|sp) = P(s f |st) P(st|sp).

11.1.2 Wiener process

A Wiener process is the simplest non-deterministic stochastic process in continu-
ous time:

ṡt =
dst

dt
= σt ξt, with

P(ξ) = G(ξ, 1) and σt known.

Let’s assume we know sp and want to know s f at time f > p. In case ξ is known:

s f = sp +
∫ f

p
dt σt︸ ︷︷ ︸

=L f
t

ξt

The linear operator L with L f
t = σtP(p ≤ t ≤ f |p, t, f ) translates ξ → s− sp and

can be inverted (in t ∈ (p, ∞]) with
(

L−1)t
f = δ( f − t) ∂

σt∂ f .

⇒ P(s|sp) =
∫
Dξ P(s|ξ, sp)P(ξ|sp) =

∫
Dξ δ [s− (sp + Lξ)] G(ξ, 1)

=
∫
Dξ

δ
[
ξ − L−1(s− sp)

]
|L| G(ξ, 1) =

G(L−1(s− sp), 1)

|L|

=
exp

[
− 1

2 (s− sp)† (L−1)†
1L−1(s− sp)

]
|2π1|1/2 |L|

=
exp

[
− 1

2 (s− sp)† (L L†)−1
(s− sp)

]
|2πL L†|1/2

= G(s− sp, LL†),

89
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using

(
L−1

)†
1L−1 =

(
L†
)−1

1−1L−1 =
[

L1L†
]−1

=
[

LL†
]−1

,

as
(

L−1
)†

=
(

L†
)−1

, since

L†
(

L−1
)†

=
(

L−1L
)†

= 1† = 1.

Now, we can calculate the remaining uncertainty dispersion of a Wiener process
with data d = sp,

Dtt′ = 〈(st − sp) (st′ − sp)〉(s|sp) =
(

LL†
)tt′

=
∫ ∞

−∞
dt′′ σt′′ P(p ≤ t′′ ≤ t| p, t′′, t)σt′′ P(p ≤ t′′ ≤ t′| p, t′′, t′)

=
∫ min{t,t′}

p
dt′′

(
σt′′
)2

. (335)

This implies for the posterior uncertainty variance of the Wiener process Dtt =

〈(st − sp)2〉(s|sp) =
∫ t

p dt′
(

σt′
)2

, which increases monotonically with time, and for

its covariance Dtt′ = min{Dtt, Dt′t′}. To summarize, we expect P(s|sp, p) = G(s−
sp, D). It should be possible to derive this result form the Wiener filter theory as
well. This requires that we construct the signal prior P(s) = G(s, S) first. This will
happen in Sec. 11.2.

11.1.3 Future expectation

I = “s : R 7→ R is a Gaussian Markov process with zero mean, known prior
correlation structure St1t2 = 〈st1 st2〉(s), and known value st at present time t.”
Question: What is the expectation of s f for some future time f ≥ t?
Answer: Regard st as data, s f as signal, and use data space Wiener filter formula
for expected signal,

〈s f 〉(s f |st) = 〈s f st〉(s)〈stst〉−1
(s)st =

S f t

Stt st.

The correlation structure of a zero mean Gaussian Markov process for times f ≥
t ≥ p fulfills the relation

S f p =
S f tStp

Stt .

proof: using Wick’s theorem

〈s f ststsp〉(s) = 2 S f tStp + S f pStt

The average needs only to be performed over

P(s f , st, sp) = P(s f , sp|st) P(st)
Markov
= P(s f |st) P(sp|st) P(st).
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Figure 7: Evolution of a stock prize signal, which is known up to the present time t (red

line), and afterwards being unknown. The uncertainty standard deviation
√

D f f
(t)

grows with the future time f as ∝
√

f − t in case of a constant volatility σ.

⇒ 〈s f ststsp〉(s) =
∫

dst
∫

ds f
∫

dsp s f P(s f |st) sp P(sp|st) stst P(st)

= 〈〈s f 〉(s f |st)〈sp〉(sp|st)s
t〉(st)

= 〈S f t (Stt)−1 stSpt (Stt)−1 ststst〉(st)

=
S f tSpt

SttStt 〈s
tststst〉(st) =

S f tSpt

SttStt 3 SttStt = 3 S f tSpt

!
= 2 S f tStp + S f pStt

⇒ S f tStp = S f pStt

11.1.4 Example: evolution of a stock price

• pt: stock price at time t

• qt: the evolution of the stock market index to which the stock belongs

• st: buy/sell signal indicates how much a stock over- or under-performs with
respect to the market

s f = ln
p f

pp − ln
q f

qp .

The trader will buy the stock if he expects s to raise, 〈s f 〉(s f |st) > st for some
f > t > p, with p some arbitrary reference point in the past.
The trader will sell the stock and buy other stocks if he expects s to fall, 〈s f 〉(s f |st) <

st for some f > t.
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• no-arbitrage condition: If most traders trade this way and calculate their ex-
pectations P(s f |st) on a similar information basis, one can expect the no-
arbitrage condition to hold: 〈s f 〉(s f |st) = st for all f > t and s to be Markov.

• If the price evolution is driven by many independent relatively small trans-
actions, its relative changes should follow a Gaussian prior statistic P(s) =

G(s, S). The posterior after knowing st is P(s|st) = G(s− st, D), with D =

D(t) the posterior uncertainty structure.

⇒ s is a Gaussian Markov process with 〈s f 〉(s f |st) = st for f > t, a so called
martingale.

• 〈s f 〉(s f |st) = S f t (Stt)−1 st ⇒ S f t = Stt for all f > t.

• S f f > Stt is plausible ⇒ d
dt Stt ≡

(
σt)2 ≥ 0 or Stt =

∫ t
p dt′

(
σt′
)2

, where σt is
the so called volatility of the stock price

⇒ Sab = min{Saa, Sbb}

The trading signal is therefore a Wiener process

ṡt = σtξt with P(ξ) = G(ξ, 1).
The stock price is an exponentiated and rescaled version of this (lognormal pro-

cess),

pt = pp qt

qp est
.

⇒ 〈s f − st〉(s f |st) = 0

〈es f 〉(s f |st) = est〈es f−st〉(s f |st)

P(s f |st) = G(s f − st︸ ︷︷ ︸
=∆

, Σ),

with Σ = D f f
(t). The expectation for the stock price exceeds that of the pure market

evolution, 〈p f /pp〉(s f |st) ≥
(
q f /qp) est

. This is because

〈es f 〉(s f |st) = est〈es f−st〉(s f |st)

= est〈e∆〉G(∆,Σ)

= est
∞

∑
n=0

1
n!
〈∆n〉G(∆,Σ)

= est
∞

∑
n=0

1
(2n)!

〈∆2n〉G(∆,Σ)

= est
∞

∑
n=0

1
(2n)!

(2n)!
2nn!

Σn

= est
∞

∑
n=0

1
n!

(
Σ
2

)n

= est
e

1
2 Σ = est+ 1

2 Σ ≥ est
.
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⇒ The expectation for the stock price exceeds that of the pure market evolution.

The uncertainty variance Σ =
∫ f

t dt′
(

σt′
)2

of the future log-price leads to a

positive drift of the price itself. Thus, a refined model would be ṡt = σtξt + µt,
where µt is a (slowly time dependent) drift rate.

11.2 stochastic calculus

11.2.1 Stratonovich’s calculus

Consider the generalized Wiener process,

dst

dt
= ξt,

with colored Gaussian excitation ξ with Fourier space correlation Ξωω′ =
〈

ξωξω′
〉
(ξ)

=

2πδ(ω−ω′) Pξ(ω) described by a bound power spectrum,
∫ ∞
−∞ dω Pξ(ω) < ∞.

ξω =
∫ ∞

−∞
dt eiωtξt =

∫ ∞

−∞
dt eiωt dst

dt
= −

∫ ∞

−∞
dt

deiωt

dt
st = −iω

∫ ∞

−∞
dt eiωt st

= −iω sω ⇒ sω =
ξω

−iω

⇒ Sωω′ =
〈

sωsω′
〉
(s)

=

〈
ξω

−iω
ξω′

iω

〉
(ξ)

=
Ξωω′

ω2 = 2πδ(ω−ω′)
Pξ(ω)

ω2︸ ︷︷ ︸
=Ps(ω)

In case of the Wiener process the noise spectrum is white with Pξ(ω) → 1, Ξ → 1

and Ps(ω)→ ω−2.

A (non-linearly) transformed random process f t ≡ f (st) with f : R 7→ R some
differentiable transformation function. The transformed process is then

d f t

dt
=

d f (st)

dst
dst

dt
= f ′(st) ξt, (336)

with f ′(st) = d f (st)/dst according to the chain rule of differential calculus. The
transformed random process simply obeys f t = f (sp +

∫ t
p dt′ ξt′).

The drift of 〈 f t〉(ξ) for some small time interval ∆t can be Taylor expanded in
∆s = st+∆t − st,

〈∆ f t〉(ξ|st) = 〈 f t+∆t − f t〉(ξ|st)

= 〈 f (st +
∫ t+∆t

t
dt′ ξt′)− f (st)〉(ξ|st)

= f ′(st) 〈∆s〉(ξ|st) +
1
2

f ′′(st) 〈(∆s)2〉(ξ|st) +
1
3!

f ′′′(st) 〈(∆s)3〉(ξ|st)

+
1
4!

f ′′′′(st) 〈(∆s)4〉(ξ|st) +O((∆s)5).



94 acknowledgments

The required moments are

〈∆s〉(ξ|st) =
∫ t+∆t

t
dt′ 〈ξt′〉(ξ|st) = 0,

〈(∆s)2〉(ξ|st) =
∫ t+∆t

t
dt′

∫ t+∆t

t
dt′′ 〈ξt′ξt′′〉(ξ|st)

=
∫ t+∆t

t
dt′

∫ t+∆t

t
dt′′δ(t′ − t′′)︸ ︷︷ ︸

=1

= ∆t,

〈(∆s)3〉(ξ|st) =
∫ t+∆t

t
dt′

∫ t+∆t

t
dt′′

∫ t+∆t

t
dt′′′ 〈ξt′ξt′′ξt′′′〉(ξ|st) = 0, and

〈(∆s)4〉(ξ|st) =
∫ t+∆t

t
dt′

∫ t+∆t

t
dt′′

∫ t+∆t

t
dt′′′

∫ t+∆t

t
dt′′′′ 〈ξt′ξt′′ξt′′′ξt′′′′〉(ξ|st)︸ ︷︷ ︸
Ξt′ t′′Ξt′′′ t′′′′+Ξt′ t′′′Ξt′′ t′′′′+Ξt′ t′′′′Ξt′′ t′′′

= 3 (∆t)2 ,

so that
〈∆ f t〉(ξ|st) =

1
2

f ′′(st)∆t +
3
4!

f ′′′′(st) (∆t)2 +O
(
(∆t)3

)
.

The drift rate of a non-linearly transformed Wiener process in Stratonovich’s
calculus is therefore〈

d f t

dt

〉
(ξ|st)

=

〈
lim

∆t→0

∆ f
∆t

〉
(ξ|st)

=
1
2

f ′′(st),

where st is the Wiener process and f t = f (st) the transformation.

11.2.2 Itô’s calculus

The transformed Wiener process in Itô’s calculus is denoted by

d f = f ′(st) dst +
1
2

f ′′(st) dt or (337)

d f t

dt
=

d f (st)

dst
dst

dt
+

1
2

f ′′(st) = f ′(st) ξt, +
1
2

f ′′(st) (338)

where st is the Wiener process and f t = f (st) the transformation. This leads as
well to the drift rate

〈d f t

dt
〉(ξ|st) =

1
2

f ′′(st).

Why does Itô’s calculus require that the drift rate has to be added explicitly to
the stochastic equation, where in Stratonovich calculus it is a simple consequence
of the chain rule? The reason is that the microscopic picture of the underlying
stochastic processes differ.

• Stratonovich picture: f (s) acts continuously during evolution within ∆t →
drift arises automatically; excitation can have coloured spectrum.

• Itô picture: microscopic concept of time is discrete→ no drift without explicit
drift term; excitation should have white spectrum.
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11.3 linear stochastic differential equations

Assume a generic time-independent linear stochastic differential equation of order
N,

N

∑
n=0

an
dnst

dtn = ξt, P(ξ) = G(ξ, Ξ), Ξωω′ = 2πδ(ω−ω′)Pξ(ω).

In case of the white noise driven Wiener process, st, ξt ∈ R, an = δn1, and Pξ(ω) =

1.
The differential equation becomes an algebraic equation after Fourier transforma-
tion, ∫ ∞

−∞
dt eiωt

N

∑
n=0

an
dnst

dtn =

N

∑
n=0

an

∫ ∞

−∞
dt eiωt dn

dtn

∫ ∞

−∞

dω′

2π
e−iω′t sω′ =

N

∑
n=0

an

∫ ∞

−∞

dω′

2π
(−iω′)n sω′

∫ ∞

−∞
dt ei(ω−ω′)t︸ ︷︷ ︸

2πδ(ω−ω′)

=

N

∑
n=0

an (−iω)n sω = ξω,

⇒ sω =

[
N

∑
n=0

an (−iω)n

]−1

ξω

s = Rξ

Rω
ω′ = 2πδ(ω−ω′)

[
N

∑
n=0

an (−iω)n

]−1

From this, it is obvious that

P(s|a, Ξ) = G(s, S), with S = RΞR†,

Sωω′ = 2πδ(ω−ω′)Ps(ω), and

Ps(ω) =
Pξ(ω)∣∣∣∑N

n=0 an (−iω)n
∣∣∣2 ≡ PR(ω)Pξ(ω).

11.3.1 Example: Wiener process

ṡ(t) = ξt

a1 = 1

⇒ PR(ω) =
1

|a1(−iw)1|2 =
1

ω2

exercise : Use this to construct a prior on s as well its posterior if the data
d = (sp, p) is given! Is this consistent with the result given in Sect. 11.1.2?
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Figure 8: Left: Spectra of white noise driven Ornstein-Uhlenbeck process. Right: A signal
realization for /η = η/(2π) = 1.
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Figure 9: Left: Spectra of white noise driven harmonic oscillators for various values of
the damping constant κ in term of the oscillator’s eigenfrequency ω0. A weakly
damped, damped, and a strongly damped case are shown. Right: A signal real-
ization for the weakly damped oscillator with ν0 = ω0/(2π) = 1.2.

11.3.2 Example: Ornstein-Uhlenbeck process

ṡt + η st = ξt

a0 = η

a1 = 1

⇒ PR(ω) = |η − iω|−2 = (η2 + ω2)−1

For white noise, Pξ(ω) = 1,

Ps(ω) = PR(ω) = (η2 + ω2)−1.

11.3.3 Example: harmonic oscillator

s̈t + κṡt + ω2
0 st = f ξt

• κ: a damping constant
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Figure 10: Parameter determination for the Ornstein-Uhlenbeck process. Left: Information
Hamiltonian contours ∆H(s, a) = H(s, a) − H(s, a?) as a function of (/η, a1)
where a0 = η = 2π/η for the signal realization shown in Fig. 8. The mini-
mum at (/η, a1)? ≈ (0.96, 1.024) is marked by a star and the correct values at
(/η, a1) = (1, 1) by a dot. The correct value lies on the so called 1-σ contour at
∆H = 1/2. Rights: Power spectrum of the signal realization shown in Fig. 8, that
of the original process, and that for the reconstructed parameters a?.

• ω0: eigenfrequency of the oscillator

• f : noise coupling constant.

a0 = ω2
0 f−1

a1 = κ f−1

a2 = f−1

⇒ PR(ω) = f 2
[
ω4

0 +
(
κ2 − 2 ω2

0
)

ω2 + ω4
]−1

.

11.4 parameter determination

In many cases, the class of the stochastic process is known, but the parameters
a = (a0, . . . aN) are unknown. Fortunately, these can be determined from signal
observations.

P(a|s) =
P(s|a)P(a)
P(s) =

e−H(s,a)

Z(s)

H(s, a) = − lnP(s|a)− lnP(a)

=
1
2

[
s†S−1 s + ln |2πS|

]
+H(a)

=̂
1
2

∫ dω

2 π

[
|sω|2
Ps(ω)

+ ln Ps(ω)

]
,

where in the last step we assumed a flat prior for a.



98 acknowledgments

11.5 lognormal poisson model

Events (e.g. photons, galaxies, customers) are recorded over some space (e.g. sky,
universe, time). How is the according event generating process spatially struc-
tured?

• ρx = ρ(x): event density at location x

• d = (d1, ..., dn): number of observed events in the detector bin i = 1, ..., n

• λ = (λ1, ..., λn): expected number of observed events in the detector bin
i = 1, ..., n, if ρ(x) is known

λi =
∫

dx Ri
xρ(x) = Ri

x$x

⇒ If the events are independent of each other:

P(d|λ) =
n

∏
i=1

(
λi)di

e−λi

di!

H(d|λ) =
n

∑
i=1

[λi − di ln λi + ln(di!)]

• for simplicity assume a local response R in the following with the exposure
κ(x) at location x :

λx =
∫

dy δ(x− y)κ(y)ρ(y)

= (κρ)x

⇒ H(d|ρ) =̂ κxρx − dx ln(κρ)x

= κ†ρ− d† ln(κρ)

In the last equation the term d† ln(κρ) is to be understood as a component-wise
multiplication and function application. For the derivation of H(d|ρ) we neglect
the ρ−independent term ln(di!) in H(d|λ).
Defining the prior:

• ρx > 0 ∀x

• ρx can vary on logarithmic scale.
⇒ Choose a more appropriate signal sx,

sx = ln
ρx

ρ0
,

ρx = ρ0esx
.

ρ0 should be chosen such that 〈s〉(s) = 0.
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• Spatial correlations exist, described by known S = 〈ss†〉(s). Higher order
corrections are ignored.

Applying the Maximum Entropy principle with known 1st and 2nd moments, we
obtain the probability distribution,

P(s) = G(s, S)

H(s) =
1
2

s†S−1s +
1
2

ln |2πS|

From this we can calculate the joint information Hamiltonian,

H(d, s) = H(d|s) +H(s)

=̂
1
2

s†S−1s + κ†ρ0︸︷︷︸
=κ′→κ

es − d† ln(κ†ρ0es)

=̂
1
2

s†S−1s + κ†es − d†s.

In the next step we want to identify the free and interaction Hamiltonian in
H(d, s). For this purpose we expand the exponential function, esx

= 1 + sx +
1
2 (s

x)2 + ..., define κ̂ = diag(κ) and substitute,

κ†es =
∫

dx κ(x) (1 + s(x) +
1
2
(s(x))2 + ...)

⇒ H(d, s) =̂
1
2

s† (S−1 + κ̂)︸ ︷︷ ︸
=D−1

s− (d− k)†︸ ︷︷ ︸
=j†

s

︸ ︷︷ ︸
free Hamiltonian

+ κ† (es − 1− s− s2

2
)︸ ︷︷ ︸

=∑∞
n=3

1
n! sn︸ ︷︷ ︸

interaction Hamiltonian

.

⇒ H(d, s) =
1
2

s†D−1s− j†s +
∞

∑
n=3

κ†sn

n!

D = (S−1 + κ̂)−1

j = d− κ

classical or map solution

∂H(d, s)
∂sx

!
= 0

=
∂

∂sx

[(
1
2

sx′S−1
x′x′′s

x′′ + κx′esx′ − dx′sx′
)]

=
1
2

S−1
xx′′s

x′′ +
1
2

sx′S−1
x′x + (κes)x − dx

=

[
1
2

S−1s + κes − d +
1
2
(s†S−1)†

]x

=
[
S−1s + κes − d

]
x

∂H(d, s)
∂s

= S−1s− d + κes !
= 0

⇒ m = S(d− κem)
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Solving this by numerical iteration is likely unstable, as there are linear terms
in m on the right hand side. An equation, which is numerically more stable under
iteration, has these linear terms on the left hand side. The information propagator
D and a s–dependent information source j appear thereby:

S−1m = d− κem

(S−1 + κ̂)︸ ︷︷ ︸
=D−1

m = d− κ(em −m)︸ ︷︷ ︸
=j

m = D(d− κ(em −m)).

Comparison with the Wiener filter m = (S−1 + R†N−1R)−1R†N−1d′:

• κ̂ ∼ R†N−1R

• κ ∼ R

• 1 ∼ R†N−1

⇒ effective noise covariance N ∼ κ̂ and response R ∼ κ are both determined by κ.

expansion around the classical solution

s = m + ϕ

Calculate the Hamiltonian:

H(d, ϕ|m) = H(d, s = m + ϕ)

=̂
1
2
(m + ϕ)†S−1(m + ϕ) + κ†em+ϕ − d†(m + ϕ)

=̂
1
2

ϕ†S−1ϕ + m†S−1ϕ + κ†
m︸︷︷︸

(κm)x=κxemx

eϕ − d† ϕ

=
1
2

ϕ†S−1ϕ− (d− S−1m)†︸ ︷︷ ︸
=d†

m

ϕ + κ†
meϕ

The shifted problem looks like the original problem of H(d, s) with changed coef-
ficients. We can calculate dm,

dm = d− S−1m

= d− S−1S(d− κem)

= d− d− κem

= κm,

where the short notation κm = κ em was introduced, indicating that the classical
density ρm = ρ0em could as well be absorbed into an effective exposure κm.
Accordingly, H(d, ρ|m) can be written as,
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H(d, ϕ|m) =
1
2

ϕ†(S−1 + κ̂m)ϕ + (dm − κm)
†︸ ︷︷ ︸

=0

ϕ + κ†
m

(
eϕ − ϕ− ϕ2

2

)

=
1
2

ϕ† (S−1 + κ̂m)︸ ︷︷ ︸
=D−1

m

ϕ + κ†
m

(
eϕ − ϕ− ϕ2

2

)

• Noise and exposure are structured by κm = κem.

• ϕ-field is not sourced, we are expanding around a minimum.





12
I N F O R M AT I O N F I E L D T H E O RY

Following [6, 4? ]

12.1 basic formalism

bayes theorem

P(s|d) =
P(d, s)
P(d) =

e−H(d, s)

Z(d)

Z(d) =
∫
DsP(d, s) =

∫
Ds e−H(d, s)

moment generating function

Z(d, J) =
∫
Ds e−H(d, s)+J†s

⇒ Calculate moments via the generating function,

〈sx1 ...sxn〉(s|d) =
1
Z

δ
nZ(d, J)

δJx1 ...δJxn

∣∣∣∣
J=0

.

⇒ Calculate cumulants via cumulant-generating function,

〈sx1 ...sxn〉c(s|d) =
δn lnZ(d, J)

δJx1 ...δJxn

∣∣∣∣
J=0

.

Examples:

〈sx1〉c(s|d) =
1
Z

δ

δJx1

Z
∣∣∣∣

J=0
= 〈sx1〉(s|d) = s̄x1

〈sx1 sx2〉c(s|d) =
δ

δJx2

[
1
Z

δ

δJx1

Z
] ∣∣∣∣

J=0
=

1
Z

δ2Z
δJx1 δJx2

− 1
Z2

δZ
δJx1

δZ
δJx2

∣∣∣∣
J=0

= 〈sx1 sx2〉(s|d) − 〈sx1〉(s|d)〈sx2〉(s|d) = 〈(s− s̄)x1(s− s̄)x2〉(s|d)

If s is Gaussian, P(s|d) = G(s−m, D), H(s|d) =̂ 1
2 (s−m)†D(s−m)

〈s〉(s|d) = m

〈ss†〉c(s|d) = D

〈ss†〉(s|d) = D + m m†

〈sx1 ...sxn〉c(s|d) = 0 for n ≥ 3

103
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12.2 free theory

In the following we consider a linear response, d = Rs + n (e.g. di = Rx
i sx + ni),

with independent Gaussian signal and noise, P(s, n) = G(s, S) G(n, N), where
S = 〈ss†〉(s,n) and N = 〈nn†〉(s,n).

P(d, s) = G(s, S) G(n = d− Rs, N)

H(d, s) =
1
2
(d− Rs)†N−1(d− Rs) +

1
2

s†S−1s +
1
2

ln(|2πS||2πN|)

=
1
2

s† (S−1 + R†N−1R)︸ ︷︷ ︸
=D−1

s + s† R†N−1d︸ ︷︷ ︸
=j

+H0

The generating function can be calculated by means of H(d, s),

Z(J) =
∫
Ds e−H(d, s)+J†s

=
∫
Ds exp

−1
2

s†D−1s + (J + j)†︸ ︷︷ ︸
=j′†

s−H0


=

∫
Ds exp

−1
2

s†D−1s− 2j′†D D−1s + j′†D D−1 D j′︸︷︷︸
=m′

+
1
2

j′†D j′ −H0


=

∫
Ds exp

[
−1

2

(
(s−m′)†D−1(s−m′)

)
+

1
2

j′†D j′ −H0

]
= |2πD|1/2 exp

(
+

1
2
(J + j)†D (J + j)−H0

)
lnZ(J) =

1
2
(J + j)†D (J + j) +

1
2

ln |2πD| − H0

Actually, the variable J is not required if we instead take derivatives with respect
to j.
moments:

〈s〉c(s|d) = m =
δ lnZ(j)

δj
= Dj

〈ss†〉c(s|d) = 〈(s− s̄)(s− s̄)†〉 = δ2 lnZ(j)
δjδj† = D

〈sx1 ...sxn〉c(s|d) =
δn lnZ(j)
δjx1 ...δjxn

=
δn−2

δjx3 ...δjxn

Dx1x2 = 0

12.3 interacting field theory

H(d, s) =
1
2

s†D−1s− j†s +H0︸ ︷︷ ︸
=HG (d, s)

+
∞

∑
n=0

1
n!

Λ(n)
x1...xn sx1 ...sxn︸ ︷︷ ︸

=Hint(d, s)

We aim for an expansion around the Gaussian specified by the free Hamiltonian
HG(d, s). Thus, we want Hint(d, s) to be small. For this purpose we shift our field
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variable s → ϕ = s − t by subtracting a appropriately chosen t, s = t + ϕ (e.g.
t = argminsH(d, s)),

H(d, ϕ|t) = H(d, s = t + ϕ)

=
1
2

ϕ†D−1ϕ− j′† ϕ +H′0 +
∞

∑
n=0

1
n!

Λ
′(n)
x1...xn ϕx1 ...ϕxn ,

with,

H′0 = H0 − j†t +
1
2

t†D−1t

j′ = j− D−1t

Λ
′(m)
x1...xm =

∞

∑
n=0

1
n!

Λ(m+n)
x1...xm+n txm+1 ...txm+n .

Exercise: Show that these formula are correct.

12.4 diagrammatic perturbation theory

(Following, Binney et al. [1])

H(d, s) =
1
2

s†D−1s− j†s︸︷︷︸
= 1

2 (j†s+s† j)

+H0

︸ ︷︷ ︸
=HG (d, s)

+
∞

∑
n=0

1
n!

Λ(n)
x1...xn sx1 . . . sxn︸ ︷︷ ︸

=Hint(d, s)

⇒ partition function:

Z =
∫
Ds e−H(d, s) =

∫
Ds e−HG (d, s) e−Hint(d, s)

=
∫
Ds e−HG (d, s)︸ ︷︷ ︸

∝G(s−m, D)

∞

∑
m=0

1
m!

(
∞

∑
n=0

1
n!

Λ(n)
x1...xn sx1 . . . sxn

)m

Let us have a look at a simple case of a local and position independent an-
harmonic term first,

Λ(4)
x1...x4 = δ(x1 − x2)δ(x1 − x3)δ(x1 − x4)λ

⇒ Hint =
λ

4!

∫
dx1 dx2 dx3 dx4 δ(x1 − x2) δ(x1 − x3) δ(x1 − x4) sx1 sx2 sx3 sx4

=
λ

4!

∫
dx1δx1

x2
δx1

x3
δx1

x4
sx1 sx2 sx3 sx4

=
λ

4!

∫
dx1(sx1)4

⇒ partition function:

Z =
∫
Ds e−HG

∞

∑
m=0

1
m!

[
− λ

4!

∫
dx (sx)4

]m
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-4 -2 2 4
s 
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10

15

H(s)

λ= 0.5
λ= 0
λ= − 1

Figure 11: H(s) = 1
2 s2 + λ

4! s
4 for three values of λ, illustrating that next below λ = 0

the information Hamiltonian becomes unbound from below and consequently
the partition function diverges. This is the reason why the expansion has a
convergence radius of zero and is only an asymptotic expansion.

Using asymptotic expansion:

Z =
∞

∑
n=0

1
n!

∫
Ds e−HG

[
− λ

4!

∫
dx (sx)4

]n

=
∞

∑
n=0

1
n!

〈 [
− λ

4!

∫
dx (sx)4

]n 〉
G
ZG

=
∞

∑
n=0

1
n!

(
− λ

4!

∫
dx

δ4

δj4x

)n ∫
Ds e−

1
2 s†D−1s+j†s−H0

= exp
(
− λ

4!

∫
dx

δ4

δj4x

)
ZG(j)

= exp
[
−Hint

(
δ

δj

)]
ZG(j)

This result is also true in general and not only for our simple example. The Gaus-
sian partition function ZG(j) is given by,

ZG(j) =
∫
Ds e−

1
2 s†D−1s+j†s−H0

= e−H0 |2πD|1/2︸ ︷︷ ︸
=ZG (0)

e+
1
2 j†Dj

= ZG(0) e+
1
2 j†Dj,
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with a j-independent prefactor ZG(0). Next, we expand Z to first order in λ for
our considered simple case (for simplicity we only assume real j),

Z(j) =

(
1− λ

4!

∫
dx

δ4

δj4x
+O(λ2)

)
e

1
2 j†Dj ZG(0)

= ZG(j)− λ

4!
ZG(0)

∫
dx

δ4

δj4x
e

1
2 jyDyz jz

= ZG(j)− λ

4!
ZG(0)

∫
dx

δ3

δj3x
Dxz jze

1
2 j†Dj

= ZG(j)− λ

4!
ZG(0)

∫
dx

δ2

δj2x

[
Dxx + (Dxz jz)2] e

1
2 j†Dj︸ ︷︷ ︸

=A

A =
∫

dx
δ

δjx

[
2(Dxz jz)Dxx + (Dxz jz)

(
(Dxz jz)2 + Dxx)] e

1
2 j†Dj

=
∫

dx
δ

δjx

[
3(Dxz jz)Dxx + (Dxz jz)3] e

1
2 j†Dj

=
∫

dx
[
3Dxx + 3(Dxz jz)2Dxx + 3(Dxz jz)2Dxx + (Dxz jz)4

]
e

1
2 j†Dj

⇒ Z(j) = ZG(j)− λ
∫

dx
[

1
8

DxxDxx +
1
4

DxxDxy jyDxz jz +
1
4!
(Dxz jz)4

]
ZG(j)

The information propagator connects different locations. In order to describe these
locations and the lines between them, Feynman defined a language:

Z(j) = ZG(j) +
[

+ + +O(λ2)

]
ZG(j) (339)

In general, one can say that Z(j) is the sum over all diagrams.

12.5 feynman rules

• Dxy = line connecting x and y ⇒

• jy = vertex at the end of a line⇒

• −λ = vertex with 4 ends⇒

• −Λ(n)
x1...xn = vertex with n ends

• all internal positions are intergrated over

• prefactor = 1
symmetry factor , where the symmetry factor is given by the number

of ways of reorderings of locations, which lead to equivalent integrals (loops
account for a symmetry factor of 1/2).



108 acknowledgments

examples :

1. ⇒ − λ
4!

∫
dx Dxz jzDxy jyDxv jvDxu ju = − λ

4! (Dj)4

2. ⇒ −λ
4

∫
dx DxxDxy jyDxz jz = −λ

4 (Dj)2diag(D) = −λ
4 (Dj)2D̂

3. ⇒ −λ
8

∫
dx DxxDxx = −λ

8 D̂2

Theorem: lnZ(j) =sum over all connected diagrams
proof:

• define a set of all connected diagrams {Ci}i

• define disconnected diagrams D = D({ni}) composed of ni copies of Ci ∀i

We defined Z(j) as the sum over all disconnected diagrams,

Z(j) = ∑
{n}

D({n})

=
∞

∑
n1=0

∞

∑
n2=0

...D({n}).

Next we use that D({n}) is composed out of a product of numbers ni of connected
diagrams Ci,

Z(j) =
∞

∏
i=1

(
∞

∑
ni=0

(Ci)
ni

ni!

)

=
∞

∏
i=1

exp(Ci)

= exp(∑
i

Ci)

lnZ(j) = ∑
i

Ci.

12.6 diagrammatic expectation values

In our simplified example of a real φ4 theory, we have a hamiltonian,

H(φ) =
1
2

φ†D−1φ− j†φ +
1
4!

λ†φ4.

In this case we can write the logarithm of the partition sum using Feynman rules,
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lnZ(j)=̂ + + + +O(λ2)

⇒ lnZ(j)=̂
1
2

j†Dj− λ

4!
(Dj)4 − 1

4
λ(Dj)2D̂− 1

8
λD̂2.

1. Calculate the expectation value of this field:

〈φ〉 =
δ lnZ

δj

= Dj− 1
3!

Dλ(Dj)3 − 1
2

Dλ(Dj)D̂ +O(λ2)

〈φx〉 = Dxy jy −
λ

3!

∫
dy Dyx(Dyz jz)3 − λ

2

∫
dy Dyx(Dyz jz)Dyy +O(λ2)

Written in Feynman rules:

〈φx〉 = + + +O(λ2)

⇒ j-derivatives can be calculated directly from diagrams by cutting end-
dots/ end-vertices.

2. Calculate the covariance of the field:

〈φxφy〉c = 〈(φ− 〈φ〉)x(φ− 〈φ〉)y〉

=
δ2 lnZ(j)

δjxδjy

〈φxφy〉c = + + +O(λ2)

Rewrite the Feynman diagrams:

〈φxφy〉c = Dxy − λ

2

∫
dz Dzx(Dzu ju)2Dzy − λ

2

∫
dz DxzDzzDzy +O(λ2)

〈φφ†〉c = D− λ

2
D(Dj)2D− λ

2
D(D̂)D +O(λ2)

If we consider no inharmonic term in our hamiltonian (λ = 0), we get the Wiener
filter solution:

〈φ〉 = Dj

〈φφ†〉c = D
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12.7 log-normal poisson model diagrammatically

The joint Hamiltonian of the log-normal Poisson model with ρ = ρ0esis given by,

H(d, s) =̂
1
2

s†S−1s− d†s + κ†es

=̂
1
2

s†(S−1 + κ̂︸︷︷︸
κ̂xy=κδxy

)s− (d− κ)†︸ ︷︷ ︸
=j†

s + κ†
∞

∑
n=3

1
n!

sn

=̂
1
2

s†D−1s− j†s +
∞

∑
n=0

1
n!

Λ(n)
x1...xn︸ ︷︷ ︸

=κx1 δ(x1−x2)...δ(x1−xn)

sx1 . . . sxn

Find the mean m using the MAP:

δH
δs†

∣∣∣∣
s=m

!
= 0

= D−1s− j + κ
∞

∑
n=3

sn−1

(n− 1)!

∣∣∣∣
s=m

⇒ m = D

(
j− κ

∞

∑
n=2

mn

n!

)

Iteration: Take the simplest guess m0 = 0.

1.

m1 = Dj =

2.

m2 = D

(
j− κ

∞

∑
n=2

(Dj)n

n!

)
= ︸ ︷︷ ︸

n=1

+ ︸ ︷︷ ︸
n=2

+ ︸ ︷︷ ︸
n=3

+...

3.

m2 = D

(
j− κ

∞

∑
n=2

(m2)n

n!

)
= + + + ...

+ + + + ...

⇒The classical/ MAP estimate m∞ is always given by the the sum of all tree
diagrams with one external point.

12.7.1 Consideration of uncertainty loops

But, m 6= 〈s〉(s|d), since 〈s〉(s|d) is the sum of all Feynman diagrams (loop and tree
diagrams) with one external point,
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〈s〉(s|d) = ∑ tree diagrams︸ ︷︷ ︸
MAP

+∑ loop diagrams︸ ︷︷ ︸
uncertainty corrections

Let’s try to add some loops to the MAP estimator by augmenting the considered
vertices with loops, by performing the following replacements:

• source:

= + + + + ...

• 3-vertex:

= + + + ...

• n-vertex:

= + + + ...

⇒ −κx → −
[

κx +
1
2

κx

∫
dx Dxx +

1
8

κx

∫
dx Dxx + ... +

1
n!2n κx

(∫
dx D̂x

)n]
−κ → −κ eD̂/2

The factor eD̂/2 accounts for the loop corrections to the classical map,

m = S(d− κem︸︷︷︸
=κm

)

So, we can calculate the corrected map defining κm → κmeD̂/2 = κm+D̂/2.
loop normalized solution:

m = S
(
d− κm+D̂/2

)
D =

(
S−1 + κ̂m+D̂/2

)−1

κt = κet

Still,

m ≈ 〈s〉(s|d) is just an approximation, since m does not contain topological more
complex diagrams like vacuum polarization diagrams.
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T H E R M O D Y N A M I C A L I N F E R E N C E

13.1 basics

Following Enßlin & Weig [2010arxiv:1004.2868]
Considering a tempered posterior at T = 1

β with an moment generating source J,

P(s|d, T, J) =
e−β(H(d, s)+J†s)

Zβ(d, β, J)

=

(
P(d, s)e−J†s

)β

∫
Ds
(
P(d, s)e−J†s

)β

︸ ︷︷ ︸
=Z(d, β, J)

(340)

• T = β = 1: usual inference

• T → 0, β→ ∞: enlarged contrast⇒ P(s|d, T)→ δ(s− sMAP)

• T → ∞, β→ 0: weaker contrast⇒ P(s|d, T)→ const.

Calculate the Boltzmann Entropy SB with respect to a prior q(s), which is equal to
the Entropy we have defined as the negative information content of a system for
T = 1 and J = 0:

SB = −
∫
DsP(s|d, T, J) ln

(
P(s|d, T, J)

q(s)

)
(341)

∆SB =
∫
DsP(s|d, T, J)

[
β(H(d, s) + J†s) + ln Z(d, β, J)

]

= β

〈H(d, s)〉(s|d, T, J)︸ ︷︷ ︸
=U(d, T, J)

+J† 〈s〉(s|d, T, J)︸ ︷︷ ︸
=m(d, T, ,J)

+
1
β

ln Z(d, β, J)︸ ︷︷ ︸
=−F(d, β, J)

 (342)

T∆SB = U(d, T, J) + J†m(d, T, J)− F(d, β, J) (343)

• internal energy: U(d, T, J) = 〈H(d, s)〉(s|d, T, J)

• mean field: m(d, T, J) = 〈s〉(s|d, T, J) =
∂F
∂J

∣∣∣∣
J=0, β=1

• Helmholtz free energy: F(d, β, J) = − 1
β ln Z(d, β, J)

Inference goal:

113
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Find m = 〈s〉(s|d) and its uncertainty D = 〈ss†〉c(s|d). If we only get a report on m
and D the maximum entropy principle requires the PDF to be Gaussian,

∼
P (s|m, D) = G(s−m, D). (344)

If this is all we are aiming for, we can adopt the Gaussian PDF right from the
beginning and try to infer m, D using thermodynamical methods.
Ansatz:

P(s|d, T, J) ≈
∼
P (s|m, D) = G(s−m, D) (345)

T∆
∼
SB (d, T, J) =

∼
U (d, T, J) + J†m(d, T, J)−

∼
F (d, β, J) (346)

∼
U (d, T, J) = 〈H(d, s)〉G(s−m, D) (347)

From now on we just ignore the reference probability q(s) or assume q(s) = 1
and write SB instead of ∆SB.

⇒
∼
SB (d, T, J) = −〈ln

∼
P〉∼P

= +
∫
Ds G(s−m, D)

1
2
(s−m)†︸ ︷︷ ︸

ϕ†

D−1(s−m) +
1
2

ln |2πD|


=

1
2

[∫
Dϕ

(
G(ϕ, D)Tr(ϕϕ†D−1)

)
+ ln |2πD|

]

=
1
2

Tr

〈ϕϕ†〉G(ϕ, D)︸ ︷︷ ︸
=D

D−1

+
1
2

ln |2πD|︸ ︷︷ ︸
=Tr(ln |2πD|)

=
1
2

Tr(DD−1) +
1
2

Tr(ln |2πD|)

=
1
2

Tr(1 + ln |2πD|)

=
∼
SB (D) (348)

⇒
∼
F (d, β, J) =

∼
U (mJ , DJ)− T

∼
SB (DJ) + J†mJ (349)

The solution mJ we are looking for, is in this case a function of J. We want to get
rid of the dependence on J by using the Legendre transformation.

legendre transformation The Legendre transformation uses an ensemble
of tangents on our function F(J) in order to describe it.

F(J) = F(J0) +
∂F
∂J

∣∣∣∣†
J0

(J − J0) + ... (350)

G = F(J0)−
∂F
∂J

∣∣∣∣†
J0

J0 (351)



acknowledgments 115

If F is convex⇒ mJ =
∂F
∂J and F can be reconstructed from G(m), if G is known for

every slope m of F.
Gibbs free energy:

G = F− ∂F
∂J

†

J

= U − TSB + J†m− J†m (352)

⇒
∼
G (d, β, m, D) =

∼
U (d, β, m, D)− T

∼
SB (D) (353)

Now, we can calculate the mean field m and the uncertainty dispersion D from the
defined Gibbs free energy G.
mean field from minimal Gibbs free energy:

δG(d, m, D)

δm
= 0 ⇒ m = 〈s〉(s|d)

∣∣∣∣
T=1

(354)

proof:

δG
δm

=
δ

δm

(
F(d, J(m))− J†(m)m

)
=

δJ(m)

δm

† δF(d, J)
δJ︸ ︷︷ ︸

=m(J)

−δJ†

δm
m− J

= −J !
= 0

J = 0 ⇒ m =
∂F
∂J

∣∣∣∣
J=0

= 〈s〉(s|d)

uncertainty dispersion:(
δ2G

δmδm†

)−1 ∣∣∣∣
m=〈s〉(s|d)

=
−δ2F
δJδJ†

∣∣∣∣
J=0

= βD (355)

proof: (
δ2G

δmδm†

)−1 ∣∣∣∣
m=〈s〉(s|d)

=

(
− δJ

δm

)−1 ∣∣∣∣
m=〈s〉(s|d)

= −
(

δm(J)
δJ

) ∣∣∣∣
J=0

= −δ2F(J)
δJδJ†

∣∣∣∣
J=0

=
1
β

δ2

δJδJ† ln Z(d, J, β)︸ ︷︷ ︸
=β2D

= βD



116 acknowledgments

13.1.1 Lognormal Poisson model

• P(s) = G(s, S)

• λ(s) = κes

• P(dx|λx) = (λx)dx
e−λx

dx !

⇒ H(d, s) =̂
1
2

s†S−1s− d†s + κ†es

∼
U (m, D) = 〈H(d, s)〉G(s−m, D)

〈s†S−1s〉G(s−m, D) = Tr(S−1〈ss†〉G(s−m, D))

= Tr(S−1〈(m + ϕ)(m + ϕ)†〉G(ϕ, D))

= Tr(S−1(mm† + D))

= m†S−1m + Tr(S−1D)

〈s〉G(s−m, D) = m

〈esx〉G(s−m, D) =
∫
Dϕ G(ϕ, D)emx+ϕx

writing j† ϕ for ϕx with jy = δ(y− x)

= emx

∫
Dϕ

exp
(
− 1

2 ϕ†D−1ϕ + j† ϕ
)

|2πD|1/2

= emx e
1
2 j†Dj

= emx+
1
2 Dxx

⇒
∼
U (m, D) =

1
2

m†S−1m +
1
2

Tr(DS−1)− d†m + κ†em+ 1
2 D̂

∼
SB (D) =

1
2

Tr(1 + ln(2πD))

∼
G (m, D) =

∼
U (m, D)− T

∼
SB (D)

=
1
2

m†S−1m +
1
2

Tr(DS−1)− d†m + κ†em+ 1
2 D̂ − T

2
Tr(1 + ln(2πD))

mean map:

0 !
=

δ
∼
G (m, D)

δm
= S−1m− d + κ†em+ 1

2 D̂

⇒ m = S(d− κ†em+ 1
2 D̂)
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uncertainty dispersion:

D = T
(

δ2G
δmδm†

)−1

= T
(

δ

δm
(S−1m− d + κem+ 1

2 D̂)

)−1

= T
(

S−1 +
̂

κem+ 1
2 D̂
)−1

m = S(d− κem+ 1
2 D̂)

D = T
(

S−1 +
̂

κem+ 1
2 D̂
)−1

⇒The loop-vertex normalized classical solution is the minimal Gibbs energy so-
lution in a Gaussian posterior approximation.

13.1.2 Mutual information and Gibbs free energy

Define the KL-distance,

DKL[
∼
P ,P ] = S[

∼
P ,P ] = −

∫
Ds

∼
P (s|d) ln

∼
P (s|d)
P(s|d) .

⇒
∼
G (m, D) = 〈 H(d, s)︸ ︷︷ ︸

=− lnP(d, s)

+ lnG(s−m, D)︸ ︷︷ ︸
=−SB

〉G(s−m, D)

=
∫
Ds G(s−m, D) ln

G(s−m, D)

P(d, s)

=
∫
Ds G(s−m, D) ln

G(s−m, D)

P(s|d) − lnP(d)

=̂
∫
Ds G(s−m, D) ln

G(s−m, D)

P(s|d)

=
∫
Ds
∼
P(s|d) ln

∼
P (s|d)
P(s|d)

⇒The Gibbs free energy describes up to a constant the mutual information,

∼
G (m, D) = DKL[

∼
P ,P ].

The minimal Gibbs free energy is equal to a minimal KL-distance and to a maxi-

mal mutual information of
∼
P on P .
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13.2 operator calculus for information field theory

Following Leike & Enßlin [8]
task: calculate the Gaussian average

〈 f (s)〉G (s−m,D)

for a Gauss distribution in s with mean m and covariance D.
More simple task:

〈s〉G (s−m,D) =
∫
Ds

s e(s−m)†D−1(s−m)

|2πD|
1
2

Observe: d
dmG (s−m, D) = D−1(s−m) G (s−m, D)

equivalently: (D d
dm + m) G (s−m, D) = s G (s−m, D)

〈s〉G (s−m,D) =
∫
Ds

(
D

d
dm

+ m
)

G (s−m, D)

=

(
D

d
dm

+ m
) ∫

Ds G (s−m, D)

=

(
D

d
dm

+ m
)
〈1〉G (s−m,D)︸ ︷︷ ︸

=1

= m (356)

Works for any moment of the Gaussian

〈sn〉G (s−m,D) =

(
D

d
dm

+ m
)n

1 . (357)

Φ := D d
dm + m the field operator.

vacuum vector 1 : m 7→ 1 is functional that maps any field m to 1

arbitrary analytical function f (s) = ∑∞
i=0 λisi:

〈 f (s)〉G (s−m,D) =
∞

∑
i=0

λi

〈
si
〉

G (s−m,D)

=
∞

∑
i=0

λi

〈
Φi
〉

G (s−m,D)

=
∞

∑
i=0

λiΦi1 = f (Φ) 1 (358)

Instead of calculating the expectation value of f (s) with respect to a Gaussian
distribution we can calculate the vacuum expectation value of the operator f (Φ).
We will motivate why this is useful by illustrative examples.

annihilation operator a := D d
dm , ax = D d

dmy

creation operator a+ := m, a+x = mx

Canonical commutation relations:

[ax, ay] = [a+x, a+y] = 0

[ax, a+y] = Dxy . (359)
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Strategy: Separate Φ = a+ a+ and try to get the annihilation operators to the right
hand side, where they annihilate on the vacuum: ax1 = Dxy d

dmy 1 = 0.
Illustration 1:

〈sxsy〉G (s−m,D) = ΦxΦy1 = (ax + a+x) (ay + a+y) 1

= (axay + a+xay + axa+y + a+xa+y) 1

=
(
0 + 0 + a+yax + [ax, a+y] + mxmy) 1

= Dxy + mxmy (360)

Illustrations 2:
〈
esx〉

G (s−m,D)
= eΦx

1 = eax+a+x
1.

We need the Baker-Campbell-Hausdorff (BCH) formula (without proof):

eXY =
∞

∑
n=0

[X, Y]n eX (361)

with [X, Y]n = [X, [X, Y]n−1] and [X, Y]0 = Y.
In case [X, [X, Y]] = 0 we have (without proof):

eXY = Y eX + [X, Y] eX (362)

eX+Y = eX eYe
1
2 [X,Y]. (363)

In case X = ax, Y = a+y we have [X, Y] = [ax, a+y] = Dxy, which commutes with a
and a+ such that [X, [X, Y]] = [ax, Dxy] = 0. Consequently:

eax
a+y = a+yeax

+ [ax, a+y] eax
= a+yeax

+ Dxyeax
(364)

eax+a+y
= ea+y

eax
e

1
2 [a

x ,a+y] = ea+y
eax

e
1
2 Dxy

(365)

Therefore, 〈
esx
〉

G (s−m,D)
= ea+x

eax
e

1
2 Dxx

1

= emx+ 1
2 Dxx

(1 + ax +
1
2
(a2)x + . . .) 1

= emx+ 1
2 Dxx

(366)

since Dxx commutes with ax and a+x and since we have ax1 = 0.

Illustrations 3: 〈
esx

esy
〉

G (s−m,D)
= eΦx

eΦy
1

= eax+a+x
eay+a+y

1

= ea+x+ 1
2 Dxx

eax
ea+y+ 1

2 Dyy
eay

1

= ea+x+ 1
2 Dxx+ 1

2 Dyy
eax

ea+y
1
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Now, we need the commutator [eax
, ea+y

], which can be calculated using the BCH
formula twice:

[eax
, ea+y

] = eax
ea+y − ea+y

eax

= eax+a+y+ 1
2 Dxy − eax+a+y− 1

2 Dxy

= eax+a+y
(

e
1
2 Dxy − e−

1
2 Dxy

)
= ea+y

eax
e

1
2 Dxy

(
e

1
2 Dxy − e−

1
2 Dxy

)
= ea+y

eax
(

eDxy − 1
)

eax
ea+y

= ea+y
eax

eDxy〈
esx

esy
〉

G (s−m,D)
= ea+x+ 1

2 Dxx
eDxy

ea+y+ 1
2 Dyy

eax
1

= emx+ 1
2 Dxx

eDxy
emy+ 1

2 Dyy

Illustrations 4:

〈
esx

sy
〉

G (s−m,D)
= eΦx

Φy1

= eax+a+x (
ay + a+y) 1

= ea+x+ 1
2 Dxx

eax
a+y1

To exchange eax
and a+y we use the fact that the commutator [X, _] has the algebraic

properties of a derivation, meaning that it is linear and obeys the product rule

[X, Y Z] = XYZ−YZX

= XYZ−YXZ + YXZ−YZX

= [X, Y] Z + Y [X, Z].

Together with the fact that [a+y, ax] commutes with everything this implies that
the commutator indeed works like taking the derivative with respect to a+y. We
calculate [a+y, eax

] step by step:

[a+y, eax
] = [a+y,

∞

∑
n=0

(an)x

n!
] =

∞

∑
n=0

1
n!
[a+y, (an)x]

=
∞

∑
n=1

1
n!

n[a+y, ax](an−1)x

=
∞

∑
n=1

1
n!

n(an−1)x[a+y, ax]

= −eax
Dxy

Therefore,

eax
a+y =

(
a+y + Dxy) eax〈

esx
sy
〉

G (s−m,D)
= ea+x+ 1

2 Dxx (
a+y + Dxy) eax

1

= emx+ 1
2 Dxx

(my + Dxy)
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Illustration 5:〈
esx

esy
sz
〉

G (s−m,D)
= eΦx

eΦy
Φz1

= eax+a+x
eay+a+y (

az + a+z) 1

= ea+x+ 1
2 Dxx

eax
ea+y+ 1

2 Dyy
eay

a+z1

= ea+x+ 1
2 Dxx

eDxy
ea+y+ 1

2 Dyy
(a+z + Dxz + Dyz)eax

eay
1

= emx+ 1
2 Dxx

eDxy
emy+ 1

2 Dyy
(mz + Dxz + Dyz) .





14
R E C O N S T R U C T I O N W I T H O U T S P E C T R A L K N O W L E D G E

Following Enßlin & Weig [arxiv:1004.2868] and Enßlin & Frommert [arxiv:1002.2928]

I: A Gaussian random field s,

P(s|S) = G(s, S),

with unknown covariance S = 〈ss†〉(s) is observed with a linear response instru-
ment,

d = Rs + n,

with Gaussian and signal independent noise n of known covariance N = 〈nn†〉,

P(d, s|S) = G(s, S)G(d− Rs, N).

In the functional basis O the signal covariance S is diagonal is known .

For Example:

• statistical homogenity⇒Fourier basis: O = F

• statistical isotropy⇒spherical harmonics basis: O = Y

Strategy to estimate m = 〈s〉(s|d, I) :

1. Develop theory for unknown s, S.

2. Marginalize unknown S: H(d, s) = − ln
∫
DS e−H(d, s, S)

3. Solve effective theory for s.

14.1 spectral respresentation of S

S = O†P̂sO

Sxy = O†
xkP̂s(k)Oky

In the special case of O = F we obtain,

Sxy =
∫

e−ixkPs(k)eiykdk.

Now, we model the spectrum of Ps(k) as a linear combinatiom of positive basis
functions fi(k) with disjoint support (spectral bands) covering all of the relevant
k-space,

Ps(k) = ∑
i

fi(k)pi.

123
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The basis functions are given by the indicator functions,

fi(k) = P(x ∈ band#i|k, band#i),

band#i

fi(k)

k

1

and pi are the corresponding spectral coefficients. We request that the bands cover
completely the Fourier space and do not overlap.
Define the spectral band matrices:

(Ti)xy = (O† f̂iO)xy

⇒ S = O† ∑
i

f̂i piO

= ∑
i

piO† f̂iO

= ∑
i

piTi.

Besides, we claim
S−1 = ∑

i
p−1

i Ti.

proof:

1
!
= SS−1 = ∑

ij
pi p−1

j TiTj

= ∑
ij

pi p−1
j O† f̂i OO†︸︷︷︸

=1

f̂ jO

= ∑
ij

pi p−1
j O† fi f j︸︷︷︸

=δij

O

= ∑
i

1O†1O

= 1

14.2 joint pdf

P(d, s, S) = P(d|s)︸ ︷︷ ︸
likelihood

P(s|S)︸ ︷︷ ︸
signal prior

P(S)︸ ︷︷ ︸
spectral prior

likelihood

P(d|s) = G(d− Rs, N)

H(d|s) =̂
1
2

s† R†N−1R︸ ︷︷ ︸
=M

s− j†s
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signal prior

P(s|S) = G(s, S)

H(s|S) =
1
2

s†S−1s +
1
2

ln |2πS|

In this case, the normalization term 1
2 ln |2πS| can not be neglected, since S is

unknown.

spectral prior

I′= Spectral coefficients are positive but of unknown magnitude.
⇒Flat distribution on a logarithmic scale are estimated by the Jeffrey’s prior.

P(pi) ∝ p−1
i

P(τi) ∝ const. with τi = ln pi

P(p) = ∏
i
P(pi)

⇒ P(S) = ∏
i

p−1
i

H(S) = ∑
i

ln pi

joint hamiltonian

H(d, s, S) =̂
1
2

s† (S−1
p + M)︸ ︷︷ ︸
=D−1

p

s− j†s + ∑
i

ln pi +
1
2

ln |2πSp|

=̂
1
2

s†D−1
p s− j†s + ∑

i
ln p(1+

ρi/2)
i

We used |Sp| = ∏i pρi
i with ρi = Tr(TiT−1

i ) giving the number of degrees of
freedom in the spectral band i.

14.3 effective hamiltonian from marginalized joint pdf

P(d, s) =
∫
DSP(d, s, S)

=
∫
DSP(d|s)P(s|S)P(S)

= P(d|s)
∫
DSP(s|S)P(S)︸ ︷︷ ︸
=P(s)=e−Heff(s)

Heff(s) = − ln
∫
Dp exp

(
−1

2
s†S−1

p s−∑
i
(1 +

ρi

2
) ln pi

)

= − ln ∏
i

[∫ ∞

0
dpi exp

(
−

p−1
i
2

s†T−1
i s− (1 +

ρi

2
) ln pi

)]

= − ln ∏
i

[∫ ∞

0
dpi p−(1+

ρi
2 )

i e−
p−1

i
2 s†Tis

]
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Using ti =
1
2 s†S−1s , xi =

ti
pi

and dpi = − t
x2

i
dxi we get,

Heff(s) = −∑
i

ln
∫ ∞

0
dpi p−(1+

ρi
2 )

i e−
ti
pi

= −∑
i

ln

t(1+
ρi
2 )+1

i

∫ ∞

0
dxi x−2+1+ ρi

2
i e−xi︸ ︷︷ ︸

=Γ(ρi/2)


= +∑

i

ρi

2
ln
(

1
2

s†T−1
i s
)

⇒ H(d, s) =̂
1
2

s† Ms− j†s + ∑
i

ρi

2
ln
(

1
2

s†T−1
i s
)

M = R†N−1R

j = R†N−1d

ρi = # modes in spectral band i

14.4 classical or map estimate

δHeff(d, s)
δs

= Ms− j + ∑
i

ρi
Tis

s†Tis

!
= 0

⇒ j =


M + ∑

i

ρi

s†Tis︸ ︷︷ ︸
=(p∗i )

−1

Ti

︸ ︷︷ ︸
=S−1

p∗


︸ ︷︷ ︸

=D−1
p∗

s

scl = mMAP = Dp∗ j

with Dp∗ = (S−1
p∗ + M)−1 and the power of the reconstructed map in spectral

band i, p∗i = 1
ρi

s†
clTiscl.
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14.5 thermodynamical approach

In the following we will assume T = 1 for simplicity.

⇒
∼
G (m, D) =

∼
U (m, D)−

∼
SB (D)

∼
U (m, D) = 〈H(d, s)〉G(s−m, D)

=
1
2

Tr(〈ss†〉M)− j†〈s〉+ ∑
i

ρi

2
〈ln(s†Tis)〉︸ ︷︷ ︸

=Ii

=
1
2

Tr((mm† + D)M)− j†m + ∑
i

ρi

2
Ii

Choose τi as the typical value for s†Tis, around which we expand and the corre-
sponding ansatz τi = Tr((mm† + δD)Ti). In this case δ is a parameter to model the
uncertainty dispersion corrections.

Ii = 〈ln s†Tis
τi

+ ln τi〉G(s−m, D)

= ln τi + 〈ln(1 +
s†Tis− τi

τi
)〉G(s−m, D)

= ln τi +
∞

∑
n=1

(−1)n

nτn
i
〈(s†Tis− τi)

n〉G(s−m, D)︸ ︷︷ ︸
=I Ii, n

I Ii, 1 = Tr((mm† + D)Ti)− τi

= (1− δ)Tr(DTi)

I Ii, 2 = ... = I I2
i, 1 + 4Tr((mm† +

1
2

D)TiDTi)

If we want I Ii, 1 = 0 and I Ii, 2 to be minimal, then we choose δ = 1. For this special
case we calculate the Gibbs free energy,

∼
G(m, D) =

1
2

Tr((mm† + D)M)− j†m + ∑
i

ρi

2
ln
[
Tr((mm† + D)Ti)

]
−1

2
Tr(1 + ln(2πD)).

Minimize the Gibbs free energy, in order to obtain the mean field m,

0 !
=

δ
∼
G

δm
= Mm− j + ∑

i

ρi

2
2Tim

Tr((mm† + D)Ti)

⇒ j = (M + ∑
i
(p∗i )

−1Ti)︸ ︷︷ ︸
=D−1

p∗

m

p∗i =
Tr((mm† + D)Ti)

ρi
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Unified filter formula:

m = Dp j

pi =
1
ρi

Tr((mm† + δD)S−1
i )

δ = 0 ⇒ MAP filter

δ = 1 ⇒ critical filter



15
D Y N A M I C A L F I E L D I N F E R E N C E

15.1 holistic picture

15.1.1 Field prior

A dynamic field ϕ = ϕ(t) = ϕ(x, t) varies in space x and time t.
Background information I:

∂t ϕ(t) = F[ϕ(t)] + ξ(t). (367)

F possibly non-linear, possibly non-local, equal time (integro-)differential operator.
ξ a noise field summarizing uncontrolled environmental influences.
Field prior:

P(ϕ|I) =
∫
Dξ P(ϕ|ξ, I)P(ξ|I). (368)

Field is fully determined by noise ξ and initial conditions ϕ(0) = ϕ0:

P(ϕ|ξ, I) = ∏
x,t

δ

{
ϕ(t)− ϕ0 −

∫ t

0
dt′
[
F[ϕ(t′)] + ξ(t′)

]}
= δ {ϕ̇− F[ϕ]− ξ} |∂t − ∂ϕF(ϕ)|, (369)

with δ(ψ) = ∏x,t δ[ψ(x, t)] a functional delta function and |∂t − ∂ϕF(ϕ)| the func-
tional determinant of the stochastic differential equation (367).

P(ϕ|I) = |∂t − ∂ϕF(ϕ)| δ {ϕ(t)− ϕ0} P(ξ = ∂t ϕ− F[ϕ]|I) (370)

15.1.2 Field posterior

Data d ←↩ P(d|ϕ) as resulting form field measurements, as initial field configura-
tion of a simulation, as the data representing a simulation step, or a combination
of these possibilities.
Field posterior:

P(ϕ|d, I) =
P(d|ϕ, I)P(ϕ|I)

P(d|I)
Information energy:

H(d, ϕ) = − lnP(d, ϕ|I) (371)

129
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15.1.3 Partition function

Moment generating partition function:

Z(d, J) =
∫
Dϕ e−H(d,ϕ|I)+J† ϕ

=
∫
Dϕ |∂t − ∂ϕF(ϕ)| P(ξ = ∂t ϕ− F[ϕ]|I) e−H(d|ϕ,I)+J† ϕ (372)

J† ϕ =
∫

dx
∫

dt J∗(x, t) ϕ(x, t)

Assume Gaussianity and linearity of measurement and driving noises: P(d|ϕ, I) =
G(d− R ϕ, N) and P(ξ|I) = G(ξ, Ξ).

Z(d, J) =
∫
Dϕ |∂t − ∂ϕF(ϕ)| G(∂t ϕ− F[ϕ], Ξ) G(d− Rϕ, N) eJ† ϕ

=
∫
Dϕ

|∂t − ∂ϕF(ϕ)|
|2πΞ|1/2|2πN|1/2

e−
1
2{(∂t ϕ−F[ϕ])†Ξ−1(∂t ϕ−F[ϕ])+(d−R ϕ)† N−1(d−R ϕ)−J† ϕ}

15.1.4 Linear dynamics

Special case F[ϕ] = F ϕ, then

∂t ϕ− F[ϕ] = (∂t − F)︸ ︷︷ ︸
≡G−1

ϕ = ξ

with G = (∂t − F)−1 Greens function of process, such that ϕ = G ξ.
If F stationary, temporal Fourier transformation yields(

G−¹
)

ωω′
= 2πδ(ω−ω′) (iω− F)

Gωω′ = 2πδ(ω−ω′) (iω− F)−1

Partition function:

Z(d, J) =
|G−1|

|2πΞ|1/2|2πN|1/2

∫
Dϕ e−

1
2

{
(G−1 ϕ)

†
Ξ−1G ϕ+(d−R ϕ)† N−1(d−R ϕ)−j† ϕ

}

=
|G−1| |2π D|1/2

|2πΞ|1/2|2πN|1/2
e

1
2 (J+j)†D(J+j)− 1

2 d† N−1d

j = R†N−1d

D =
[
Φ−1 + R†N−1R

]−1

Φ = GΞG†

Field expectations:

〈ϕ〉(ϕ|d,I) =
∂ lnZ

∂J

∣∣∣∣
J=0

= D j

〈ϕϕ†〉c(ϕ|d,I) =
∂2 lnZ
∂J∂J†

∣∣∣∣
J=0

= D
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Example: Diffusion equation, F = ∆,
Greens function: G(x,t) (x′,t′) = θ(t− t′) G(x− x′, 2 (t− t′))
Test:

(∂t − ∆)(x,t)G(x,t) (x′,t′) = δ(t− t′) G(x− x′, 0) + θ(t− t′) G(x− x′, 2 (t− t′)) × 0

= δ(t− t′)δ(x− x′) = 1(x,t) (x′,t′)

ϕ = G ξ

(∂t − ∆) ϕ = ξ

In Fourier space:

G(k,ω) (k′,ω′) =
(2π)1+uδ(k− k′) δ(ω−ω′)

iω + k2

Pϕ(k, ω) =
Pξ(k, ω)

ω2 + k4

15.1.5 Noise free case

∂t ϕ(t) = F[ϕ(t)] and no data.

Z(J) =
∫
Dϕ |∂t − ∂ϕF(ϕ)| δ {∂t ϕ− F[ϕ]} eJ† ϕ (373)

Two obstacles: functional determinant and functional delta function.
Solution: introduce auxiliary fields

bosonic field :
δ {∂t ϕ− F[ϕ]} ∝

∫
Dη ei η†(∂t ϕ−F[ϕ])

fermionic field :

|∂t − ∂ϕF(ϕ)| =
∫
DχDχ eχ†(∂t−∂ϕF(ϕ)) χ (374)

χ, χ fields of Grassmann variables

Grassmann numbers:

χ, χ two (scalar) Grassmann numbers/variables

χ χ = −χχ, anticommuting numbers (375)

χ χ = χ χ = 0

a χ = χ a, commutes with a ∈ C (376)

eχ = 1 + χ∫
dχ 1 ≡ 0 (377)∫
dχ χ ≡ 1 (378)

∂χχ ≡ 1, differentiation = integration (379)∫
dχ eaχ =

∫
dχ (1 + aχ) = 0 + a = a
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Grassmann numbers can be represented by matrices. E.g.

θ1 =


0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0

 , θ2 =


0 0 0 0

0 0 0 0

1 0 0 0

0 −1 0 0


are Grassmann numbers as θ1θ2 = −θ2θ1, θ1θ1 = 0, and θ2θ2 = 0.
Determinats via Grassmann integrals:

A matrix of rank m

χ = (χ1, . . . χm)
† vector of Grasmann variables

χ = (χ1, . . . χm)
†

dχ ≡ dχ1 · · · dχm∫
dχ dχ eχ† Aχ =

∫
dχ dχ e∑m

ij=1 χ†
i Aijχj

=
∫

dχ dχ
∞

∑
n=0

1
n!

(
∑
ij

χi Aijχj

)n

=
∫

dχ dχ

1 + ∑
ij

χi Aijχj + . . .︸ ︷︷ ︸
→0 since <m terms

+
1

m!

(
∑
ij

χi Aijχj

)m

︸ ︷︷ ︸
6=0 since m terms

+ . . .︸︷︷︸
=0


=

1
m!

∫
dχ dχ ∑

i1 j1

. . . ∑
im jm

χi1 χj1 · · · χim χjm Ai1 j1 . . . Aim jm

= ∑
σ∈Sn

sgnσ
m

∏
i=1

Aiσi with σ permutation, Sn Symmetric group

= |A| (380)

by sign flips during reordering of χi1 χj1 · · · χim χjm to match the (inverse) order of
integration variables dχ1 · · · dχmdχ1 · · · dχm so that Eq. (378) can be used.
Dynamical system partition function:

Z(J) ∝
∫
DϕDηDχDχ eχ†(∂t−∂ϕ F(ϕ)) χ+i η†(∂t ϕ−F[ϕ])+J† ϕ (381)

can be regarded as the partition function of a super-symmetric field theory. There
is an exchange symmetry between the bosonic (ϕ, η) and fermionic (χ, χ) degrees
of freedom, since both involve the same operator ∂t− ∂ϕF(ϕ). Details of this Parisi-
Sourlas-Wu quantization are beyond the level of this course.

15.2 information field dynamics

15.2.1 Basic idea

Computer simulations address the inference problem what is the future of a field
given some initial data and a dynamical law. Fields are represented by finite data
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data in computer memory

state space

data in computer memory

state space

signal
inference

time
evolution
operator

entropic
matching

resulting simulation scheme

Figure 12: Illustration of the IFD concepts.

vectors, which inevitable implies information loss on sub-grid field structures.
How should the differential operators of the dynamics be best represented nu-
merically to have most accurate simulation?

Information optimal simulation schemes should be possible. Information field
dyamics (IFD, [5]) is a proposal how to construct such optimal schemes. The basic
idea is sketched in Fig. 12 and consists of the following steps:

1. The field to be simulated, ϕ, is regarded to be unknown.

2. Known is the data d in the computers memory, which is regarded to be the re-
sult of a measurement process at time t, e.g. d = R ϕ+ n, with know response
R, and covariances N and Φ of the noise n and the field ϕ, respectively.

3. This permits virtually a reconstruction of the posterior mean m = 〈ϕ〉(ϕ|d)
and its uncertainty dispersion D = 〈ϕ ϕ†〉(ϕ|d), and most importantly the
construction of a field posterior P(ϕ|d), e.g. G(ϕ − m, D) in case of Gaus-
sianity and linearity.

4. The posterior P(ϕ|d) is probability distribution over the state space of the
field. Each point in the state space represents a possible continuous field
configuration. Each should evolve according to the dynamical law of the
field, e.g.

∂t ϕ = F[ϕ],

and therefore can be time evolved to an infinitesimal future t′ = t + δt via

ϕ′ ≡ ϕt′ = ϕ + δt F[ϕ] +O(δt2).
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5. Thus, the full posterior can be time evolved as well

P(ϕ′|d) = P(ϕ|d)
∣∣∣∣ ∂ϕ

∂ϕ′

∣∣∣∣∣∣∣∣
ϕ′=ϕ+δt F[ϕ]

= P(ϕ|d)
∣∣∣∣1− δt

∂F[ϕ]
∂ϕ

∣∣∣∣∣∣∣∣
ϕ=ϕ′−δt F[ϕ′]

+O(δt²).

6. Now, new data d′ in computer memory has to be chosen to represent P ≡
P(ϕ′|d) as closely as possible. If measurement process is specified, new pos-
terior P ′ ≡ P ′(ϕ′|d′) can be matched entropically by maximizing

SB(P ′|P) = −
∫
Dϕ′ P ′(ϕ′|d′) ln

P ′(ϕ′|d′)
P(ϕ′|d)

with respect to d′ (and if needed other parameters like R, N, Φ, ...). The
resulting formula will be of the form

d′ = F [d]

and therefore represent a simulation scheme.

An IFD simulation scheme therefore incorporates all knowledge of the sub-grid
statistics (as encoded in Φ), the relation between field ϕ and data d (as encoded
in R and N) and the precise partial differential equation of the field evolution (as
encoded in F) and tries to find a future data set d′ that codes all this information
optimally.

15.2.2 Ensemble dynamics of stochastic systems

Following [10].
ϕ = (ϕ1, . . . ϕn)† finite dimensional state vector of stochastic system evolving ac-
cording to

∂t ϕ = F(ϕ) + ξ

with white noise vectors ξt ←↩ G(ξt, Ξ) with covariance 〈ξtξ
†
t′〉(ξ) = δ(t− t′)Ξ.

What is the evolution of an ensemble of such systems?
Gaussian Ansatz:

P(ϕ|t) = G(ϕ−mt, Φt)

Follow evolution of mt ∈ Rn and Φt ∈ Rn×n.
Linear noise approximation:

∂tmt = F(mt)

∂tΦt =

[
∂F(mt)

∂mt

]
Φt + Φt

[
∂F(mt)

∂mt

]†

+ Ξ

Evolution of mean mt does not depend on Φt.
Entropic matching:

∂tmt = 〈F(ϕ)〉G(ϕ−mt,Φt)

∂tΦt =

〈
∂F(ϕ)

∂ϕ

〉
G(ϕ−mt,Φt)

Φt + Φt

〈
∂F(ϕ)

∂ϕ

〉†

G(ϕ−mt,Φt)

+ Ξ



acknowledgments 135

Gaussian averaging couples mt and Φt mutually.
Numerical experiments show that entropic matching scheme performs better than
linear noise approximation in case of non-linear stochastic systems.





B I B L I O G R A P H Y

[1] J.J. Binney, N.J. Dowrick, A.J. Fisher, and M.E.J. Newman, The theory of criti-
cal phenomena, Oxford University Press, Oxford, UK: ISBN0-19-851394-1, 1992.
(Cited on page 105.)

[2] A. Caticha, Lectures on Probability, Entropy, and Statistical Physics, ArXiv e-
prints (2008). (Cited on page 7.)

[3] R. T. Cox, Probability, Frequency and Reasonable Expectation, American Journal
of Physics 14 (1946), 1–13. (Cited on pages 7, 9, and 10.)

[4] T. Enßlin, Information field theory, American Institute of Physics Conference
Series (U. von Toussaint, ed.), American Institute of Physics Conference Series,
vol. 1553, August 2013, pp. 184–191. (Cited on page 103.)

[5] T. A. Enßlin, Information field dynamics for simulation scheme construction,
Phys. Rev. E87 (2013), no. 1, 013308. (Cited on page 133.)

[6] T. A. Enßlin, M. Frommert, and F. S. Kitaura, Information field theory for cosmo-
logical perturbation reconstruction and nonlinear signal analysis, Phys. Rev. D80
(2009), no. 10, 105005. (Cited on page 103.)

[7] E. T. Jaynes, Probability Theory: The Logic of Science, June 2003. (Cited on page 7.)

[8] R. H. Leike and T. A. Enßlin, Operator Calculus for Information Field Theory,
ArXiv e-prints: arXiv160500660 (2016). (Cited on page 118.)

[9] , Optimal Belief Approximation, ArXiv e-prints (2016). (Cited on page 28.)

[10] T. Ramalho, M. Selig, U. Gerland, and T. A. Enßlin, Simulation of stochastic
network dynamics via entropic matching, Phys. Rev. E87 (2013), no. 2, 022719.
(Cited on page 134.)

[11] A. Terenin and D. Draper, Cox’s Theorem and the Jaynesian Interpretation of Prob-
ability, ArXiv e-prints (2015). (Cited on page 7.)

137


	Contents
	Acknowledgments
	Information theory
	1 From logic to probability
	1.1 Aristotelian logic 
	1.2 Boolean algebra
	1.3 Plausible reasoning
	1.3.1 Desiderata
	1.3.2 The product rule
	1.3.3 True and false
	1.3.4 Negation

	1.4 Probability
	1.4.1 Probability systems
	1.4.2 Marginalization

	1.5 Probabilistic Reasoning
	1.5.1 Deductive logic
	1.5.2 Assigning probabilities

	1.6 Statistical Inference
	1.6.1 Measurement process
	1.6.2 Bayesian Inference

	1.7 Coin tossing
	1.7.1 Recognizing the unfair coin
	1.7.2 Probability density functions
	1.7.3 Inferring the coin load
	1.7.4 Large number of tosses
	1.7.5 The evidence for the load
	1.7.6 Lessons learned

	1.8 Adaptive information retrieval
	1.8.1 Inference from adaptive data retrieval 
	1.8.2 Adaptive strategy to maximize evidence


	2 Decision Theory
	2.1 Optimal Risk
	2.2 Loss Functions
	2.3 Communication
	2.3.1 Embarrassment – a unique loss function


	3 Information Measures
	4 Maximum Entropy
	4.1 Decoding a message
	4.2 Maximum Entropy Principle
	4.3 Optimal communication
	4.4 Maximum Entropy with hard data constraints
	4.5 Maximum Entropy with soft data constraints
	4.6 Different Flavors of Entropy
	4.7 Information Gain by Maximizing the Entropy
	4.7.1 Coin Tossing Example
	4.7.2 Positive Counts Example
	4.7.3 Many Small Count Additive Processes

	4.8 Maximum Entropy with known 1st and 2nd Moments

	5 Gaussian Distribution
	5.1 One dimensional Gaussian
	5.2 Multivariate Gaussian
	5.3 Maximum Entropy with known n-dimensional 1st and 2nd Moments 


	Information field theory
	6 Information Hamiltonian 
	6.1 Linear measurement of a Gaussian signal with Gaussian noise

	7 Linear filter theory
	7.1 Optimal Linear Filter
	7.1.1 Properties of the linear noise

	7.2 Symmetry between filter and response
	7.3 Response
	7.3.1 Repeated measurement of sR
	7.3.2 Photography
	7.3.3 Tomography
	7.3.4 Interferometry


	8 Gaussian Fields
	8.1 Field Theory

	9 Wiener Filter Theory
	9.1 Statistical homogeneity
	9.2 Fourier space
	9.3 Power spectra
	9.3.1 Units
	9.3.2 Wiener-Khintchin Theorem
	9.3.3 Fourier space filter
	9.3.4 Position space filter
	9.3.5 Example: large-scale signal
	9.3.6 Deconvolution
	9.3.7 Missing data


	10 Matrix Algebra
	11 Gaussian processes
	11.1 Markov Processes
	11.1.1 Markov property
	11.1.2 Wiener process
	11.1.3 Future expectation
	11.1.4 Example: evolution of a stock price

	11.2 Stochastic calculus
	11.2.1 Stratonovich's calculus
	11.2.2 Itô's calculus

	11.3 Linear stochastic differential equations
	11.3.1 Example: Wiener process
	11.3.2 Example: Ornstein-Uhlenbeck process
	11.3.3 Example: harmonic oscillator

	11.4 Parameter determination
	11.5 Lognormal Poisson model

	12 Information Field Theory
	12.1 Basic formalism
	12.2 Free Theory
	12.3 Interacting Field Theory
	12.4 Diagrammatic Perturbation Theory
	12.5 Feynman Rules
	12.6 Diagrammatic expectation values
	12.7 Log-normal Poisson model diagrammatically
	12.7.1 Consideration of uncertainty loops


	13 Thermodynamical inference
	13.1 Basics
	13.1.1 Lognormal Poisson model
	13.1.2 Mutual information and Gibbs free energy

	13.2 Operator Calculus for Information Field Theory

	14 Reconstruction without spectral knowledge
	14.1 Spectral respresentation of S
	14.2 Joint PDF
	14.3 Effective Hamiltonian from marginalized joint PDF
	14.4 Classical or MAP estimate
	14.5 Thermodynamical approach

	15 Dynamical Field Inference
	15.1 Holistic Picture
	15.1.1 Field prior
	15.1.2 Field posterior
	15.1.3 Partition function
	15.1.4 Linear dynamics
	15.1.5 Noise free case

	15.2 Information Field Dynamics
	15.2.1 Basic idea
	15.2.2 Ensemble dynamics of stochastic systems


	Bibliography


